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Je tiens tout d’abords à remercier Octav Cornea, Alexandru Oancea et
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Introduction

At the International Congress of Mathematics 1998 in Berlin Y. Eliashberg
reported on new invariants of contact manifolds and their Legendrian sub-
manifolds (see [Eli98]). He defined the contact homology algebra and its
relative version: Legendrian contact homology. The latter has been devel-
oped independently by Y. Chekanov in [Che02] for Legendrian knots in the
standard three dimensional contact space. In this dimension the theory has
the benefit of being combinatorial (thanks both to Reidemeister theorem and
the uniformisation theorem). These invariants became part of what is known
as Symplectic Field Theory (developed in [EGH00]) which has been feeding
mathematicians ever since. First it is a very rich algebraic invariant which
admits many variations allowing to distinguish many objects. And second
its definition in full generality is yet to come, leaving room for a lot of foun-
dational work to be done. I am one of those mathematicians who has been
able to put food on his plate thanks to this important foundational work.
This memoir will try to expose my contribution to the field.

Legendrian sub-manifolds. When we imagine a car moving along a pre-
scribed trajectory or think on how to orient the skate on the ice to follow
someone in front of us we are doing Legendrian lifts of front projections.
When on a piece of paper we try to draw the contour of the mountains that
we glance at or draw on a blackboard a torus in R3, with its centre hole that
we know well not to draw as an ellipse, we draw front projections of Legen-
drian sub-manifolds. Looking at a wave propagating after we throw a rock in
the water or turn on the light in space (OK we usually do not have so much
time to enjoy that one) we watch Legendrian isotopies. All is to say that my
biased feeling is: our eyes and brain experiment Legendrian sub-manifolds
and their isotopies all the time.

The previous examples described Legendrian sub-manifolds in the so-
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10 INTRODUCTION

called space of contact elements. This is the collection of all possible tangent
hyper-planes of a given configuration space. In this situation Legendrian
sub-manifold arises as the collection of hyper-planes which are all tangent
to a given sub-manifold. Those are the building blocks of contact geometry
and Legendrian sub-manifolds. As usual it was the question of classification
of such objects (up to deformations) which led to the definitions of the rich
invariants that were mentioned in the opening of this introduction.

Augmentations. My contribution to the realm of Symplectic Field The-
ory stays modest I have mostly focused on the juice that can be extracted
for this very first relative invariant that Y. Eliashberg talked about in 1998:
the Legendrian Contact Homology. It is an invariant defined applying ideas
from [Flo88] and [Gro85] (for closed Lagrangian sub-manifolds) to the La-
grangian cylinder over a Legendrian sub-manifold. However in this situation
the new phenomenon that one encounters is the bubbling off of holomor-
phic half-planes toward the negative end (which is concave). This forces the
complex to be a freely generated differential graded algebra (DGA). The full
Legendrian contact homology is thus the homology of an algebra, called the
Chekanov-Eliashberg algebra, being both freely generated and non commu-
tative. Such objects are quite complicated and without any other tools it
is very hard to manipulate and distinguish two of them. Fortunately such
tools exist: in [Che02], Y. Chekanov introduced the idea of representing the
Chekanov-Eliashberg algebra into simpler algebrasssss to extract some finite
dimensional complexes out of this DGA. This lead to the definition of the
so-called linearised Legendrian contact homology. Such a representation is
called an augmentation of the Legendrian sub-manifold. Augmentations have
then been used in many places as ways to weights possible degeneration that
might be tricky to handle otherwise: for instance they serve as bounding
co-chain for Lagrangian Floer homology in [Fuk+09]. In my career I have
been trying to understand those objects as much as I could and use them for
what there are good for: define linear homology theories.

Linearised contact cohomology and augmentation categories. Aug-
mentations arise geometrically as Lagrangian fillings of a given Legendrian.
Intersecting Lagrangian sub-manifolds leads to Floer theory. Floer com-
plexes can all be organised into an A∞-category called the Fukaya category
(see [Fuk93] and [Sei08]). Trying to do the same with augmentations as ab-
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stract algebraic objects led to the collaboration [BC14b] of which the main
result is:

Theorem 0.0.1. There is an A∞-category Aug(Λ) whose objects are aug-
mentations of Λ and morphisms spaces are linearised Legendrian contact ho-
mology complexes. The quasi-equivalence type of this A∞-category is invari-
ant under Legendrian isotopy.

Being similar to other A∞ or dg categories associated to a given Legen-
drian sub-manifold this category is the ground of many conjectures relating
different invariants (generating families, fillings, augmentations and sheaves
with micro-support on Λ).

Its structure, and specifically its morphism spaces, has been shown to be
a more refined invariant than linearised contact homology. For instance in
[Cha15b] it allowed me to show that the relation of Lagrangian concordance
(some Lagrangian cobordism with the simplest topology) is not symmetric.
This a good point to start talking about those Lagrangian cobordisms.

Lagrangian cobordisms. Fronts of deformation of Legendrian sub-mani-
folds look like front of Legendrian sub-manifolds one dimension higher. As
this front comes from an isotopy, the topology of the manifold cannot change
along such a deformation. If we allow the topology to change we are led to
the definition of Legendrian cobordisms from [Arn80a] and [Arn80b]. This
relation seems to lack rigidity when talking about holomorphic type invari-
ants but this might suggest that we are just not there yet (see [Lim18] for
recent developments of this relation). The Lagrangian counterpart of this
relation has been successfully studied in [BC13]. But if we think of this
cobordism to be the lift of a Lagrangian cobordism then we can ask for this
cobordisms to be embedded in the so-called symplectisation of the contact
manifold. This leads to the definition of Lagrangian cobordism between Leg-
endrian sub-manifolds which are the geometrical objects I have been staring
at since my PhD. They are the underlying objects that leads to functorial
properties of relative SFT. In the first few years of my career I’ve been focus-
ing on the structure of such cobordisms and how to build them (see [Cha10;
Cha12; Cha15b] and [Cha15a]).

In the early age of symplectic topology the realisation that intersection
properties of Lagrangian submanifolds seemed driven by the Morse theory
of the underlying manifold led to one of the famous Arnol’d conjectures, a
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proof of which [Flo88] was devoted. In simple manifolds (such as cotangent
bundles) exact Lagrangian submanifolds seem to have simple topology (the
one of the 0-section). This is the content of the so-called nearby Lagrangian
conjecture:

Conjecture 0.0.2 (Nearby Lagrangian conjecture.). Any exact Lagrangian in
T ∗Q is Hamiltonian isotopic to the 0-section.

Both aspects of this conjecture (the diffeomorphism type of the Lagrangian
first and its symplectic unknotedness on top of that) are still open but
progress have been made in seeing the homotopy type of the Lagrangian
and how holomorphic curves cannot distinguish it symplectically from the
0-section (a little more on that later). The main tool to study both the sym-
plectic and topological properties of Lagrangian is the Floer complex that
we mentioned many times.

In [Cha+15b] we develop a Floer theory for Lagrangian cobordisms which
make use of augmentations of the negative end. The main result we obtain
is:

Theorem 0.0.3. Given two Lagrangian cobordisms Σ0 and Σ1 in the sym-
plectisation of Liouville manifold with negative ends Λ−i and positive ends Λ+

i

(i = 0, 1) and two augmentations ε−0 and ε−1 of Λ−0 and Λ−1 respectively. There
is a filtered chain complex Cth(Σ0,Σ1; ε0, ε1) whose quasi-isomorphism type
is invariant under Hamiltonian deformations of Σ0 and Σ1 that are cylin-
drical at infinities. The first page of the spectral sequence associated to the
filtration is

LCH•(Λ+
0 ,Λ

+
1 ; ε+

0 , ε
+
1 )⊕HF •+(Σ0,Σ1; ε−0 , ε

−
1 )

⊕ LCH•(Λ−0 ,Λ−1 ; ε−0 , ε
−
1 )⊕HF •−(Σ0,Σ1; ε−0 , ε

−
1 ).

The motivation comes from the fact that some augmentations find ge-
ometric incarnations in Lagrangian fillings of the negative ends. Our Floer
theory should recover the Floer Homology of the cobordism capped with that
filling. This suggested us to add to the Floer complex of hidden intersection
points (which are the generator of the Legendrian contact homology of the
negative end).

The terms HF± have in general not real meanings do not have relevant
invariant properties. They are generated by intersection points which (under
the previous analogy) lie over (reps. under) negative Reeb chords. As those
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might slide from one to the other (and to chords) along an Hamiltonian
isotopy those do not satisfy any interesting invariance properties.

From the study of this so-called Cthulhu complex we were able to deduce
many results both on the symplectic aspect of Lagrangian cobordisms as well
as on the topology of Lagrangian cobordisms.

Topology Lagrangian cobordisms. One of the early remarks when stu-
dying a Lagrangian cobordism is that in dimension 2 (I speak about the
dimension of the cobordism here) its Euler characteristic (and hence its
topology if oriented) is characterised by classical Legendrian invariant of its
extremities.

This is of course not so simple in higher dimension (as the topology is
not characterised just by the Euler characteristic). But if the negative end
of a cobordisms Σ has an augmentation then similar results are true. Indeed
in [Cha+15b] we prove

Theorem 0.0.4. Let Σ be a graded exact Lagrangian cobordism from Λ− to
Λ+ and let ε−0 and ε−1 be two augmentations of A(Λ−) inducing augmentations
ε+

0 , ε+
1 of A(Λ+). There is a long exact sequence

· · · // LCHk−1
rel (Λ+; ε+

0 , ε
+
1 )

��

Hk−1(Σ, ∂+Σ;R) // LCHk
rel(Λ

−; ε−0 , ε
−
1 ) // LCHk

rel(Λ
+; ε+

0 , ε
+
1 ) // ,

(1)
where the map from LCH•rel(Λ

−; ε−0 , ε
−
1 ) to LCH•rel(Λ

+; ε+
0 , ε

+
1 ) is the adjoint

of the linearised DGA morphism ΦΣ induced by Σ.

Our work is motivated by the so-called Seidel isomorphism (see [Ekh12])
which motivated the definition of the augmentation category. It shows that
when the Legendrian sub-manifold Λ− is Lagrangian fillable by a Lagrangian
L then LCHrel(Λ

−) is the singular cohomology of L relative to Λ− (see Theo-
rem 2.1.19). In this context this exact sequence becomes the exact sequence
of the triple Λ+ ⊂ Σ ⊂ L∪Σ. A similar exact sequence exists for generating
family homology when cobordisms are induced by some generating functions
(see [ST13]) or for wrapped Floer homology when the cobordisms can be
filled (see [CO18]). Using a different perturbation we also find an analogue
of Mayer-Vietoris exact sequence for the decomposition L ∪ Σ. I want to
step back a little toward the second paragraph of the intro on the example
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of the torus: the contour of the torus on the blackboard is enough for us to
understand that we are looking at the torus. The content of all the statement
relating the Legendrian invariants to the topology of fillings or cobordisms
seems to suggest that a Legendrian remember a lots of the topology of object
it is the boundary of in a similar fashion of the fact that the 1-dimensional
front on the blackboard represent the 2-dimensional object well enough.

A third type of perturbation leads to a long exact sequence relating the
relative Legendrian contact homology to Legendrian contact cohomology.

Theorem 0.0.5. Let Σ be an exact graded Lagrangian cobordism from Λ− to
Λ+ and let ε−0 and ε−1 be two augmentations of A(Λ−) inducing augmentations
ε+

0 , ε+
1 of A(Λ+). Then there is a long exact sequence

· · · // LCHk−1(Λ+; ε+
0 , ε

+
1 )

��

Hk−1(Σ;R) // LCHk
rel(Λ

−; ε−0 , ε
−
1 ) // LCHk(Λ+; ε+

0 , ε
+
1 ) //

(2)

If Σ = R × Λ, then H•(Σ) = H•(Λ) and thus when Λ− is fillable this is
the exact sequence of the pair (L,Λ−). Furthermore if Λ− is horizontally dis-
placeable then LCHk

rel(Λ
−, ε−0 , ε

−
1 ) ' LCHn−1−k(Λ

−, ε−0 , ε
+
1 ). For Σ = R×Λ

this is exactly the duality exact sequence of [Sab06] for Legendrian knots and
later generalised to arbitrary Legendrian sub-manifolds in [EES09]. This du-
ality long exact sequence was generalised in [BC14b] when two augmentations
are used. We use the exact sequence (2) to prove that the fundamental class
in LCH defined in [Sab06] and in [EES09] is functorial with respect to the
maps induced by exact Lagrangian cobordisms.

These exact sequences work in great generality regarding coefficient and
allow to study them in R[π1(Σ, ∗)]. This has allowed us to prove the following

Theorem 0.0.6. Let Σ be an n-dimensional Legendrian homotopy sphere
and assume that A(Λ;Z) admits an augmentation. Then any exact La-
grangian cobordism Σ from Λ to itself is an h-cobordism. In particular:

1. If n 6= 3, 4, then Σ is diffeomorphic to a cylinder;

2. If n = 3, then Σ is homeomorphic to a cylinder; and

3. If n = 4 and Λ is diffeomorphic to S4, then Σ is diffeomorphic to a
cylinder.
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When n = 1, a stronger result is known. Namely, in [Cha+15a, Section 4]
we proved that any exact Lagrangian cobordism Σ from the standard Legen-
drian unknot Λ0 to itself is compactly supported Hamiltonian isotopic to the
trace of a Legendrian isotopy of Λ0 which is induced by the complexification
of a rotation by kπ, k ∈ Z. This classification makes use of the uniqueness
of the exact Lagrangian filling of Λ0 up to compactly supported Hamiltonian
isotopy, which was proved in [EP96]. In contrast, the methods we developed
in [Cha+15b] give restrictions only on the smooth type of the cobordisms
and little information is known about their symplectic knottedness in higher
dimension. Of course this is not as spectacular as any variation of the nearby
Lagrangian conjecture, but the flavour is that simple topology of the end of
a Lagrangian cobordisms forces simple topology of the cobordisms itself. To
what extend the extremities dictate the cobordism is unclear: we know some
counter-examples when we allow more topology on the extremities (or don’t
have the existence of the augmentation) but we don’t know where the border
is.

Obstruction to Lagrangian cobordisms. On the other side, one can use
exact sequences (1) and (2) to obstruct certain types of cobordisms. A first
immediate corollary of Theorem 0.0.4 is that linearised contact homology is
invariant under Lagrangian concordance.

Corollary 0.0.7. Let Σ be an exact Lagrangian concordance from Λ− to Λ+.
If, for i = 0, 1, ε−i is an augmentation of A(Λ−;R) and ε+

i is the pull-back
of ε−i under the DGA morphism induced by Σ, then the map

Φ
ε−0 ,ε

−
1

Σ : LCH•
ε−0 ,ε

−
1

(Λ−)→ LCH•
ε+0 ,ε

+
1

(Λ+)

is an isomorphism.

This criterion gives obstructions for two sub-manifolds to be Lagrangian
concordant. In particular this allows to recover the result from [Cha15b]
showing that there is no Lagrangian concordance from a Legendrian repre-
sentative of the m(946) knot (see Figure A.3) to the trivial Legendrian knot
even though a concordance in the other direction exists. Using the same
obstruction we were able to generalise this counter-example to higher di-
mension (previous known examples in higher dimensions appealed to flexible
techniques with loose Legendrian ends, see [EM13]).
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The Cthulhu complex also has a remarkable structure when applied to
cobordisms coming from positive isotopies. A positive Legendrian isotopy
is an isotopy that always moves positively transverse to its front; it is in
that sense pretty close from the propagating wave in the preamble. In this
situation the term HF+ vanishes, thus we can build a long exact sequence
allowing us to obstruct existence of such isotopy in some particular situation.
We exploited this stream of ideas in [CCD19] which allowed us to give new
example of non-orderable contact manifolds (in the sense of [EP00]).

Generation of the wrapped Fukaya category. The paper [FSS09] showed
that homotopical methods such as A∞ algebras allow to restrict the topology
of Lagrangian sub-manifolds. In [AS10] the Fukaya category was extended
allowing non-compact objects with Legendrian ends leaving more possible
geometric representations of the 0-object. This makes detection of quasi-
isomorphism more geometric (as cone of such are 0-objects). In [Abo10] and
then [Abo11] M. Abouzaid showed that these larger categories could have
small sets of generators under some geometric hypothesis. Such hypothesis
is satisfied for a single cotangent fibre in T ∗Q. Those three foundational
papers began to exhibit a series of topological constraints on the topology
of Lagrangian sub-manifolds culminating in [AK18] showing that exact and
compact Lagrangians in a cotangent bundle has the simple homotopy type
of the 0-section. The fact that the wrapped Fukaya category is generated by
one object reduces the study of Lagrangian to module over this object.

Going back to more modest results we proved in [Cha+17] that all We-
instein manifolds and sectors (a version allowing boundary) have the same
type of generators.

Theorem 0.0.8. The wrapped Fukaya category of the Weinstein sector
(S, θ, f) is generated by the Lagrangian co-core planes of its completion
(W, θW , fW ) and by the spreading of the Lagrangian co-core planes of its belt
(F, θF , fF ).

Note that a cotangent bundle is a Weinstein manifold with a single co-
core being the cotangent fibre. A first consequence is to conclude the proof
that Symplectic homology is Hochschild homology of the wrapped category
(as conjectured in [Sei09]). Other consequences of this result start to appear
in the literature: it allows to prove that some triangulated categories (of
sheaves, Lagrangian or generating family) are isomorphic only checking on
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those generators (assuming similar generation results have been proved on
the other sides). See [Laz18], [GPS18] or [Kar18] for recent applications.

What is in there. I have tried in this memoir to give an account of the
objects and ideas used in the proof of the theorems that I have stated in
the introduction. Chapter 1 is a preliminary chapter where I introduce the
basic definitions building the field of contact and symplectic geometry. It
also describes the notion of Lagrangian cobordisms which allow me to speak
a little about some early papers of mine about the theory ([Cha15b], [Cha12]
and [Cha15a]). Then we will rush through the definition of the various moduli
spaces of holomorphic curves we will consider in the rest of the document.
This chapter is neither comprehensive nor introductory to the field (even if
the first three pages might give that impression); I hope though that it fixes
notations and defines objects well enough to make it less painful for the reader
to follow the rest of the text. In Chapter 2 the reader will find the definition
of the central object of text: augmentations of Legendrian sub-manifolds. I
tried to give a definition general enough in terms of coefficients taking into
account the homotopy classes of the boundary of holomorphic discs to cover
the many uses we will make of it. In the whole text I restrict to graded
theory and assume thus that Lagrangians and Legendrians are all graded.
The reader familiar with the theory will know immediately how to modify
some of the statements in the ungraded case (or graded modulo some Maslov
class). We then proceed to define the Floer complex associated to Lagrangian
cobordisms from [Cha+15b] . This chapter is therefore and account of the
first half (the foundational part) of that paper. Applications will be discussed
in the last chapter. Chapter 3 is a summary of the construction of the
augmentation category from [BC14b] with the modification from [Cha+16]
to take into account coefficients in group rings. We also discuss the main
functorial property of this category. Finally Chapter 4 presents applications
of the theory of the two precedent chapters to the topology of Lagrangian
cobordisms, the structure of this relation and the generation of the wrapped
Fukaya category. It gives account of the application part of [Cha+15b],
presents the results from [CCD19] and summarises some of the arguments
from [Cha+17].

Every once in while I use a “Perspective” environment where I want to
highlight that some ideas could be explored further for future development of
the subjects. Some of those perspectives emerge from my work and suggest
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where I want my research to possibly go. Some others present open questions
of work of other authors about which I believe some of the work exposed here
can be relevant. I also sometime use a “Verification” environment where the
reader will find explicit formulas on some concrete Legendrian sub-manifolds
and Lagrangian cobordisms. Every time I proved something and failed to do
this type of verification, the result turned out to be wrong on a scale evolving
from very wrong to some of the grading being incorrect (one can be surprised
on the impact of the fact that Lagrangian cobordisms have dimension n+1).
I should ask my subconscious why I still decide not to do those verifications
on some occasions. In an appendix I have made a list of some of those explicit
objects that I find useful to have in order to do those verifications.

What is not. The first thing that is not here are proofs. I have decided
not to reproduce proofs of results which are written in the paper I talk about.
Instead I used this memoir to organise and present my work in a unified way
and tried to convey some of the intuitions behind constructions I described
and motivations for why my work followed certain directions. After most
of the statements I present some arguments which highlight the scheme of
the proof or the geometric idea that lead to the construction of the actual
proof. All the proofs are in the paper and are sometime different from this
first geometric ideas (they are usually quite long and try to use the analytic
technology available and not speculated one). For that reason this memoir
will not have the pretension to provide any original results.

The second thing that is not here is some account of the work in [CM19].
It studies Lagrangian intersection in conformal symplectic manifolds (man-
ifolds with a conformal symplectic atlas). It proves notably some intersec-
tion properties in conformal cotangent bundle in terms of Morse-Novikov
Betti number of some closed 1-forms. Though it relates to Legendrian
sub-manifolds (as exact Lagrangians in this context lifts to Legendrian sub-
manifolds), the whole article is too disconnected from the rest of the results
exposed here and would not fit in any of the sections. We however feel
that this subject could potentially be of importance to study some rigidity
properties of contact manifolds through special conformal symplectic fillings.

The last notable thing that is note here are signs. I decided to focused on
the details of the results for fields of characteristic 2 as coefficients (or algebras
over such) and not having signs in the formulas. This is first because I do
not think I have a true contribution to the sign treatment of the subject (I
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have been using the existing literature) and second because all those results
are interesting even with mod 2 coefficients. Theorem 0.0.6 is an exception
where C coefficients are important but I will explain how signs are needed in
due time.
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Chapter 1

Preliminaries.

In this chapter we collect various definitions and constructions in the field
of contact and symplectic geometry. Our goal is to introduce the notion
of Lagrangian cobordism between Legendrian sub-manifolds and we try to
highlight some questions relevant to the study of such objects. Most of
the results precede any of the author’s work but some subtle points of the
definition of Lagrangian cobordisms and some of its properties were raised
and studied in [Cha10; Cha15a] and [Cha12]. In Section 1.1 we introduce
the notion of symplectic and contact manifolds together with the notions of
Lagrangian and Legendrian sub-manifolds. We also introduce the notions of
Weinstein manifolds and sectors. Then in Section 1.3 we define Liouville and
Lagrangian cobordisms. Section 1.4 rushes through the definitions essential
for the study of holomorphic curves in symplectic cobordisms. It is not
intended to be complete but we hope we give enough of the theory so that
the reader can follow the definition of moduli spaces we will consider in the
rest of the document, see what type of action of asymptotics we consider and
find a dimension formula for these moduli spaces.

1.1 Contact and symplectic geometry.

1.1.1 Contact manifolds.

We begin with the contact manifold in which Legendrian sub-manifolds arises
the most naturally. The definition of contact manifold will rely on this ex-
ample.

21
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Example 1.1.1. Let Q be a smooth manifold. We denote by P(T ∗Q) the
set {(q,H)|q ∈ Q H hyperplane of TqQ}. It is called the space of contact
elements of Q. It has the structure of a smooth manifold obtained via the
identification P(T ∗Q) ' (T ∗Q \Q0)/R∗ (where Q0 is the zero section and R∗
acts on fibres). We denote the obvious projection to Q by π : P(T ∗Q)→ Q.
There is a canonical hyperplane distribution ξcan on P(T ∗Q) determined by
X ∈ ξcan(q,H) ⇔ dπ(X) ∈ H.

Definition 1.1.2. A contact manifold is given by a couple (Y, ξ) where Y is a
smooth manifold of dimension 2n−1 and ξ is a hyperplane distribution such
that for all x ∈ Y there exists a neighbourhood Ux of x and an embedding
φ : Ux → P(T ∗Rn) such that φ∗ξ = ξcan.

Definition 1.1.3. A contactomorphism between two contact manifolds (Y, ξ)
and (Y ′, ξ′) is a diffeomorphism φ : Y → Y ′ such that φ∗ξ = ξ′. The group
of contactomorphisms from Y to itself is denoted Cont(Y, ξ).

The distribution ξ from Definition 1.1.2 is called a contact structure. A
more manageable definition follows from the equivalence given by the so-
called Darboux Theorem.

Theorem 1.1.4 (Darboux Theorem). Let (Y, ξ) a smooth manifold with
a hyperplane distribution. Then ξ is a contact structure iff for any local
equation α of ξ (i.e. locally ξ = kerα) we have α∧ dαn−1 is non degenerate.

When ξ is co-orientable, there exists a globally defined equation α, such
a 1-form is called a contact form.

Example 1.1.5. The contact structure ξcan on P(T ∗Q) is not co-orientable,
i.e. it does not admit a globally defined equation. Indeed if Ht is a path
of hyperplane in TqQ which makes a rotation of angle π along an axis (of
dimension n−2) in H0 then the co-orientation of ξcan along (q,Ht) is reversed.
The co-orientation cover of ξcan on P(T ∗Q) is identified with

S(T ∗Q) = {(q, p)|p ∈ T ∗qQ ||p|| = 1}

for a choice of a bundle metric on T ∗Q. A contact form is then given by the
pullback α of λ. Here λ is the tautological form on T ∗Q defined by α∗λ = α
for any section α : Q → T ∗Q. Indeed the hyperplane at (q, p) is given by
π−1 ker p which is by definition kerα.

Another natural example is given by the space of 1-jets of functions.
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Example 1.1.6. The space of 1-jet of functions on a manifold Q, J 1(Q), is
identified with T ∗Q × R. Given a 1-jet [f ] at q we denote its 0-jet Πq[f ] =
f(q) ∈ R, this defines a projection Π : J 1(Q) → Q × R. We denote by b
the projection to the base Q. At a jet (q, [f ]) we define a natural hyperplane
ξ(q,[f ]) by

X ∈ ξ(q,[f ]) ⇔ dfq(db(X)) = dΠq(X).

This contact structure actually admits a natural equation: under the identi-
fication of J 1(Q) with T ∗Q×R it is given by ξ = ker(dz−pdq). It naturally
embeds in the space of contact elements of Q × R: to a jet [f ] at q we
associates the (well defined!) contact element (q, f(q), ker(dz − dfq)). One
checks easily that this embedding maps ξ to ξcan (in terms of equations this
is implied by the fact that any non-vertical hyperplane has an equation of
the form z =

∑
i aiqi).

A sub-manifold N ⊂ Q gives a natural sub-manifold

Nil(N) = {(q, p)|q ∈ N , p(TqN) = 0} ⊂ P(T ∗Q)

which is tangent to ξcan called the co-normal of N . Whatever the dimension
of N is, Nil(N) is always of dimensions dim(Q)− 1.

In general let Λ be a sub-manifold tangent to ξcan and let (q,H) ∈ Λ. We
denote by W = dπ(q,H)(T(q,H)Λ) and V = T(q,H)Λ ∩ T(q,H)π

−1(q). Recall that
in a vector space E of dimension n, k-dimensional sub-spaces of THP(E∗)
corresponds to n− 1− k dimensional sub-spaces of H. So to V corresponds
a n − 1 − dimV subspace V ′ of H. From the fact that Λ is tangent to ξcan

a computation shows that W ⊂ V ′. This implies that dim Λ = dimW +
dimV ≤ n− 1− dimV + dimV = n− 1.

Thus a co-normal always has the maximal dimension that a sub-manifold
tangent to ξcan can have. This lead to the following definition:

Definition 1.1.7. A sub-manifold Λ of a contact manifold (M2n+1, ξ) is Leg-
endrian if dimΛ = n and TΛ ⊂ ξ.

Example 1.1.8. The jet of a function f : Q → R, j1(f) = {(q, f(q), dfq)|q ∈
Q} is a Legendrian sub-manifold of J 1(Q). (Through the contact embedding
J 1(Q)→ P(T ∗(Q×R) of Example 1.1.6 the jet of function becomes the co-
normal of the graph of f).

Definition 1.1.9. A Legendrian isotopy is an isotopy {Λt} such that for all t
Λt is a Legendrian sub-manifold. We say in that situation that Λ0 and Λ1

are Legendrian isotopic.
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Perspective 1. Of course isotopic sub-manifolds of Q leads to Legendrian
isotopic sub-manifolds of P(T ∗Q). To which extend the converse is true or not
is an exciting question admit a few partial answers (see for instance [She16]
and [ENS18] for co-normals of knot in R3). Exhibiting similar phenomena in
higher dimension is an exciting project that would test the precision of the
known Legendrian sub-manifold invariants.

Infinitesimal symmetries of contact manifolds (M, ξ = kerα) are encoded
by functions on M . Indeed let X be a vector field whose local flow preserves
ξ; we claim that X is characterised by the function H : M → R (called
the contact Hamiltonian) given by H(q) = αq(Xq). Indeed this function
characterises X on the quotient TQ/ξ. On the other end Cartan’s formula
gives LXα = d(α(X)) + ιXdα, the kernel of α is preserved along the flow of
X and dα is non degenerate; thus if X is in ξ then it vanishes (as α(X) =
0). This implies that two such contact vector fields with the same contact
Hamiltonian coincide.

Remark 1.1.10. We could (and should) have not chosen a contact form α
and then have seen more elegantly H as a section of TQ/ξ. But considering
holomorphic curves forces us to choose some contact form and thus we will
always talk about contact Hamiltonians as being functions.

The contact vector field Rα associated to H ≡ 1 is characterised by
ιRαdα = 0 and α(Rα) = 1. It is called the Reeb vector field of the contact
form α. In the example of J 1(Q) it is given by the vertical vector field ∂

∂z
.

We conclude this section recalling that any Legendrian sub-manifold has
a standard neighbourhood: if Λ ⊂ (M, ξ = kerα) then there exist a neigh-
bourhood U of Λ and an embedding φ : U → J 1(Λ) such that

• φ(Λ) = {(q, 0, 0)|q ∈ Λ}.

• φ∗(dz − λ) = α (in particular φ maps the contact distribution to the
canonical distribution).

We refer to such a neighbourhood as a Weinstein neighbourhood of Λ.

1.1.2 Symplectic manifolds.

As this document relates Legendrian invariants to symplectic invariants, we
proceed now to give briefly the basic definitions from symplectic geometry
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necessary in order to follow the exposition. This will be more succinct than
the (already succinct) exposition on contact geometry but we hope that the
examples we give are sufficient for the understandability of the text.

We begin by deprojectivising the space of contact elements. A point (q, p)
of the cotangent bundle T ∗Q such that p 6= 0 determines a contact element
(q,H) via H = ker p. This gives a smooth projection Π : T ∗Q\Q0 � P(T ∗Q).
As it replaces the space of all hyper-planes in Q by the space of all equations
of hyper-planes, the space T ∗Q \ Q0 carries a natural one form λ defined
by λp,q(X) = p(dπ(X)) where π is the natural projection to Q (this is the
tautological form from Example 1.1.6). This form (defined similarly on the
whole T ∗Q) is called the Liouville form of T ∗Q. Its kernel is the pre-image
of ξcan via the projection Π.

The cotangent bundle with its canonical form is the prototype of a Li-
ouville manifold (an exact symplectic manifold). A symplectic manifold is a
manifold M together with an atlas {Ui → R2n, i ∈ I} such that all transition
functions φij maps pdq to pdq+ dG for some function G. This is the same as
asking for the existence of an atlas such that transitions functions preserves
the 2-forms ω0 = dq∧dp (one might have to take a refinement of the latter so
that it satisfies the exactness condition). Thus a symplectic manifold comes
with a natural 2-forms ω called the symplectic form, which is closed and
non-degenerate.

Remark 1.1.11. The symplectic analogue of Darboux Theorem state that
such a non-degenerate closed two form determines an equivalence of sym-
plectic atlases.

Being non degenerate ω determines an identification T ∗M ' TM , the
vector associated to a 1-form α being denoted Xα. As there might be some
sign ambiguity with this identification we fix it once for all saying that Xα

is characterised by ω(Xα, Y ) = α(Y ).
When ω is exact, (M,ω) is called an exact symplectic manifold. A prim-

itive λ of ω gives a particular vector field Xλ called the Liouville vector field .
Note that LXλω = d(ιXλω) = dλ = ω. Thus the flow of Xλ expands the
symplectic form. We call (M,λ) a Liouville manifold if:

1. Xλ is complete.

2. Outside a compact set M with smooth boundary Y Xλ has no critical
points.



26 CHAPTER 1. PRELIMINARIES.

3. Xλ points outside M along Y .

The cotangent bundle T ∗Q with the form −pdq is an example of a Liouville
manifold, Y can be chosen to be the sphere bundle S(T ∗Q) for a metric on
T ∗Q. It is not a coincidence that S(T ∗Q) carries a contact forms: indeed
for any Liouville manifolds (M,λ) the manifold Y carries a natural contact
structure given by ker i∗λ where i is the inclusion of Y in M . Since Xλ has
no zeros outside of M we have an identification M \ M with Y × (0,∞).
Under this identification Xλ is mapped to ∂

∂t
and λ becomes etα.

If φ is a contactomorphism of P(T ∗Q) then it induces an exact symplecto-
morphism of T ∗Q: let (q, [p]) ∈ P(T ∗Q) and denote φ(q, [p]) = (q′, [p′]). Since
φ is a contactomorphism we have Π∗p(X) = 0 ⇔ φ∗Π∗p′(X) = 0, therefore
φ∗Π∗p′ = µq,p,p′Π

∗p for some non-zero µq,p,p′ . The numbers µq,p,p′ satisfy
µq,ap,bp′ = a−1bµq,p,p′ , and this allows us to defines φ̃(q, p) = (q′, µ−1

q,p,p′p
′).

One computes that φ̃∗λ = λ and that φ̃ commutes with the projection to
P(T ∗Q). Since any contact manifold is modelled on P(T ∗Q), this implies
that any contact manifold (Y, ξ) “deprojectivises” to an exact symplectic
manifold (S(Y, ξ), λ). One can describes S(Y, ξ) by S(Y, ξ) = {(q, p)| ker p =
ξq} ⊂ T ∗Y with the Liouville form given by the restriction of the canonical
form. The choice of a contact form α identifies (S(Y, ξ), λ) with (R∗×Y, sα),
the connected component corresponding to positive reals being usually iden-
tified with (R× Y, etα) and called the symplectisation of (Y, ξ).

Remark 1.1.12. The exact symplectic type of the symplectisation only de-
pends here on the co-orientation of ξ given by α. One could (and probably
should) call the whole S(Y, ξ) the symplectisation of (Y, ξ) but we will not
make that choice as it would be less convenient when talking about holomor-
phic curves type invariants.

A natural notion for symmetries of symplectic manifold is the one of
symplectomorphism, namely diffeomorphism which preserves ω. A stronger
type of symmetries is given by Hamiltonian diffeomorphisms. Given a func-
tion H : M × [0, 1] → R, one defines a time-dependent vector field XH(t)
by XH(t) = XdHt . The induced isotopy preserves ω, and φ1

H is called a
Hamiltonian diffeomorphism. The set of Hamiltonian diffeomorphisms form
a normal subgroup of the group of symplectomorphisms and these will be
the main symmetries we will consider in the rest of the document.

Verification 1. At that point we had better verify that with all our conven-
tions the Hamiltonian vector for the kinetic energy 1

2
p2 on T ∗Rn has the
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correct sign. Indeed dH = pdp and ω = dq ∧ dp thus ω(XH , ·) = pdp gives
XH = p ∂

∂q
, that looks fine.

Pre-image of Legendrian sub-manifolds under the projection Π : S(Y, ξ)→
(Y, ξ) are sub-manifolds on which the symplectic form vanishes. Considera-
tions similar to the one in previous section shows that those have maximal
dimension amongst sub-manifolds having this properties. This lead to the
following definitions:

Definition 1.1.13. • An immersion i : L#M into a symplectic manifold
(M2n, ω) is called Lagrangian, if dimL = n and i∗ω = 0. If furthermore
i is an embedding then i(L) is called a Lagrangian sub-manifold of
(M,ω)

• An immersion i : L # M into a Liouville manifold (M2n, λ) is called
exact if i∗λ is an exact form. If in addition i is an embedding then i(L)
is called an exact Lagrangian sub-manifold of (M,λ)

As it was the case for Legendrian sub-manifolds a Lagrangian sub-manifold
has a standard neighbourhood. If L ⊂ M is Lagrangian, then there exist a
neighbourhood U of L in M and an embedding φ : U → T ∗L such that:

1. φ(L) = {(q, 0)|q ∈ L}.

2. φ∗(dq ∧ dp) = ω.

We finish this section by showing another interaction between contact
and symplectic manifolds. Associated to a Liouville manifold (P, λ) there is
a contact manifold (P ×R, ker(dz + λ)) called its contactisation. Any exact
Lagrangian immersion lifts to Legendrian immersion via ĩ(q) = (i(q),−f(q))
which is well defined up to a choice of primitive f of i∗λ. If i is generic then
ĩ is an embedding.

Note that the symplectisation of such a contactisation is identified with
(P × T ∗(0,∞), λ+ tds) via the map

(t, q, z)→ (φtλ(q), t, z). (1.1)

(Where φtλ is the the flow of Xλ).
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1.2 Grading.

From now on we assume that all symplectic manifolds (including symplec-
tisations!) we consider will have 2c1(M) = 0. We also assume that all
Lagrangian sub-manifolds considered have vanishing Maslov class. This has
the following consequence: denote Gr(M,ω) → M the fibration where the
fibre over a point q consists of all n-plane in TqM on which ω vanishes (called
the Lagrangian Grassmanian fibration). The Gauss map of a Lagrangian im-
mersion i : L→M gives a map ĩ : L→ Gr(M,ω). We denote by Gr](M,ω)
the fibration whose fibre over each point q is given by the universal cover of
the fibre of Gr(M,ω). For a Lagrangian with vanishing Maslov class ĩ lifts
to Gr](M,ω). The pair formed by the Lagrangian and the choice of such a
lift gives the notion of a graded Lagrangian immersion. We might forget to
state that Lagrangians are graded and apologise in advance if that causes
confusion but all Lagrangians are graded in this document.

Similarly for a contact manifold of dimension 2n+1 we denote byGr(M, ξ)
the fibration whose fibre is given by n-planes in ξq one which dα vanishes
(note that this does not depend on the local equation α) and we have the
similar notion of graded Legendrian sub-manifold.

We will not recall the construction here but given two graded Lagrangian
immersions L0 and L1, a transverse intersection point q between L0 and L1

is equipped with an index iL0,L1(q) ∈ Z. This is standard and we refer to
[Sei08, Section 11] for a clear treatment.

Given a contact form α on a contact manifold (M, ξ) and a Legendrian
sub-manifold Λ, a trajectory γ (of length T) of the Reeb vector field of α that
starts and ends on Λ is called a Reeb chords of Λ. It is called non degenerate
of φTα(TqΛ) is transverse to Tq′Λ where q and q′ are the starting and endings
point of γ. A non-degenerate Reeb chord is endowed with an index iΛ(γ) ∈ Z.
Again we do not give details and refer to [EES05] for details. We give a few
values on some examples via the following

Verification 2. The trivial Legendrian unknot Λ0 (the Whitney sphere) of
Appendix A in J 1(R) has a unique Reeb chord γ. We have iΛ0(γ) = 1. In
general the Legendrian Whitney sphere in J 1(Rn) has a unique Reeb chord
of grading n. Thus iΛ(γ) = n.

If L is the exact Lagrangian in T ∗Q given by (q, dfq) for a Morse function
f on Q, then an intersection between the zero section Q0 and L corresponds
to critical point q of f . Both Q0 and L come with a natural grading (since
L is a the image of Q0 via the Hamiltonian flow given by f ◦ π), for this
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choice we have iQ0,L(q) = if (q) (i.e. the number of negative eigenvalues of
the Hessian of f at q). Lifting L and Q0 to Legendrians in J 1(Q) (using
the function f as potential) each critical point q give a Reeb chord γq of the
Legendrian link and we have

i(γq) =

{
if (q)− 1 if f > 0

n− if (q) if f < 0.

Figure A.2 shows the projection of a Legendrian knot Λ in J 1(R) to T ∗R
with 5 Reeb chords. We have i(ai) = 1 and i(bi) = 0.

If Λ is the lift of an exact Lagrangian immersion L in a Liouville manifold
P as in the end of Section 1.1.2 then a Reeb chord γ of Λ corresponds to a
self-intersection point of L. A grading of L immediately induces one of Λ,
for that choice we have iL(q) = iΛ(γ) + 1.

The index of chords or intersection points will be related to the degree
of the generators of the chain complexes that will be considered in Chapters
2 and 3. For an intersection point we will denotes its degree by gr(q) :=
iL0,L1(q) and for a chord it will be gr(γ) := iΛ(γ) + 1. The reason for this
convention is that the index allows us to write dimension formulas more
conveniently (see Equation (1.3) and subsequent ones) whereas the degree is
more in adequation with the expected degree for operations in A∞-algebras.

1.3 Cobordisms and fillings

We now introduce the various notions of cobordisms that we will consider in
the rest of the document.

1.3.1 Liouville cobordisms

Let (Y −, ξ−) and (Y +, ξ+) be two contact manifolds. A Liouville cobordism
from Y − to Y + is an exact symplectic manifold (X;λ) so that:

1. The Liouville vector field Xλ is complete.

2. There is a compact set X with oriented boundary Y + t −Y − outside
of which Xλ has no critical points.

3. Xλ points inward X at Y − and outward X at Y +.
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4. The pullback of λ on Y − is a contact form α− for ξ−.

5. The pullback of λ on Y + is a contact form α+ for ξ+.

The complement of X is thus made of two connected component that we
identify with (−∞, 0)×Y − with Liouville form etα− (called the negative end
of X) and (0,∞) × Y + with Liouville form etα+ (called the positive end of
X).

The symplectisation is a cobordism from a contact manifold to itself. A
Liouville manifold is a Liouville cobordism from the empty set to a contact
manifold (Y, ξ) (we refer to such object as a Liouville filling of (Y, ξ)). The
fact that the symplectisation does not depend on the contact form allows
us to concatenate Liouville cobordisms (note that one of the Liouville form
usually has to be re-scaled). Therefore being Liouville cobordant forms a
reflexive transitive relation on the set of contact manifolds.

In order to simplify the notation we will sometime denote by XT the
compact manifold [−T, 0]×Y −∪X∪ [0, T ]×Y +. Given a cobordism X0 from
(Y −, α−) to (Y, α) and X1 from (Y, α) to (Y +, α+) (note that we fixed the
contact forms) we denote by X0�TX1 the Liouville cobordism from (Y −, α−)
to (Y +, eTα+) obtained by concatenation of X0 and X1 with (0, T ) × Y as
overlapping piece in the middle.

1.3.2 Lagrangian cobordisms.

We define now the notion of Lagrangian cobordism.

Definition 1.3.1. Let Λ− and Λ+ be two closed Legendrian sub-manifolds
in some contact manifold (Y +, ξ+) and (Y −, ξ−) respectively. An exact La-
grangian cobordism from Λ− to Λ+ in a (X,λ) is a properly embedded sub-
manifold Σ ⊂ R× Y without boundary satisfying the following conditions:

1. for some T � 0,

(a) Σ ∩ ((−∞,−T )× Y −) = (−∞,−T )× Λ−,

(b) Σ ∩ ((T,+∞)× Y +) = (T,+∞)× Λ+, and

(c) Σ ∩XT is compact;

2. There exists a smooth function fΣ : Σ→ R for which

(a) λ|TΣ = dfΣ,
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(b) fΣ|(−∞,−T )×Λ− is constant.

We will call (T,+∞) × Λ+ ⊂ Σ and (−∞,−T ) × Λ− ⊂ Σ the positive
end and the negative end of Σ, respectively. We will call a cobordism in a
symplectisation from a sub-manifold to itself an endocobordism.

Remark 1.3.2. Condition 2(b) is empty when the negative end of the cobor-
disms is connected. The similar condition as 2(b) for the positive end is
vacuous as there is enough room in the positive end of the symplectisation to
adjust the values of the primitive on the connected component as we want:
just make a tiny push of the trivial part of the cobordism at time T and wait
for the exponential to be big enough so that pushing it back to its original
position make the desired adjustment.

As mentioned in Section 1.1.2 the cylinder over a Legendrian sub-manifolds
Λ is a Lagrangian endocobordism of Λ. More generally Legendrian isotopic
sub-manifolds are Lagrangian endocobordant. This was shown in [EG98,
Lemma 4.2]. Not being aware of this result we gave an alternative description
of such an endocobordism in [Cha10, Theorem 1.2]. The former construction
rely on a real result on decomposition of Legendrian isotopies into positive
and negative pieces whereas the latter is a trivial consequence of the fact that
contactomorphisms are generated by Hamiltonian functions (and hence the
name theorem and lemma should be probably swapped). We tend to favour
the first construction because it allows us to relate Lagrangian cobordisms
to positive Legendrian isotopies (see Section 4.4). The second construction
has been used to extract information on the length of cobordisms between
two fixed Legendrian sub-manifolds (see [ST17] for instance).

Condition (2b) will later be used to rule out certain bad breaking of pseu-
doholomorphic curves. That this condition is of importance for the study of
functorial properties of Legendrian contact homology and rigidity of cobor-
disms has been shown in a small note [Cha15a] where some relevant explicit
examples of cobordisms are given to exhibiting unwanted behaviour of cobor-
disms when this condition is removed.

In the case when there exists an exact Lagrangian cobordism from Λ− to
Λ+ we say that Λ− is exact Lagrangian cobordant to Λ+. If Σ is an exact
Lagrangian cobordism from the empty set to Λ, we call Σ an exact Lagrangian
filling of Λ. We then say that Λ is exactly fillable.

The group R acts on R × Y by translations in the first factor. For any
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s ∈ R we define

τs : R× Y → R× Y,
τs(t, p) = (t+ s, p).

It is easy to check that the translate of an exact Lagrangian cobordism still
is an exact Lagrangian cobordism.

Definition 1.3.3. Given exact Lagrangian cobordisms Σa from Λ− to Λ in
(X0, λ0) (a Liouville cobordism going from Y − to Y ) and Σb from Λ to Λ+

in (X1, λ1) (going from Y to Y +), their concatenation Σa � Σb is defined as
Σa∪Σb in X0�TX1 (note that by construction they match on the overlapping
piece).

Condition (2b) of Definition 1.3.1 together with Remark 1.3.2 imply that
(if one perturbs slightly the positive end of Σa) Σa � Σb is an exact La-
grangian cobordism from Λ− to Λ+. When both the cobordisms are in the
symplectisation of a contact manifold X0 = X1 = R × Y then X0 � X1 is
identified with R×Y and thus Σa�Σb is a cobordism in the symplectisation
as well.

1.3.3 Construction of cobordisms.

Front of cobordisms. The most useful trick to construct Lagrangian
cobordisms is to use the symplectomorphisms (1.1) when the contact man-
ifolds is the Jet space of Rn with coordinate (q, p, z). Indeed in this situa-
tion the symplectisation has coordinates (t, q, p, z) with t > 0 and Liouville
form et(dz − pdq). Its differential is d(et) ∧ dz + dq ∧ d(etp) and there-
fore it is symplectomorphic (as stated in Equation (1.1)) to T ∗Rn × R∗+
by the map (t, q, p, z) → (q, et, etp, z). The pull-back of pdq + zds is then
etpdq+zd(et) = −et(dz−pdq)+d(etz). Therefore a Lagrangian that is exact
for the Liouville form on the symplectisation with potential f stays exact for
the standard form on the cotangent bundle with potential −etf + etz (where
z should be understood as the restriction of z to the Lagrangian. This allows
us to lift exact Lagrangian cobordisms to Legendrians J 1(M ×R∗+) and look
at their front projection to draw such cobordisms. Note that through this
identification the ends of the cobordism (near 0 and ∞) have an exponen-
tial growth. Since it comes from an embedded Lagrangian, this front has no
parallel tangent planes over any fixed value (q, t) ∈ Rn ⊗ R∗+. Looking at
such a front as a R∗+ family of fronts, this imply that the length of a Reeb
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chords along this family always varies (i.e. the length function has non-zero
derivative). Combining this fact with the restriction near the end (lengths
there are always increasing), that means that if you draw a bifurcation of
fronts you can safely think of it as an exact Lagrangian cobordisms as long
as Reeb chords have increasing length. That means you can easily create
Reeb chords but it makes it harder for you to destroy them (going toward
∞). With that in mind this recover the list of possible bifurcations along a
cobordisms in dimension 1 given by Figure 1.1.

Figure 1.1: Bifurcations of the front projection of a Legendrian knot along a
Lagrangian cobordisms.

The first three moves corresponds to Legendrian Reidemeister moves of
Legendrian isotopies. The last one is a minimum cobordism which makes a
Whitney sphere appearing and the 4th is a saddle surgery. In the last two
moves a chord is created and hence we can only go toward ∞ with this local
moves.

Remark 1.3.4. This discussion also shows that if one reverses the direc-
tion on the front coming from a Lagrangian cobordism, rectifying it to have
the correct exponential growth creates as many immersion points of the La-
grangian projection as we have chords at both ends of the cobordisms. When
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ends have no chords we can perform this reversion of time and also we can
make the end linear leading to cobordisms considered in [BC14a] and [BC13]

Lagrangian surgery. The fourth move of Figure 1.1 generalises to all
dimensions, which gives a Legendrian description of the local modification of
a Lagrangian near its intersection called Lagrangian surgery (see [LS91] and
[Pol91]). The local Legendrian picture of the front of such a surgery is given
by Figure 1.2. In this picture the surgery corresponds to removing the Reeb
chord going from right to left. As we can create chord along a Lagrangian
cobordisms, the two local picture from left to right can be linked by an exact
Lagrangian cobordism.

Figure 1.2: The (critical) surgery cobordism.

Remark 1.3.5. Usually Lagrangian surgery is described on the level of La-
grangian intersection points and does not consider Legendrian lifts (explicitely).
The description in terms of Legendrian sub-manifolds has the advantage to
guarantee that the results of the surgery projects to an exact Lagrangian.
The general Lagrangian surgery procedure does not usually preserve exact-
ness (indeed we can do it on any transverse intersection point and not only
on one which has a neighbourhood lifting as in Figure 1.2). We can however
describes this general surgery procedure using the Legendrian picture in the
following way: we take Legendrian lifts locally in a standrad Darboux chart
(which amount to lifting two Lagrangian disks), we perform the modification
to this lift and then project back to the symplectic space. As we can choose
which disk we put on top of the other we get the description of the two stan-
dard Lagrangian surgeries this way.
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In order to perform such a surgery to several point at the same time we
introduce the following terminology.

Definition 1.3.6. A set of Reeb chords {a1, . . . , ak} on Λ is called contractible
if,

• The chords ai have index 1.

• Each chord ai have a neighbourhood as the one on the right side Fig-
ure 1.2. All those neighbourhoods can be choosen to be disjoints (see
[Cha+17, Definition 8.5] for the precise quantitative description of these
neighbourhoods).

Remark 1.3.7. This is a restrictive assumption because, in general, the
lengths of the chords a1, . . . , ak cannot be modified independently. An example
when this is possible is when L+ is a link with k + 1 components, all ai are
mixed chords, and each component contains either the starting point or the
end point of at least one of the ai. In this situation we can indeed modify
the Legendrian link by Legendrian isotopies of each his components so that
its Lagrangian projection is unchanged and all the previous conditions on the
neighbourhoods are satisfied. (Warning: this might not be an isotopy of the
Legendrian link.)

It follows from the previous consideration that if {a1, . . . , ak} is a con-
tractible set of Reeb chords then there is a cobordisms from Λ(a1, · · · , ak) to
Λ where Λ(a1, · · · , ak) is obtained from Λ by performing surgeries on each of
the ai.

Other cobordisms. There are cobordisms which cannot be described us-
ing this bifurcations, namely Lagrangian caps from [Lin16] and [EM13]. All
those have negative ends which are flexible (loose). We do not recall here
the definition of such an object since they are on the opposite side of those
that we will consider as they do not admit augmentations.

In the literature we can find various conjectures regarding the structure of
cobordisms when those are excluded. For instance it often happens that arti-
cle focused on dimensions 3 restrict their attention to so-called decomposable
cobordisms (i.e. those arising from bifurcation from Figure 1.1).

Perspective 2. Study decomposability of fillings of Legendrian knots in S3.
Same question for cobordisms with negative ends admitting augmentations.
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Perspective 3. Are all Lagrangian fillings regular? i.e. can we deform the
Weinstein structure such that the Liouville vector field is tangent to a given
filling? Find classes of fillings/cobordisms for which it is true.

A related question is when can we cut a Lagrangian sub-manifold by a
transverse contact hypersurface and expect to see a Legendrian. In [Cha12]
we provided some example of such slice that cannot be deformed to be Legen-
drian. Regarding this question [Cha10] still contains something interesting:
in Section 5 there we make the slice of a surface Legendrian modifying the
Liouville vector field through transverse Liouville field so that it becomes
tangent to the surface near the slice. To do so we modify the vector field
by subtracting the Hamiltonian of a function H and the function H must
satisfy two things: its differential should be a primitive of the original Li-
ouville form restricted to the slice (this exists assuming the Lagrangian is
exact) and its variation along the Reeb direction should be smaller than 1.
Thus obstructing sliceness implies existence of Reeb chords whose length is
smaller than the amplitude of a primitive of θ on the slice.

Perspective 4. Can the quantity minimal length of Reeb chords
amplitude of primitive of θ

be studied? Is it
interesting? For instance can we consider some capacity like quantities for
this type of slices, or some metric properties?

For instance the previous consideration means that slices of compact La-
grangians tend to have Reeb chords, which is dynamically interesting. Either
they are small and obstruct collarability or the slice can be made Legendrian
and the Lagrangian is a filling of this Legendrian. Thus Theorem 2.1.19 pro-
vides existence of chords from the topology of the Lagrangian. Of course for
the latter the contact form is different.

Perspective 5. Do all Lagrangian slices of a compact Lagrangian have Reeb
chords?

At the end of reading this memoir, the reader will be convinced that we
can formulate an equivalent question replacing compact by negative Legen-
drian ends with augmentation.

1.3.4 Weinstein manifolds

We recall now the main definitions of Weinstein manifolds and sectors. We
do not discuss much of the theory and refer to [CE12] for further details on
the former concept and [GPS17] for the latter.
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Definition 1.3.8. A Weinstein manifold (W,λ, f) consists of:

(i) an even dimensional smooth manifold W without boundary,

(ii) a one-form λ on W such that (W,λ) is a Liouville manifold, and

(iii) a proper Morse function f : W → R bounded from below such that the
Liouville vector field Xλ is a pseudo-gradient of f in the sense of [CE12,
Equation (9.9)]: i.e.

df(Xλ) ≥ δ(‖Xλ‖2 + ‖df‖2),

where δ > 0 and the norms are computed with respect to some Rie-
mannian metric on W .

The function f is called a Lyapunov function (for Xλ). It is easy to check
that stable manifolds of Xλ are isotropic, indices of critical points of f are all
less than n

If f has finitely many critical points, then (W, θ, f) is a Weinstein manifold
of finite type. From now on, Weinstein manifold will always mean Weinstein
manifold of finite type.

Given a regular value M of f the compact manifold {f ≤ M} is called a
Weinstein domain.

For each critical point p of f of index n, there is a stable manifold ∆p and
an unstable manifold Dp which are both exact Lagrangian sub-manifolds.
We will call the unstable manifolds Dp of the critical points of index n the
Lagrangian co-core planes.

Definition 1.3.9. Let W0 ⊂ W be a Weinstein domain containing all critical
points of f. The Lagrangian skeleton of (W, θ, f) is the attractor of the negative
flow of the Liouville vector field on the compact part of W , i.e.

W sk :=
⋂
t>0

φ−t(W0),

where φ denotes the flow of the Liouville vector field Xλ. Alternatively, W sk

can be defined as the union of unstable manifolds of all critical points of f.

The stable manifolds of the index n critical points form the top dimen-
sional stratum of the Lagrangian skeleton.

By the combination of [CE12, Lemma 12.18] and [CE12, Corollary 12.21]
we can assume that Xλ is Morse-Smale. This implies that we can assume
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that handles of higher index are attached after handles of lower index. The
deformation making Xλ Morse-Smale can be performed without changing
the symplectic form dθ and so that unstable manifolds corresponding to the
critical points of index n before and after such a deformation are Hamiltonian
isotopic.

We now turn to the definition of sectors, which are Weinstein manifolds
with boundary. But first let us discuss an example. The prototypical exam-
ple of a Weinstein manifold is the cotangent bundle of a manifold Q, with
Liouville form λ and exhausting function p2 (this is of course not a Morse-
Smale situation, one usually uses a Morse function on Q to change both the
Liouville form and the function). Similarly the prototypical example of a
Weinstein sector will be the cotangent bundle of a manifold with boundary.
Choosing a collar neighbourhood of the boundary ∂Q× [0, ε) the cotangent
bundle is T ∗∂Q×T ∗[0, ε) and thus the boundary is T ∗∂Q×R ' J 1∂Q. This
is not just a smooth identification: the symplectic form restricts to a two
forms whose kernel is exactly the Reeb direction.

Definition 1.3.10. A Weinstein sector (S, θ, I, f) consists of:

1. an even dimensional smooth manifold with boundary S;

2. a one-form θ on S such that dθ is a symplectic form and the associated
Liouville vector field Xλ is complete and everywhere tangent to ∂S;

3. a smooth function I : ∂S → R which satisfies

(a) dI(Xλ) = αI for some function α : ∂S → R+ which is constant
outside of a compact set and

(b) dI(C) > 0, where C is a tangent vector field on ∂S such that
ιCdθ|∂S = 0 and dθ(C,N) > 0 for an outward pointing normal
vector field N ;

4. a proper Morse function f : S → R bounded from below having finitely
many critical points, such that Xλ is a pseudo-gradient of f and satis-
fying moreover

(a) df(C) > 0 on {I > 0} and df(C) < 0 on {I < 0},
(b) the Hessian of a critical point of f on ∂S evaluates negatively on

the normal direction N , and
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(c) there is a constant c ∈ R whose sub-level set satisfies {f ≤ c} ⊂
S \ ∂S and contains all interior critical points of f.

For simplicity we will often drop part of the data from the notation. We
will always assume that S is a Weinstein sector of finite type, i.e. that f has
only finitely many critical points. A Weinstein sector is a particular case of
an exact Liouville sector in the sense of [GPS17].

To a Weinstein sector (S, θ, I, f) we can associate two Weinstein mani-
folds in a canonical way up to deformation: the completion and the belt .
The completion of S is the Weinstein manifold (W, θW , fW ) obtained by com-
pleting the Weinstein domain W0 = {f ≤ c}, which contains all interior
critical points of f. The belt of S is the Weinstein manifold (F, θF , fF ) where
F = I−1(0), θF = θ|F and fF = f|F . To show that the belt is actually a
Weinstein manifold it is enough to observe that dθF is a symplectic form
because F is transverse to the vector field C, and that the Liouville vector
field Xλ is tangent to F because dI(Xλ) = αI, and therefore the Liouville
vector field of θF is XθF = Xλ|F . A neighbourhood of the boundary of a
sector can be identified with the stabilisation of the belt F × T ∗(−2ε, 0].

Let κ ∈ R be a number such that all critical points of f are contained in
{f ≤ κ}. We denote S0 = {f ≤ κ} and F0 = F∩S0 = {fF ≤ κ}. By Condition
(4a) of Definition 1.3.10, the boundary ∂S0 is a contact manifold with convex
boundary with dividing set ∂F0. Moreover S \ S0 can be identified to a half
symplectisation.

Definition 1.3.11. Let φ be the flow of Xλ. The skeleton Ssk ⊂ S of a
Weinstein sector (S, θ, f) is given by

Ssk =
⋂
t>0

φ−t(S0).

Remark 1.3.12. Let W and F be the completion and the belt, respectively,
of the Weinstein sector S. To understand the skeleton Ssk it is useful to note
the following:

1. critical points of f on ∂S are also critical points of f|∂S and vice versa,

2. any critical point p ∈ ∂S of f lies inside {I = 0} = F and is also a
critical point of fF ,

3. the Morse indices of the two functions satisfy the relation

indf(p) = indfF (p) + 1,
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4. the skeleton satisfies Ssk ∩ ∂S = F sk.

The top stratum of the skeleton of (S, θ, f) is given by the union of the
stable manifolds of the critical points of f of index n, where 2n is the di-
mension of S. Those are of two types: the stable manifolds ∆p where p is
an interior critical point of f, which are also stable manifolds for fW in the
completion, and the stable manifolds Θp where p is a boundary critical point
of f, for which ∆′p = Θp ∩ ∂S is the stable manifold of p for fF in F .

Definition 1.3.13. Let S be a Weinstein sector and let L be a Lagrangian
sub-manifold of its belt F . The spreading of L is

spr(L) = L× T ∗−ε(−2ε, 0] ⊂ F × T ∗(−2ε, 0) ⊂ S.

Remark 1.3.14. The spreading of L depends on the choice of symplectic
standard neighbourhood of the collar. However, given two different choices,
the corresponding spreadings are Lagrangian isotopic. Furthermore, if L is
exact in F , then spr(L) is exact in S, and thus two different spreadings are
Hamiltonian isotopic.

Example 1.3.15. When the Weinstein sector is the cotangent bundle of a
manifold with boundary, the spreading of a cotangent fibre of T ∗∂Q is simply
a cotangent fibre of T ∗Q.

We will not detail here how the dynamics of Hamiltonian vector field is
controlled near the boundary but the reader can have in mind the following
picture: in order for Reeb trajectories on the pre-image of f in the cotan-
gent bundle to stay in the interior of T ∗Q (those trajectory corresponds to
geodesics) one should use a complete metric on the interior of Q.

1.4 Holomorphic curves

1.4.1 Almost complex structures.

Let (X,λ) be a Liouville cobordism with negative (resp. positive) end (Y +, α+)
(resp. (Y −, α−)). We denote by J (X) the set of almost complex structures
J on X compatible with dλ such that outside of X:

• J is invariant under the Liouville flow.

• J ∂
∂t

= Rα± .
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• Jξ± = ξ±.

For J ∈ J (X) we denote by J± the R-invariant complex structure in-
duced on the symplectisation of (Y ±, ξ±).

Remark 1.4.1. In the situation where the extremities of X are contactisa-
tions of Liouville manifolds P± we also usually assume that outside a compact
set J± are cylindrical lifts of almost complex structures on P±.

1.4.2 Moduli spaces of holomorphic curves.

In this document we will consider holomorphic curves with boundary on
Lagrangian cobordisms with asymptotics toward intersection points or Reeb
chords. We recall first the general definition and then restricts to some
explicit combination of asymptotics to give formulas for the dimension of the
moduli spaces and for the energy of such curves.

General definitions. We assume that we have chosen some consistent
choices of strip-like ends for Riemann disks with d+ 1 marked point on their
boundary. We will not go into the details of such strip like ends and refer
to [Sei08, Section 9] for details. We just note that this means that whenever
we consider a disk D with (d+ 1)-marked point on its boundary (a0, · · · , ad)
then for any i there is a preferred choice of holomorphic parametrisation of a
(punctured) neighbourhood of ai by (s, t) for t ∈ [0, 1] and s ∈ (0,∞) if i = 0
and s ∈ (−∞, 0) otherwise. We refer to D\{a0, · · · , ad} as a punctured disk.
A decoration of each connected component of ∂S by Lagrangian cobordisms
is called a Lagrangian label for S. We list counter clockwise those connected
component (∂0S, ∂1S, · · · , ∂dS) starting from a0.

Let S be a d + 1-punctured disc (d ≥ 0) and L a Lagrangian label for S
with values in a pair of Lagrangian cobordisms (Σ0,Σ1). Suppose we have a
(possibly domain dependent) almost complex structure J on X. We say that
a map u : S → X is J-holomorphic with boundary conditions in L if ∀z ∈ S

dzu ◦ j = J(z) ◦ dzu, (1.2)

where j denotes the standard complex structure on D2, and u(∂iS) ⊂ L(i).
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Asymptotics Given an intersection point p ∈ Σ0 ∩ Σ1, we say that u is
asymptotic to p at ai if

• the Lagrangian label change when we cross the puncture, and

• lim
z→ai

u(z) = p.

Let γ be a Reeb chord of Λ±0 t Λ±1 of length T . The map u = (a, v) into
R× Y has a positive asymptotic to γ at ai if:

• lim
s→+∞

v(εi(s, t)) = γ(Tt) and lim
s→+∞

a(εi(s, t)) = +∞, given that ai = a0

is the incoming puncture, or

• lim
s→−∞

v(εi(s, t)) = γ(T (1 − t)) and lim
s→−∞

a(εi(s, t)) = +∞, given that

i 6= 0.

Let γ be a Reeb chord of Λ±0 t Λ±1 of length T . The map u = (a, v) has
a negative asymptotic to γ at ai, i 6= 0, given that

• lim
s→−∞

a(εi(s, t)) = −∞ and lim
s→−∞

v(εi(s, t)) = γ(Tt).

We will never consider holomorphic curves which have a negative asymptotic
at the incoming end x0.

Associated to a pair of cobordisms there are three types of possible targets
for Lagrangian labels that will be considered here: (Σ0,Σ1), (R×Λ±0 ,R×Λ±1 )
and R×Λ±i for i = 0, 1; note that the asymptotics of the latter two are subsets
of those of the first pair. We will use L to denote any of those labels. Given
x0, . . . , xd a set of asymptotic (chords or intersection points) and r ∈ Rd+1,
we denote by

Mr
L(x0;x1, . . . , xd; J)

the space of J-holomorphic maps from Sr to X with asymptotics to xi at ai
modulo reparametrisations of Sr. In other words, x0 is the asymptotic of the
incoming puncture. We denote by

ML(x0;x1, . . . , xd; J)

the union of the Mr
L(x0;x1, . . . , xd; J) over all d + 1-punctured discs. Note

that once the asymptotics for the moduli space is fixed, the actual Lagrangian
label is uniquely determined and, hence, we do not need to specify it.



1.4. HOLOMORPHIC CURVES 43

In the case when both L and J are invariant under translations of the sym-
plectisation coordinate, there is an induced R-action onML(x0;x1, . . . , xd; J).
We use

M̃L(x0;x1, . . . , xd; J)

to denote the quotient of the moduli space by this action.

Strips and half-planes As already seen, the pseudoholomorphic discs con-
sidered here will have a number of different types of asymptotics. However,
it will be useful to make a distinction between the following two types of
discs considered.

• A pseudoholomorphic disc where the Lagrangian label does not change
will be called a (punctured) half-plane; while

• A pseudoholomorphic disc for which the Lagrangian label changes ex-
actly twice (once at the positive puncture) will be called a (punctured)
strip. The puncture corresponding to the unique incoming end will
be called the output while the puncture corresponding to the unique
outgoing end at which a jump occurs will be called the input .

Remark 1.4.2. The fact that outgoing ends are inputs and incoming ends
are outputs might seem confusing. The incoming/outgoing dichotomy comes
from the notion of incoming and outgoing edges in a rooted tree and refers
to particular coordinates of the domain (the strip like ends). This follows the
convention of [Sei08]. The dichotomy input/output refers to what will belong
to the domain/co-domain of the differential as defined in Section 2.2.

1.4.3 Structure of the moduli spaces

We recall that the cobordisms Σi have dimension n + 1. The proof of the
following proposition is a patchwork of results from the literature, see [Dra04,
Section 2.2], [CEL10, Theorem A.1], [EES09, Lemma 2.5].

Proposition 1.4.3. For generic almost complex structures J± and J•, the
moduli spaces described in the previous section are transversely cut out and
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therefore are smooth manifolds. Their dimensions are

dimM(γ+; δ−, γ−, ζ−) = iΛ+
0 ,Λ

+
1

(γ+)− iλ−0 ,Λ−1 (γ−)− iΛ−1 (δ)− iΛ−0 (ζ),

(1.3)

dimM(γ+; δ−, q, ζ−) = iΛ+
0 ,Λ

+
1

(γ+)− iΣ0,Σ1(q)− iΛ−1 (δ)− iΛ−0 (ζ) + 1,

(1.4)

dimM(p; δ−, q, ζ−) = iΣ0,Σ1(p)− iΣ0,Σ1(q)− iΛ−1 (δ)− iΛ−0 (ζ)− 1,

(1.5)

dimM(p; δ−, γ−, ζ−) = iΣ0,Σ1(p)− iΛ−0 ,Λ−1 (γ−)− iΛ−1 (δ)− iΛ−0 (ζ)− 2,

(1.6)

dimM(γ1,0; δ−, γ0,1, ζ
−) = iΛ−1 ,Λ

−
0

(γ1,0) + iΛ−0 ,Λ
−
1

(γ0,1)− iΛ−1 (δ)

− iΛ−0 (ζ)− n+ 2. (1.7)

When the natural R-action is well defined and free, the moduli spaces af-
ter taking the quotient are still transversely cut out and their dimension is
one less. Moreover the zero-dimensional moduli spaces (after quotient, when
possible) are compact, and the one-dimensional moduli spaces can be com-
pactified by adding two-levels pseudoholomorphic buildings where each level
belong to a zero-dimensional moduli space.

1.4.4 Energy

In this section, we recall the notion of energy for pseudoholomorphic curves
in the symplectisation of a contact manifold as introduced in [Hof93] and
[Bou+03]. See also [Abb04] for the relative case.

Finite volume symplectic forms.

Let i : Σ → X be an exact Lagrangian cobordisms that is standard on
the cylindrical ends (−∞,−T )× Y − and (T,∞)× Y +. Given any function
ρ : R→ R such that

1. ρ′(t) > 0.

2. ρ(t) = t if |t| < T

we denote by λρ the form which is equal to λ on the compact part X
and where etα± is replaced by eρ(t)α±. The exterior derivative of λρ is still
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symplectic and we have i∗λρ = i∗λ. Of particular interest we have the case
when limt→±∞ ρ = ±T ∈ R: in this situation the volume of X becomes finite.

Hofer energy

Assume that Σ0 and Σ1 are two exact Lagrangian cobordisms in a Liouville
cobordisms (X, dλ). Let fi : Σi → R be primitives of etα|Σi which are con-
stant at the cylindrical ends. Without loss of generality we will assume that
both constants are 0 on the negative ends, while the constants on the positive
end of Σi will be denoted by ci, i = 0, 1.

Fix a function ρ as in the previous section such that limt→±∞ ρ = ±T
and let λρ be the corresponding Liouville form whose exterior derivative has
finite volume.

With this choices a primitive of λ|Σi (which exists by exactness) is hence
also a primitive of λρ|Σi .

Definition 1.4.4. Let S be a punctured disc and let u : S → X be a smooth
map. The dλρ-energy of u is given by

Edλρ(u) =

∫
S

u∗(dλρ).

Non-constant holomorphic curves have positive total energy, as stated in
the following lemma.

Lemma 1.4.5. If u is non-constant punctured pseudoholomorphic disc with
boundary on a pair of exact Lagrangian cobordisms, and if the almost complex
structure is cylindrical outside of [−T + ε, T − ε]× Y , then Edλρ(u) > 0.

Action and energy

Consider a pair of exact Lagrangian cobordisms Σi from Λ−i to Λ+
i in a

Liouville cobordism (X,λ) from (Y −, ξ−) to (Y +, ξ+). Denote the associated
potential functions fi : Σi → R, i = 0, 1 and let α± be the contact form for
ξ± induced by the cobordism.

Remark 1.4.6. Note that in the case that X is a symplectisation we still have
α+ 6= α− as those are defined with respect to where the Lagrangian cobordisms
is trivial. In etα notations we would have α− = e−Tα and α+ = eTα.
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For a Reeb chord c of Λ±0 ∪ Λ±1 we define

`(c) :=

∫
c

α±.

Recall that the definition of the Edλρ-energy depends on the choice of a
constant T ≥ 0, where equality is possible only when both cobordisms are
trivial cylinders. The action of a Reeb chord γ of Λ±1 ∪ Λ±0 is defined by

a(γ) := `(γ) + (ci − cj) if γ is a chord of Λ+
0 ∪ Λ+

1 , and

a(γ) := `(γ) if γ is a chord of Λ−0 ∪ Λ−1 .

In particular, the action of a pure Reeb chord γ of Λ±i is always a(γ) = `(γ).

Given a word γ = γ1 . . . γd, we denote a(γ) =
d∑
i=1

a(γi).

The action of an intersection point p ∈ Σ0 ∩ Σ1 is defined by

a(p) := f1(p)− f0(p).

For simplicity when x = (x1, · · · , x2) is a collection of asymptotic we will
denote by a(x) the sum

∑
a(xi).

Stokes’s theorem gives the following proposition (see [Dim16a] for details),
whose proof heavily relies on the fact that each cobordism Σi, i = 0, 1, is
exact.

Proposition 1.4.7. Let γ± ∈ R(Λ±1 ,Λ
±
0 ) be mixed Reeb chords, δ− =

δ−1 . . . δ
−
i−1 and ζ− = ζi+1 . . . ζd words of pure Reeb chords on Λ−1 and Λ−0 ,

respectively, and p, q ∈ Σ0 ∩ Σ1 intersection points.

• If u ∈M(γ+; δ−, γ−, ζ−), then

Edλρ(u) = a(γ+)− a(γ−)−
(
a(δ−) + a(ζ−)

)
. (1.8)

• If u ∈M(γ+; δ−, p, ζ−), then

Edλρ(u) = a(γ+)− a(p)−
(
a(δ−) + a(ζ−)

)
. (1.9)

• If u ∈M(p; δ−, γ−, ζ−), then

Edλρ(u) = a(p)− a(γ−)−
(
a(δ−) + a(ζ−)

)
. (1.10)
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• If u ∈M(p; δ−, q, ζ−), then

Edλρ(u) = a(p)− a(q)−
(
a(δ−) + a(ζ−)

)
. (1.11)

• If u ∈M(γ1,0; δ−, γ0,1, ζ
−), then

Edλρ(u) =
(
a(γ1,0) + a(γ0,1)

)
−
(
a(δ−) + a(ζ−)

)
. (1.12)
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Chapter 2

Augmentations of Legendrian
sub-manifolds and Floer
complex for Lagrangian
cobordisms.

In this chapter we describe the construction of the Cthulhu complex from
[Cha+15b]. The goal is to associate to a pair of cobordisms Σ0 and Σ1 a Floer
complex (partially) generated by intersection points between Σ0 and Σ1. The
crucial ingredient that allows us to deal with holomorphic curves bubbling
off in the concave end of the cobordisms is the introduction of augmentations
of the negative ends of the cobordisms. We recall the definition of this
concept in Section 2.1 and we described how those allow to define linearised
Legendrian contact cohomology from [Che02] and [EES05]. We recall then
the so-called Seidel isomorphism in Theorem 2.1.19 stating that when the
augmentation is induced by a filling then the Linearised contact cohomology
is the cohomology of the filling. This is the fundamental motivation for our
understanding of augmentations: they should reflect hidden fillings of our
Legendrian sub-manifold.

We use augmentations to assign weights to extra legs of holomorphic
curves; this allows us to ignore bubbling off half planes. One parameter fam-
ilies of holomorphic strips can however bubble off other curves. The first
situation is when an actual holomorphic plane asymptotics to a closed Reeb
orbit of (Y −, ξ−) bubble off. This situation do not appear in the manifolds
considered in [Cha+15b] as it studies cobordisms in symplectisations of con-

49
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tactisation of Liouville manifolds. The second one is when a strip bubble
off a holomorphic band with two positive asymptotics: one toward a Reeb
chords from Λ−0 to Λ−1 and one from Λ−1 to Λ−0 (see Figure 2.1).

Σ0

Σ1

R× Λ−0

R× Λ−1

X

R× Y −

Figure 2.1: Bubbling off a band in the negative end.

There are no reasonable ways (and indeed we should have no reasons to
want to do so) to discard these breakings. Instead this suggests that this
three components broken holomorphic curves should be part of a d2 operator
and thus that chords between Legendrian ends of the cobordisms are part of
the generators of our complex. This leads us to define in Section 2.2.1, fixing
two augmentations ε−0 and ε−1 of Λ−0 and Λ−1 respectively, a chain complex
CF−∞(Σ0,Σ1) generated by intersection points between Σ0 and Σ1 and Reeb
chords from Λ−0 to Λ−1 . This complex is invariant under Hamiltonian isotopies
supported away from the positive end of the cobordism (Theorem 2.2.2).

Following the idea that augmentations reflect hidden Lagrangian fillings of
the Legendrians at the negative ends, the complex CF−∞(Σ0,Σ1) is thought
as the Lagrangian Floer cohomology complex of the fillings of Λ+

0 and Λ+
1
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obtain by “capping” the negative ends of Σ0 and Σ1 with ε−0 and ε−1 .

To prove Theorem 2.1.19 in [Ekh12], T. Ekholm uses a Legendrian con-
tact homology presentation of the wrapped Floer cohomology complex whose
generator includes intersection points between Lagrangian fillings and Reeb
chords between the positive ends of these fillings. This complex is acyclic
when the ambient Liouville domain has vanishing symplectic homology, and
this acyclicity shows the isomorphisms of Theorem 2.1.19. In Section 2.2.2,
we mimic this strategy following our idea that augmentations accounts of hid-
den fillings of the negative ends, we enlarge the complex CF−∞(Σ0,Σ1) to the
so called Cthulhu complex incorporating Reeb chords from Λ+

0 to Λ+
1 . After

describing the holomorphic curves involved in the differential we state that
this is a complex (Theorem 2.2.4). Under cylindrical Hamiltonian isotopies,
this complex changes under quasi-isomorphisms. In the symplectisation of
the contactisation the cylindrical lift of the Reeb flows allows to remove all
generators of this complex, and thus the Chulhu complex is acyclic (Corollary
2.2.5). This is our analogue of Theorem 2.1.19 in the context of Lagrangian
cobordisms.

In this chapter we focus on the foundational aspect of the theory, the
applications are discussed in Chapter 4. We begin the chapter (section 2.1.1)
with a discussion on how to associate homotopy classes of loops on Legendrian
and Lagrangian cobordisms to holomorphic maps, which allows us to consider
coefficients in algebras over the group ring of the fundamental group. We try
to give a unified description of all possible coefficients that will be useful later
on for applications. But the price we pay is sometime confusing notation (due
partially to non-commutativity of the coefficients), on first approximation we
suggest the reader to simply have in mind F2 coefficients and all complexes
being vector spaces.

2.1 Augmentations and linearised contact co-

homology.

2.1.1 Homotopy class of the boundary component of
holomorphic curves.

Let Λ be a Legendrian sub-manifold, and denote by Λ1 · · · ,Λm its connected
components. Fix a base point ?i for each of those connected components.
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Let R be an algebra over F2 We denote by R[Λ] the group R[π1(Λ1, ?1) ∗
π1(Λ2, ?2) · · · ∗ π1(Λm, ?m)]. (Here π1(Λ1, ?1) ∗ π1(Λ2, ?2) · · · ∗ π1(Λm, ?m) is
thought as the fundamental group of all connected components of Λ wedged
at their base points.) In order to consider coefficient in R[Λ] we need to be
able to associate to holomorphic curves various homotopy classes of loops in
Λ.

We assume that Λ is chord generic and for each Reeb chords γ of Λ we
fix two paths, sγ and eγ, on Λ connecting the starting and ending points of
γ to the base point of the appropriate connected component of Λ. Let p be
the projection from R× Y to Y .

Let u ∈MR×Y (γ+; γ1, · · · , γk).

• For 1 ≤ i < k we denote by cγi,γi+1
(u) the element lγi,γi+1

∈ R[Λ] where
lγi,γi+1

is the loop (in the wedged space) given by eγi+1
∗ p ◦ u(∂i) ∗ s−1

γi

• We denote by cγ,γ1(u) the element lγi,γi+1
∈ R[Λ] where lγi,γi+1

is the
loop given by eγ1 ∗ p ◦ u(∂0) ∗ e−1

γ .

• We denote by cγk,γ(u) the element lγk,γ ∈ R[Λ] where lγk, γ is the loop
given by sγ ∗ p ◦ u(∂0) ∗ s−1

γk
.

As we will consider how Legendrian invariants behave under the rela-
tion of cobordism we will consider curves with boundary also on Lagrangian
cobordisms, and this imposes some choices. Whenever we have a family of
cobordisms {Σi} with Legendrian ends {Λ+

i } and {Λ−i } we assume that each
connected component of each Σi comes with a base points in the negative
cylindrical part. We also choose a path connecting all the base points of the
inclusion of Λ±i to the appropriate base point, and we denote R[Σ] the group
R[π1(Σ1)∗ · · · π1(Σk)]. For a holomorphic curve with boundary on the family
Σi we define the element cγ,γ′ ∈ R[Σ] similarly as before.

Remark 2.1.1. When the inclusion of Λ−i into Σi is π0-injective we assume
that we choose the base point of Σi to be the one coming from the inclusion
of Λ−i into Σi ∩ {−T} × Y . If furthermore one of the Σi is a trivial cylinder
then we choose the path connecting the base point of the positive end to the
negative one to be the vertical line.

We will always assume that all those choice have been made whenever we
consider such geometric situations and we will never include those choices in
all our notations as the overall results will not really depend on them.
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Remark 2.1.2. A last convention we will use is that when some choices
have been made for a given Legendrian or Lagrangian, any isotopy of these
induces some canonical choices for the other end of the isotopy. We will
always assume that those has been picked in that situation.

2.1.2 Definition of augmentations.

Let Λ be a Legendrian sub-manifold of a contact manifold (Y, ξ). Let Rα be
a Reeb vector field of (Y, ξ).

Remark 2.1.3. There are various conditions one can ask on the Reeb vector
field when Y in non-compact. In most of our application Y will be the con-
tactisation P ×R of a Liouville manifold (P, λ), in that situation we ask for
the Reeb vector field to coincide with the one coming from the form dz − λ.

Let A be a ring (the example we have in mind is A = R[Σ] for a cobordism
Σ).

We denote by R(Λ) the set of Reeb chords of Λ.

Definition 2.1.4. An augmentation of Λ over A is a pair given by

• A ring homomorphism ι : R[Λ]→ A.

• A map ε : R(Λ)→ A such that:

∀γ ∈ R(Λ)
∑

u∈M̃(γ)

ι(cγ,γ(u)) =

∑
γ1,...,γk∈R(Λ)

∑
u∈M̃(γ;γ1,...,γk)

ι(cγ,γ1(u))) · ε(γ1) · ι(cγ1,γ2(u)) · · · ε(γk) · ι(cγk,γ(u)).

(2.1)

Remark 2.1.5. The indices in all sums in the previous formula are, as
usual, to be understood to be taken only when the involved moduli spaces
have dimension 0.

Remark 2.1.6. There are several ways to understand Equation (2.1); one
we favour amongst others is summarised using the terminology from Section
1.4.2, in the following sentence:

Equation (2.1) says that the number of (punctured) half-planes asymp-
totics to a given chords γ+ weighted by the augmentation ε is 0.
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Remark 2.1.7. One instance of this equation arises when Λ is filled by an
exact Lagrangian sub-manifold L: then the curve on the left of the Equation
(2.1) all belong to one dimensional moduli spaces of curves with boundary on
L. Each of those one dimensional moduli spaces partially compactify in two
ways:

• As a copy of R meaning that the one dimensional space goes through
the cobordism to end on both sides on the cylindrical part. Both ends
contribute to cancelling terms in the sum on the left of Equation (2.1).

• As a copy of [0,∞) meaning that the family of curves converges to a
broken building with two levels: one level on the trivial part which is a
curve contributing to a summand on the right of Equation (2.1), and
the other level is made of disks capping all the negative ends of this
curves.

The value of the augmentation therefore account to those hidden disks.
This motivates our interpretation of augmentations as encoding the same
type of information as an exact Lagrangian fillings does that we develop a
little further in Section 3.2.

Remark 2.1.8. As they allow to rigidify the theory of Legendrian sub-
manifolds, it is obvious that augmentations should not exist for all Legendrian
sub-manifolds. Indeed if we construct a Legendrian sub-manifold by some
flexible construction then we create many chords admitting only one curve
(no matter how many negative ends we allow) positively asymptotic to it.
Therefore Equation (2.1) can never be satisfied at these chords. On the other
end of the spectrum, Legendrians arising as boundary of exact Lagrangian
sub-manifolds naturally carry augmentations as discussed in Remark 2.1.7.

Remark 2.1.9. Definition 2.1.4 is our attemp to find a unified way to speak
about the various notions of augmentation that arised in the litterature since
the seminal work [Che02]. There an augmentation is a differential graded
algebra map from the Chekanov-Eliashberg algebra to the coefficient ring R.
It coincides with the case A = R and ι : R[Λ] → R the standard augmenta-
tion map. Then homological and homotopical coefficients for the Chekanov-
Eliashberg dga started to appear (see for instance [Ekh+13], [EHK16], [EL17]
or [Cha+15b, Section 8]). In this situation two possibilites occur: first (this is
the situation in the various augmentations categories from [BC14b], [Ng+15],
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[Cha+16], [CNS19]) augmentations still take values in R (or a matrix alge-
bra with coefficient in R) and in this case the map ι varies from one aug-
mentation to another (it accounts of the value of the augmentation on the
t variable in the 1-dimensional case). Second (this is the situation in the
part of [Cha+15b] where we study fundamental groups of a cobordism Σ) the
augmentations take values in R[π1(Σ)] with the map ι being the one given
by the inclusion Λ ⊂ Σ. Therefore in most situations the maps ι will be
implicit and when we consider Lagrangian cobordisms then we have natural
maps R[Λ+]→ R[Σ] and R[Λ−]→ R[Σ] (using all the choices we have made
in Section 2.1.1). We assume that all the maps ι±i : R[Λ+

i ]→ A are induced
by a single maps ι : R[Σ]→ A.

Remark 2.1.10. If f : A→ A′ is a ring morphism and (ε, ι) is an augmen-
tation over A then (f ◦ ε, f ◦ ι) is an augmentation over A′. In particular
any augmentation over R[π1(Λ)] will induce an augmentation over R.

We now introduce a notation which will allow us to simplify all formulas
we are going to give, it reflects that given some augmentation an holomorphic
curves can be thought as some curve with less ends.

Definition 2.1.11. Let Σ0, · · · ,Σk be some Lagrangian cobordisms in a sym-
plectic cobordism X. Let εi be some augmentation of Λ−i , the negative end
of Σi. Let δ1

i , · · · δ
ki
i be some Reeb chords of Λ−i and x0, · · · xk be some other

asymptotics (intersection points or Reeb chords). For an holomorphic curves
u ∈ MΣ0,··· ,Σk(δ0, x0, δ1, x1, · · · , xk−1, δk) its i-th weighted boundary compo-
nent is ci(u) =

ι(cxi−1,δ1
i
(u)) · εi(δ1

i ) · ι(cδ1
i ,δ

2
i
(u)) · εi(δ2

i ) · · · ι(cδki−1
i ,δ

ki
i

(u)) · εi(δkii ) · ι(c
δ
ki
i ,xi

(u)).

Remark 2.1.12. Two noticeable case will be when u is a punctured half
plane or a punctured strip (as defined in Section 1.4.2) where then u has
respectively one or two weighted boundary components.

Consider now Σ an exact cobordism from Λ− to Λ+ and let ε− : R(Λ−)→
A be an augmentation of Λ−. Then for γ ∈ R(Λ+) we define:

ε+(γ) =
∑
γ1,···γk

∑
v∈MΣ(γ1,··· ,γk)

c1(v). (2.2)

In the preceding notation all v’s are thought of as punctured half-planes.
Note that the dependency in ε− is hidden in the notation c1(v).
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In other terms ε+(γ) counts all weighted (punctured) half-planes asymp-
totic to γ with boundary on Σ. (Note that when Λ− is empty this is exactly
the definition of the augmentation induced by a filling, this expands the idea
of thinking of augmentations as counting disks on an hidden filling as in
Remark 2.1.7.)

The following result follows from standard breaking analysis that we will
see a lot in the rest of this document. However we prefer here to refer to
[EHK16] for a proof:

Theorem 2.1.13. The map ε+ : R(Λ+)→ A is an augmentation of Λ+.

We call ε+ the pull-back augmentation induced by Σ, if we want to keep
track of the ε− and the cobordism we will denote it Σ∗ε−.

2.1.3 Augmentations as a correction to d2 = 0 and
weights.

We now turn to the definition of linearised contact cohomology. This will
use augmentations of Legendrian sub-manifolds following the same idea as in
Remark 2.1.7 that they allow to weight moduli spaces of holomorphic curves
in order to compensate unexpected breaking.

Let Λ0 and Λ1 be two graded Legendrian sub-manifolds such that Λ0∪Λ1

is chord generic. Fix an algebra R over F2 and let A0 and A1 be two rings as
before. Let R(Λ0,Λ1) be the set of Reeb chords starting on Λ0 and ending on
Λ1. We denote by LCC(Λ0,Λ1) the free A0⊗Aop

1 -module with basis given by
R(Λ0,Λ1). We assume that it is a graded vector space where each generator
γ is graded by grΛ(γ).

We want to define a differential µ1 on LCC(Λ0,Λ1) counting holomorphic
strips between Reeb chords. However one parameter family of such strips
may not only break at broken strips (which would prove that µ2

1 = 0) but
can break as shown on Figure 2.2.

On this figure we see two type of breaking. On the right side the one
parameter family of curves in M̃(γ+; γ−) breaks in two curves (u1, u2) ∈
M̃(γ+; δ) × M̃(δ; γ−) which would contribute to µ2

1(γ−). The breaking on
the left corresponds to a building of height 2:

• the top level is a curve in M̃(γ+; δ1, γ
−).

• The bottom one is a disconnected curve. One component is in M̃(δ1)

the second being in M̃(γ−; γ−).
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2

1

1

1

1

γ+

γ−

γ+ γ+

γ− γ−

Figure 2.2: Possible degenerations of 1-parameter family of holomorphic
strips.

This second type of breaking prevents possibly µ2
1 to be 0. In order to

compensate this we will use two augmentations ε0 of Λ0 and ε1 of Λ1 which
will allow curves like the one on the top level of this building to contribute
to the differential.

More precisely, let µ1
ε0,ε1

be the F2-linear map defined by:

µ1
ε0,ε1

(a0⊗a1 ·γ−) =
∑
γ+

∑
δ∈R(Λ1),ζ∈R(Λ0)

∑
u∈M(γ+;δ,γ−,ζ)

c0(u) ·a0⊗a1 · c1(u) ·γ+.

(2.3)

Remark 2.1.14. The definition of the operator µ1
ε0,ε1

is the extension of
the definition of the linearised Legendrian contact cohomology differential in
[Che02] to non-commutative coefficients proposed in [Cha+16]. As a map
it does not preserve any form of multiplication by elements of A0 or A1.
It is a natural dual of the linearised contact homology differential which is
a bimodule map(see [Cha+16, Section 4.1]). We choose not to talk about
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the homological side here as the cohomology differential fits more in the A∞
picture.

That it is indeed a differential is the content of the following theorem:

Theorem 2.1.15 ([Che02],[EES07]). Given two graded Legendrian sub-manifolds
Λ0 and Λ1 with augmentations ε0 and ε1 we have:

• (µ1
ε0,ε1

)2 = 0.

• If Λ′1 is Legendrian isotopic to Λ1 in the complement of Λ0 then there
is an augmentation ε′1 of Λ′1 such that (LCC(Λ0,Λ1), µ1

ε0,ε1
) is quasi-

isomorphic to (LCC(Λ0,Λ
′
1), µ1

ε0,ε′1
).

• Symmetrically if Λ′0 is Legendrian isotopic to Λ0 in the complement of
Λ1 then there is an augmentation ε′0 of Λ′0 such that (LCC(Λ0,Λ1), µ1

ε0,ε1
)

is quasi-isomorphic to (LCC(Λ′0,Λ1), µ1
ε′0,ε1

).

The proof of this theorem goes usually into proving that the algebra freely
generated by Reeb chords is a differential graded algebra with a differential
counting curves such as in the top building of the left degeneration in Figure
2.2. Then augmentation are used to twist this differential in order that the
length 1 term of this differential is a differential on the A0⊗A1-module. Our
differential is then the dual of this one. Here we will sketch a proof of this
theorem not using (explicitly) the DGA. The geometric idea behind the fact
that augmentations compensates bad breakings being the main intuitive idea
which led us to the definition of the Cthulhu complex from Section 2.2.

Idea of proof. Consider a 1-parameter family of (punctured) strips as in Fig-
ure 2.2. This can degenerate in two types of holomorphic buildings:

• (µ1 ◦ µ1 breaking). One building of height 2 where each level is a
(punctured) strips.

• (∂-breaking). One building of height 2 where the bottom level is
made of one (punctured) half-plane union some trivial strips and the
top is a punctured strip with one extra negative asymptotics.

We claim that this second type of breaking cancels out thanks to the aug-
mentation Equation (2.5). Indeed this equation exactly says that the number
of (punctured) half-planes you can attached to a fixed negative asymptotics
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counted with weights is 0. As gluing holomorphic curves allows us to see
that all broken configurations are possible, this implies that all ∂-breakings
cancel each other.

This leads to (µ1
ε0,ε1

)2 = 0 when the map ι is the trivial map to R. To
consider coefficients in R[Λ] with ι = id (from which the case with general
A and ι follows) note the following: let u and v be strips with a match-
ing asymptotics γ (negative for u and positive for v). Let δ denotes the
asymptotics before γ and ζ the one after (see Figure 2.3).

u

v

γδ ζ

u ? v

δ ζ

Figure 2.3: A gluing configuration.

Assume that δ is the i-th asymptotics of u (and thus one of u ? v), then
ci(u?v) = cδ,γ(u)?c1(v)?cγ,ζ where v is thought as a (punctured) half planes.
This implies (µ1

ε0,ε1
)2 = 0 for general coefficients.

To show invariance let C be the Lagrangian cylinder associated to the
isotopy from Λ1 to Λ′1. As the isotopy is disjoint from Λ0 we can assume
that this cylinder is disjoint from the trivial cylinder over Λ0. Let ε′1 be
the augmentation obtain by pull-back of ε1 along C (by Equation (2.2)).
We define now the map from FC : LCC(Λ0,Λ1) → LCC(Λ0,Λ

′
1) on the

generators by:

F (a · γ−) =
∑
γ+

∑
δ∈R(Λ1),ζ∈R(Λ0)

∑
u∈MR×Λ0,C

(γ+;δ,γ−,ζ)

c0(u) · a · c1(u) · γ+. (2.4)

Degeneration of 1-parameter family of weighted (punctured) strips with
boundary on the pair R× Λ0, C are of three types:
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• Building with the top level being a (punctured) strip on the pair of
trivial cylinders over Λ0 and Λ′1. The bottom level being disconnected
consisting of one (punctured) strips on the pair R × Λ0, C and some
(punctured) half-planes with boundary on C.

• Building with the top level being a (punctured) strip with boundary
on the pair R× Λ0, C, the bottom one being a a (punctured) strip on
the pair of trivial cylinders over Λ0 and Λ1.

• Some ∂-breakings.

Similarly as before the ∂-breaking cancels out. The second type con-
tribute to terms in F ◦ µ1

ε0,ε1
. The first type contributes to µ1

ε0,ε′1
◦ F as half

planes with boundary on C are exactly what contributes to the definition of
ε′1. Thus F is a chain map. To conclude that it is a quasi-isomorphism let C ′

be the cylinder associated to the reversed isotopy. Then C �C ′ is a cylinder
from Λ1 to itself inducing a chain. Standard stretching the neck argument
show that it is homotopic to FC′ ◦ FC . Now notice that the construction of
C�C ′ can be done parametrically, showing that it is Hamiltonian isotopic to
the trivial cylinder. A standard (but tedious because of the presence of nega-
tive asymptotics) analysis allows us to conclude that in homology FC�C′ = I.
The case of a Legendrian isotopy of Λ0 is absolutely identical.

Remark 2.1.16. We hope that it is clear from the argument in the previous
theorem why we introduced the terminology of (punctured) strips and half
planes in 1.4.2. From now on we will remove the punctured parenthesis when
talking about those. Similarly in every picture we will draw from now it
should be understood as having any numbers of extra negative punctures each
weighted by the appropriate augmentations. All ∂-breaking can be disregarded
as they all cancel out from equation (2.5).

The homology of the complex (LCC•(Λ0,Λ1), µ1
ε0,ε1

) is called the lin-
earised Legendrian contact cohomology complex from Λ0 to Λ1.

Remark 2.1.17. Note that it is clear that from the constuction we could
have take as complex LCC(Λ0,Λ1; ε0, ε1) to be ⊕γ∈RαM [γ] for any A0 ⊗Aop

1

module M and the definition would have worked similarely. For instance
when A0 = A1 = A we could take A, this is what is done in Section 3.2. We
do not use another notation for the LCC complex in that situation though,
we hope that this will not create confusion.
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Considering only one Legendrian Λ, one can make take a two-copy link by
take Λ′ to be the graph of the jet a C2 small function f such that f > 0. The
Reeb chords of Λ′ are in bijection with the one of Λ and any augmentation ε
of Λ induces one ε′ of Λ′.

Given two augmentations ε0 and ε1, over A0 and A1 respectively, of Λ.
We define the linearised Legendrian contact cohomology of Λ to be

LCH•(Λ; ε0, ε1) := H∗(LCC(Λ,Λ′), µ1
ε0,ε′1

).

The relative linearised contact cohomology is defined to be

LCH•rel(Λ; ε1, ε0) := H∗(LCC(Λ′,Λ), µ1
ε′1,ε

).

It follows from the second point in Theorem 2.1.15 that it does not depend
on the choice of f . Also notice that if f is chosen sufficiently small then Reeb
chords from Λ to Λ′ are in bijection with critical points of f and Reeb chords
of Λ whereas chords from Λ′ to Λ are in bijection with those of Λ.

Remark 2.1.18. At this point reader familiar with the literature might be
concerned by a list of things:

• This definition of linearised Legendrian contact cohomology differs from
other definitions from the literature. The author opinion is that it is
a matter of choice (mostly on the ambiguity between homology and co-
homology), this choice guarantees that this cohomology groups can be
equipped with a product turning it into a unital ring. This coincides
with what is suggested in [Ng+15, Remark 5.9].

• The relative cohomology is what in the literature is called the Linearised
contact cohomology, we added the relative adjective here (knowing very
well that there is few chances that the terminology will gain popularity)
as it is more related to relative cohomology of a filling as in Theorem
2.1.19.

As our grading convention are different from the usual one the literature
in LCH we give some example via the following:

Verification 3. We consider R = A = F2 and ι the canonical augmentation
maps R[π]→ R.
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• For the Whitney sphere from Section A Λ0 in J 1(Rn) (which admit a
unique augmentation), we have LCH•rel(Λ0, ε0) = Z2[n + 1] generated
by the unique Reeb chord. On the other end LCH•(Λ0, ε0) = Z2[0]
and is generated by the minimum of the Morse perturbation (the Reeb
chord γ is killed by the maximum).

• For the zero section Q0 in J 1(Q) (which again have a unique augmen-
tation) we have LCH•rel(Q0, ε0) = 0 (as Q0 has no Reeb chords) whereas
LCH•(Q0; ε0) = H•(Q).

• Finally for the knot shown on Figure A.2, if we choose the augmentation
that maps b1 to 1 and all other generator to 0 we have that

LCH•rel(Λ) = Z2〈[a1]〉 ⊕ Z2〈[b1 + b3], [b2]〉 = Z2[2]⊕ Z2
2[1]

and
LCH•(Λ) = Z2

2[1]⊕ Z2[0].

In the latter case the degree 0 generator is again given by the minimum
whereas the maximum kills the degree 2 class.

Let L0 and L1 be two exact Lagrangians in a Liouville manifold P such
that the primitive of the Liouville form is bounded on L0 and L1. We can
lift L0 to a Legendrian sub-manifold L̃0 and L1 to L̃1 in P × R such that
maxL̃0

z < minL̃1
z. As they have no Reeb chords those Legendrian admits

a unit augmentation. For J a cylindrical lift of an almost complex structure
of P the complex LCC(L̃0, L̃1) is independent of the choice of the lift and is
identify with the well-known Floer complex CF (L0, L1). Its homology is the
Lagrangian Floer cohomology of L0 and L1 from [Flo88].

Verification 4. Let’s see on a simple example what all our convention gives.
For f : Q → R we choose L0 to be the 0-section in T ∗Q and L1 to be
the graph of df (recall that the Liouville form is −pdq). Choosing the 0-
section of J 1(Q) as lift of L0, the lift L̃1 of L1 is j1(f) provided f > 0.
In this situation LCC(L̃0, L̃1) is generated by critical points of f and the
differential is increasing the value of f . In the ends it computes the Morse
cohomology of f and thus HF •(L0, L1) = H•(Q).

Seidel isomorphism. When the augmentation arises geometrically as in
Remark 2.1.7 then this groups are characterised topologically, this is what is
known as the Seidel isomorphism proved in [Ekh12] and [Dim16b]:
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Theorem 2.1.19. Let L0 and L1 be exact Lagrangian fillings of a Legendrian
Λ in the contactisation P×R of a Liouville manifold. Let Ai i = 0, 1 be some
rings as before. We assume that the maps ιi : R[Λ] → Ai factors through
maps R[Li]→ Ai. We think of Ai as local coefficient systems on Li. Let εLi
be the augmentation over Ai induced by Li as in Remark 2.1.7 then

LCH•(Λ; εL0 , ε
L
1 ) = HF •(L0, L

′
1;A0, A1),

and

LCH•rel(Λ; εL0 , ε
L
1 ) = HF •(L′0, L1;A0, A1).

(Where L′i denote a small Hamiltonian deformation of Li which induce a
small translation of the cylindrical end in the Reeb direction.)

When L0 = L1 = L the Floer homology groups are topological which gives:

LCH•(Λ; εL0 , ε
L
1 ) = H∗(L;A0 ⊗ A1),

and

LCH•rel(Λ; εL0 , ε
L
1 ) = H∗(L,Λ;A0 ⊗ A1).

A few particular cases can be highlighted. When A0 = A1 = F2 then
this recover the cohomology of L with F2-coefficient. Indeed in verification
3: the Whitney sphere is fillable by an n + 1 dimensional disc, whereas the
augmentation of the trefoil is realised by a punctured torus. If A0 = F2[π1]
and A1 = F2 then this recover the cohomology of the universal cover of L.

2.2 Cthulhu complex.

In this Section we present the part of the work from [Cha+15b] where we
construct a Floer complex associated to a pair of Lagrangian cobordisms. To
a pair of cobordisms we associate a complex Cth(Σ0,Σ1) whose homology
is invariant under Hamiltonian deformations of Σ1. The construction stems
from the construction of the Floer complex of to transversely intersecting
Lagrangians. Always having in mind that augmentations of the negative
ends represents hidden fillings of those ends, we proceed in two steps: first
we construct what mimic the Floer complex of the fillings (obtained cap-
ping the cobordisms with the hidden fillings) then we construct the complex
Cth(Σ0,Σ1) which mimic the wrapped homology and will be used to prove
the theorem corresponding to Seidel’s isomorphism.
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2.2.1 The Floer complex for a pair of cobordisms

Consider two cobordisms Σ0 and Σ1 such that fo i = 0, 1 Σi goes from Λ−i
to Λ+

i . Let ε−i i = 0, 1 be augmentations of Λ−i and let ε+
i be the induced

augmentations of Λ+
i induced by pullback along the cobordisms Σ+

i . We
assume that the cobordisms intersects transversely (note that this implies
that Λ±0 and Λ±1 are disjoint) and that the links Λ±0 ∪Λ±1 are generic. Finally
for i = 0, 1 we denote by fi the primitive of the pullback of λ on Σi which
vanishes on the negative end.

As in Section 2.1.2 we want to describe the complex with coefficients in
rings which are module over some group rings. To do so fix a F2-algebra
R and let ji : R[π1(Σi)] → Ai i = 0, 1 be some ring maps (note that
this induce ring maps from R[π1(Λ±i )] into Ai for i = 0, 1) that we will
assume to be the underlying ring map of all our augmentations in this sec-
tion. The module underlying our Floer complex is CF−∞(Σ0,Σ1; ε0, ε1) =
CF+(Σ0,Σ1) ⊕ LCC(Λ0,Λ1) ⊕ CF−(Σ0,Σ1) where CF±(Σ0,Σ1) is the free
A0−Aop

1 -module with basis given by the intersection points between Σ0 and
Σ1 of positive, reps. negative, action. The differential with respect to this
decomposition is given by a 3× 3 matrix:

d
ε−0 ,ε

−
1

−∞ =

d0+0+ d0+− d0+0−

0 d−− d−0−

0 0 d0−0−

 .

The terms d−− is the linearised contact cohomology differential µ1
ε−0 ,ε

−
1

of

Λ− defined in Section 2.1.3. The other terms are R-modules map given by
various counts of holomorphic curves, we proceed to describe them now:

The Floer “differential”.

The maps d0+0+ d0+0− and d0−0− are all modifications of the differential in
Lagrangian Floer homology. For an intersection point q, it is defined as

d0±0±(a0 ⊗ a1 · q) :=
∑
p

∑
δ−,ζ−

∑
u∈MΣ0,Σ1

(p;δ−,q,ζ−)

c0(u) · a0 ⊗ a1 · c1(u) · p.

(2.5)

From Equation (1.5) we deduce that this map is of degree 1.
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The Cultist map.

The map d0+− is defined by

d0+−(a0⊗a1 ·γ−) :=
∑
p

∑
δ−,ζ−

∑
u∈MΣ0,Σ1

(p;δ−,γ−,ζ−)

c0(u)·a0⊗a1 ·c1(u)·p, (2.6)

Equations (1.4) implies that d0+− has degree 1.

The Nessie map.

The map d−0− is defined using broken curves:

d−0−(a0 ⊗ a1 · q) =∑
γ10∈R(Λ−1 ,Λ

−
0 )

∑
γ−

∑
u∈M̃

R×Λ−0 ,R×Λ−1
(γ10;δ,γ−,ζ;J−)

u′∈MΣ0,Σ1
(p;δ−,γ10,ζ

−)

c0(u′) · c0(u) · a0 ⊗ a1 · c1(u) · c1(u′) · γ−.

(2.7)

Curves contributing to this term are depicted on Figure 2.4. Observe
that, compared to the pseudoholomorphic Cthulhus used in the definition of
the map d0−−, the neck of a Nessie has reversed boundary conditions.

q

γ

Figure 2.4: A building contributing to 〈d−0q, γ〉.

It follows from Equation (1.7) and (1.4) that d−0− has degree 1.

The proof of (d
ε−0 ,ε

−
1

−∞ )2 = 0

We proceed now to the statement that this complex is indeed a chain complex:
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Theorem 2.2.1. ([Cha+15b, Theorems 4.1 and 8.3]) If X is the symplecti-
sation of a contactisation of a Liouville manifold then for generic J ∈ J (X)
we have that

(d
ε−0 ,ε

−
1

−∞ )2 = 0.

Sketch of proof. The proof uses standard analysis of breaking of 1-parameter
families of holomorphic curves with various boundary conditions. Note that
any curve in those families is considered as a (punctured)-strip and all ∂-
breaking cancel each others (as we are using augmentations as weights).
Hence we need only to consider breaking into strip. The square of the matrix

d
ε−0 ,ε

−
1

−∞ have 6 terms. This reduces the study of d
ε−0 ,ε

−
1

−∞ ◦ dε
−
0 ,ε
−
1

−∞ = 0 to 6
equations:

1. d2
0+0+ = 0.

2. d0+0+d0+− + d0+−d−− = 0.

3. d0+0+d0+0− + d0+−d−0− + d0+0−d0−0− = 0.

4. d2
−− = 0.

5. d−−d−0− + d−0−d0−0− = 0.

6. d2
0−0− = 0.

The fourth one is the corresponding result for linearised Legendrian con-
tact cohomology. For the others we note first that any holomorphic curve
must increase action. Therefore the first and last equations follow from con-
sideration similar to the usual proof of d2 = 0 in Lagrangian Floer theory.
The remaining equations follow from studying 1-parameter family of curves
with fixed appropriate asymptotics. For instance the broken curve from Fig-
ure 2.1 is contributing to the middle term in the left side of

d0+0+d0+0− + d0+−d−0− + d0+0−d0−0− = 0.

It arises studying a family of curves inM(q+; δ, q−, ζ) for q+ an intersection
point of positive action and q− an intersection of negative action. So in
addition to the standard degeneration toward a broken strip, as we go from
negative to positive action, such a family can “bubble” a banana toward the
negative end. This leads to the three breakings on the figure corresponding
respectively to broken curves in:
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1. M(q+; q+
0 ) ×M(q+

0 ; q−) or M(q+; q−0 ) ×M(q−0 ; q−) depending on the
action of q0.

2. M(q+, γ01)×M(γ01; γ10)×M(γ10; q−).

(For simplicity we remove the pure chords asymptotics from the notation
but of course they are in all of those and have to match appropriately). The
first type gives the terms of the equation involving only intersection points
and the second corresponds to the term d0+−d−0− .

Note that since d−∞ is triangular each of the summand is a complex
with the differential given by the corresponding diagonal term we denote the
homology groups of the complex made of positive and negative generator
by HF+(Σ0,Σ1; ε0, ε1) and HF−(Σ0,Σ1; ε0, ε1). The homology of the whole
complex is denoted HF−∞(Σ0,Σ1; ε0, ε1).

We now state the invariance properties for this complex.

Proposition 2.2.2. Let (Σs
0,Σ1), s ∈ [0, 1], be a compactly supported one-

parameter family of pairs of exact Lagrangian cobordisms from Λ−i to Λ+
i , i =

0, 1. Also, consider a one-parameter family {Js}s∈[0,1] of admissible almost
complex structures which agree outside of a compact set. There is an induced
homotopy equivalence

Ψ{(Σs0,Js)} : (CF−∞(Σ0
0,Σ1), d

ε−0 ε
−
1

−∞ (J0))→ (CF−∞(Σ1
0,Σ1, d

ε−0 ε
−
1

−∞ (J1)).

Remark 2.2.3. The proof given in [Cha+15b] does not rely on abstract per-
turbations developed in [Ekh08]. In order to do so we trade negative Reeb
chords with intersection points by gluing to the negative end of Σ1 a “tail”
which is a Lagrangian cylinder obtained as the graph of the Reeb flow ap-
plied to Λ−1 . In [Cha+15b, Section 5] we describe the effect of this gluing
on the complex which allows us to deduce that this does no change its quasi-
isomorphism type. This allows to use standard bifurcation analysis to prove
the results. An alternative proof, more closely adapted to the SFT formalism,
would be simply to generalise [Ekh12, Section 4.2.1] to the current setting.
The latter approach depends on the abstract perturbation scheme outlined in
[Ekh08, Appendix B]. We do not reproduce here the construction of the maps
allowing this comparison and therefore will not say more on the proof of the
previous proposition.



68 CHAPTER 2. AUGMENTATIONS AND FLOER COMPLEX.

Note that the complex CF−∞ is a double cone, but if one of the maps
d0+− or d−0− vanishes then it become a cone complex. This will be ex-
ploited in Section 4.1 when we will construct long exact sequences relating
the Legendrian contact cohomology of the end of a cobordism to its singular
cohomology.

2.2.2 The Cthulhu complex.

We now turn to the construction of the Cthulhu complex. One can mo-
tivates its definition following the idea that CF−∞(Σ0,Σ1) is the standard
Floer complex of a capped version of the cobordisms: the Cthulhu complex
should mimic the wrapped Floer homology complex of [AS10] (though our
description uses more the complex from [Ekh12]) if Σ0 and Σ1 had no con-
cave end. This means that there are some generator at infinity coming from
intersection points between Σ1 and a version of Σ0 wrapped along the Reeb
flow. Hence any Reeb chords from Λ0 to Λ1 gives such an intersection. Thus
the underlying vector space of the Cthulhu complex is

Cth•(Σ0,Σ1) := LCC•
ε+0 ,ε

+
1

(Λ+
0 ,Λ

+
1 )[1]⊕ CF •−∞(Σ0,Σ1).

Using the splitting CF−∞(Σ0,Σ1; ε0, ε1) = CF+(Σ0,Σ1)⊕LCC(Λ0,Λ1)⊕
CF−(Σ0,Σ1) the differential is given by the 4× 4 matrix

dε0,ε1 =


d++ d+0+ d+− d+0−

0 d0+0+ d0+− d0+0−

0 0 d−− d−0−

0 0 0 d−−

 .

The entries d++ = dε+0 ,ε
+
1

is again the linearised Legendrian contact coho-
mology differential described in Section 2.1.3. The other three terms that we
have not encountered yet, d+0+ ,d+− and d+0− , are defined similarly as before.
In Figure 2.5 we provide a schematic picture of all the strips involved in the
matrix dε0,ε1 . We denote each time which end is considered as an input and
which is an output and specify the boundary condition on each of the curves.
Recall that, typically, the strips also have additional negative asymptotics to
Reeb chords of Λ−i , i = 0, 1, and that all counts are ‘weighted’ by the values
of the chosen augmentations on these chords (as in Formula (2.3)).

The main theorem of [Cha+15b] state that this is a complex invariant
under cylindrical Hamiltonian deformation:
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out

in

d++R× Λ+
1 R× Λ+

0 d+0+

out

in

Σ1 Σ0

out

in

d+−Σ1 Σ0 d+0−

out

in

Σ1 Σ0

d0+0−

out

in

Σ1 Σ0d0+0+

out

in

Σ1 Σ0

out

in

d0+−Σ1 Σ0

out

in

d−−R× Λ−1 R× Λ−0

d0−0−

out

in

Σ1 Σ0

d−0−

Σ1 Σ0 out

in

R× (Λ−0 t Λ−1 )

Figure 2.5: Curves contributing to the Cthulhu differential; in and out denote
the input and output of the respective component of the differential.

Theorem 2.2.4. ([Cha+15b, Theorem 4.1, 6.6 and 8.3]) For generic J the
differential dε0,ε1 satisfies

d2
ε0,ε1

= 0.

Furthermore if {Σt
0} is a cylindrical an isotopy of exact Lagrangian cobor-

dism then the complexes (Cth∗(Σ0,Σ1), dε0,ε1) and (Cth∗(Σ
1
0,Σ1), dε10,ε1) are

quasi-isomorphic. (Here ε1
0 denotes the augmentation of the negative ends of

Σ1
0 induced by the Legendrian isotopy given by the negative ends of {Σt

0}).

Since X is the symplectisation of a contactisation P ×R there is a Hamil-
tonian flow (namely s→ (q, z + s, t) which pushes Σ0 far enough so that for
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s big enough the complex Cth(Σs
0,Σ1) has no generators thus we have

Corollary 2.2.5. The complex Cth(Σ0,Σ1), dε10,ε1) is acyclic.

The proof of Theorem 2.2.4 is similar to the one of Theorem 2.2.1 and
Proposition 2.2.2. The entries of the matrix d2 involve no moduli spaces
which are more complicated than those discussed in the case of CF−∞(Σ0,Σ1).
For the invariance part we glue a tail to the top and bottom of the cobordism
to trade all chords with intersection point and then we are left with a pair
of cobordism that we can displace using a compactly supported Hamiltonian
allowing us to apply Proposition 2.2.2.

Perspective 6. It is naturally expected that with an appropriate analytic
framework under which all the counts of holomorphic curves are possible
Theorem 2.2.4 holds for any pair of cobordisms in a Liouville cobordism X.
Note that in this situation then the involved holomorphic curves must have
asymptotics toward closed Reeb orbits of the negative end and therefore
the Cthulhu complex is a module over the Legendrian contact homology
algebra (we can use an augmentation of this one to simplify coefficients). In
general though, as cobordisms are not displaceable, we should not expect
the acyclicity of this complex. An interesting complex to speculate on begin
the core and co-core disks in a Weinstein critical handle attachment. We
let the reader’s imagination wanders to see the full picture, in a forthcoming
work the author of [Cha+15b] plan to define the Cthulhu complex in a more
general set up and provide various applications.

The differential dε0,ε1 is the cone of the map
(
d+0+ d+− d+0−

)
from

CF−∞(Σ0,Σ1) to LCC(Λ+
0 ,Λ

+
1 ). It follows from Corollary 2.2.5 that it is a

quasi-isomorphic, it is in this sense that we see Theorem 2.2.4 as a relative
version of Seidel’s isomorphism.



Chapter 3

The augmentation category.

In the previous chapter we used the idea that augmentations gave information
of hidden Lagrangian fillings of Λ. Theorem 2.1.19 indeed states that when
the two augmentations are geometric LCCrel(Λ, ε0, ε1) computes some Floer
homology groups. Since the work of Fukaya [Fuk93] It is well known that
several Lagrangian (in transverse position) defines operations on those Floer
complexes which all together satisfies the so-called A∞-equation. Thus one
should naturally expect that a d + 1-uple of augmentations leads to some
operation on the groups LCC(Λ; εi, εi+1) satisfying similar relation. This is
the content of our paper [BC14b] where we define the so called augmentation
category associated to a Legendrian sub-manifolds.

It is an A∞-category whose objects are the augmentations of a given Leg-
endrian sub-manifolds. The morphisms spaces are (as chain complexes) the
linearised Legendrian contact cohomology complexes and higher order com-
positions are defined using families of augmentations to augment various ends
of holomorphic planes. On Figure 3.1 we see an example of a contribution
to the operation µ2

ε0,ε1,ε2
.

We show that this A∞-category is invariant (in an appropriate sense) un-
der Legendrian isotopies of Λ. Since it first appeared this category have been
upgraded in various ways: in [Ng+15] a variation of it including Morse gen-
erators is given in dimension 3, in [Cha+16] we extend the original definition
to non commutative coefficient ring (note that this still an A∞-category over
a commutative ring R though as the coefficient ring is an algebra over R)
and in [EL17] a partial description as the dg-category of modules over the
Chekanov algebra is given. We try to give an overview of these developments
in the present chapter.

71
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γ+

ε0(γ
−
1 ) γ−2 ε1(γ

−
3 ) γ−4 ε2(γ

−
5 )

Figure 3.1: Curve contributing to µ2
ε0,ε1,ε2

(γ−2 , γ
−
4 )).

In Section 3.1 we recall some background aspects of the theory of A∞-
categories which does not intend to be complete at all but we hope is enough
to follow the constructions that we will give (this is also relevant for Section
4.5). Then in Section 3.2 we proceed to give the definition of the augmen-
tation category Aug(Λ) with a general coefficient ring. We adjunct a strict
unit to the general description which allows to speak about quasi-equivalence
without having to go through the Yoneda embedding (as it was originally
done in [BC14b]). We describe the invariance and functorial property of
Aug(Λ). In Section 3.3 we describe the variation of this definition from
[Ng+15] but giving a general definition in all dimension using a localisation
procedure we learnt from [Sei13] and [GPS17]. In this section give a general
discussion on how those category should correspond to various category as-
sociated to Liouville manifold and Legendrian sub-manifolds, this part of the
field is extremely active and the general picture is constantly evolving so it is
most likely that between the writing of those line and the moment a reader
see them things have evolved. As an illustration we describe the outcome of
some explicit computation from [CNS19] that support some of those conjec-
tures. In Section 3.4 we describes some work of [Leg18] that constructs and
A∞-product on the complex CF−∞(Σ0,Σ1) from the previous chapter and
compare with the one on Aug(Λ+).
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3.1 A∞-categories.

3.1.1 Definitions.

We briefly recall here some of the basic definitions of the theory of A∞-
categories. We refer the reader to the first part of [Sei08] where the theory
is developed in depth. We begin by the definition of A∞-category.

Definition 3.1.1. An A∞-category A over F2 is given by:

• A class of objects Ob(A).

• For any pairs of objects X0, X1 a graded chain complex of vectors spaces
(hom(X0, X1), µ1

X0,X1
) where µ1

X0,X1
: hom(X0, X1)→ hom(X0, X1)[1].

• For any d + 1-uple X0, . . . Xd some composition of order d: µdX0,...,Xd
:

hom(Xd−1, Xd)⊗ · · · ⊗ hom(X0, X1)→ hom(X0, Xd)[2− d].

• The operation µd satisfy: for each d and a1, · · · , ad:

d∑
i=1

d−i∑
j=0

µd−i+1(ad, ad−1, . . . , µ
i(ai+j, · · · , ai), . . . , a1) = 0. (3.1)

(For the sake of clarity we dropped in this equation all subscripts and
indices).

The Etiquette requires cases d = 1, 2 and 3 to be detailed. The case d = 1
states that

µ1(µ1(a1))

which implies that hom spaces are chain complexes, as required in the second
point of the definition. The case d = 2 gives

µ2(µ1(a2), a1) + µ2(a2, µ
1(a1)) + µ1(µ2(a2, a1)) = 0,

which means that µ2 descends to a (degree 0) mapH∗(hom(X1, X2)⊗hom(X0, X1))→
H∗(hom(X0, X2)). Finally the case d = 3 gives

µ3(µ1(a3), a2, a1) + µ3(a3, µ
1(a2), a1) + µ3(a3, a2, µ

1(a1))

+µ1(µ3(a3, a2, a1)) + µ2(µ2(a3, a2), a1) + µ2(a3, µ
2(a2, a1)) = 0.
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The last two terms computes the default of associativity of the operation
µ2, applied on cycles the first four is exact, that implies that µ2 is associative
in homology.

This does not make quite the homology of hom-spaces a category yet: we
have to address the question of unit. In the present document we will only
see explicitly strictly unital A∞ category. Though it is a convenient way to
speak about unit it is not the most versatile one as strict unitality is not
preserved under quasi-equivalence. But our goal is not to give the full scope
of the realm so we just stick to the following definition:

Definition 3.1.2. An A∞ category is strictly unital if for each object X there
an element eX such that:

• µ1
X(eX) = 0.

• µ2(eX1 , a) = a and µ2(a, eX0) = a for all a ∈ hom(X0, X1) .

• For any d > 2 µd(ad, . . . , a0) = 0 as soon as one of the entry ai is one
of the eX .

Now we can claim that the homology of hom-spaces of a strict unital
category A is indeed a category, called the homological category that we
denotes H•(A).

In order to compare A∞-categories we need the notion of A∞-functors,
we recall the definition here:

Definition 3.1.3. An A∞-functor F between two A∞-categories (A, {µdA})
and (B, {µdB}) consists of the following:

• A map F : Ob(A)→ Ob(B)

• For each d ≥ 1 and (X0, . . . , Xd) ∈ Ob(A)d+1, a map
F d
X0...,X0

: hom(Xd, Xd−1)⊗. . .⊗hom(X0, X1)→ hom(F (X0), F (Xd))[1−
d] satisfying:

d∑
r=1

∑
s1+...+sr=d

µrB
(
F sr(ad, . . . , ad−sr+1), . . . , F s1(as1 , . . . , a1)

)
(3.2)

=
d∑
i=1

d−i∑
j=0

F d−i+1
(
ad, . . . , µ

i
A(aj+i, . . . , aj+1), . . . , a1

)
.

(Again we dropped some subscripts from the equation for readability.)
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When A and B are strictly unital, if in addition we have that F 1(ea) =
eF (A) and F d (d > 1) vanishes whenever one of the entries is a unit, we say
that F is strictly unital .

We do not forget the Etiquette and develop the terms d = 1, 2 of equation
(3.2). The case d = 1 reads as

F 1(µ1
A(a)) = µ1

BF
1(a)

i.e. F 1 is a chain map and thus descends to a map in H•(A). The case d = 2
reads as

µ2(F 1(a), F 1(b)) + µ1(F 2(a, b)) = F 2(a, µ1(b)) + F 2(µ1(a), b) + F 1(µ2(a, b)).

Applied on cycle we see that this implies that H(F 1) preserves the compo-
sition in H•(A). Together with strict unitality this implies that a strictly
unital A∞ functor induces a functor in the homological category. In the case
when F is not strictly unital, if the induced application in H•(A) is unital
(and thus a functor), we will say that F is c-unital.

If F is a c-unital functor, we say it is a quasi-equivalence if H(F) is an
equivalence.

Remark 3.1.4. There is one question which have not been addressed: how
can we compose two functors? The answer is of course in the book [Sei08].
We also refer the reader to [Lef03], here it is explained how A∞-operation cor-
responds so some co-differential on the free co-algebra. Morphisms between
two such co-algebras corresponds to A∞-functors. Composition becomes triv-
ial then.

3.1.2 Twisted complexes.

Given an unital A∞-category A, we describe the category TwA of twisted
complexes over A and recall its basic properties. We introduce the following
notation: given a number d of matrices Ai with coefficients in the morphism
spaces of an A∞-algebra, we denote by µdA(Xd, . . . , X1) the matrix whose
entries are obtained by applying µdA to the entries of the formal product of
the Xi’s.

Definition 3.1.5. A twisted complex over A is given by the following data:
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• a finite collection of objects X0, . . . , Xk of A for some k,

• integers κi for i = 0, . . . , k, and

• a matrix X = (xij)0≤i,j≤k such that xij ∈ homA(Xi, Xj) and xij = 0 if
i ≥ j, which satisfies the Maurer-Cartan equation

k∑
d=1

µdA(X, . . . , X︸ ︷︷ ︸
d times

) = 0.

The integers κi are degree shifts.
We represent twisted complexes by writing the objects Xi in a row going

from X0 to Xk. The map xij by hypothesis only go in the right direction. The
Maurer-Cartan equation is equivalent to the following: fix any two objects
Xi and Xj, the sum of possible compositions going from Xi to Xj is 0. We
will detail a few cases now in order to digest the definition (this is however
not imposed by the Etiquette):

Example 3.1.6. If two objects are involved then the only non trivial possibility

is to have a map c ∈ hom(X0, X1), the twisted complex is X0
c // X1 , the

Maurer-Cartan simply states that µ1(c) = 0 therefore c is a closed map.

Example 3.1.7. When three objects are involved there are two non trivial
cases:

1. The twisted complex is X0
x01 // X1

x12 // X2 . The Maurer-Cartan give
three relation: µ1(x01) = µ1(x12) = 0 and µ2(x12, x01) = 0 (as there is
only one composition going from X0 to X2). Therefore the twisted
complex consists of two closed morphisms which compose to 0.

2. The other case is when the twisted complex is X0
x01 //

x02

((
X1

x12 // X2 .
Here there is two compositions going from X0 to X2 so that the third
relation becomes µ2(x12, x01) +µ1(x02) = 0. Thus the two maps do not
compose to 0 but to an exact term (which is thus 0 in homology).

Given two twisted complexes L = ({Li}, {κi}, X) and L′ = ({L′i}, {κ′i}, X ′)
we define homTwA(L,L′) :=

⊕
i,j homA(Li, Lj)[κi − κ′j] and, given d + 1

twisted complexes L0, . . . ,Ld, we define A∞ operations

µdTwA : homTwA(Ld−1,Ld)⊗ . . .⊗ homTwA(L0,L1)→ homTwA(L0,Ld)
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by

µdTwA(qd, . . . , q1) =∑
k1,...,kd≥0

µk1+...+kd+d
A (Xd, . . . , Xd︸ ︷︷ ︸

kd

, qd, Xd−1, . . . , X1, q1, X0 . . . , X0︸ ︷︷ ︸
k0

). (3.3)

We will not go into too much details regarding this formula but note
if the twisted complex is of the type of those given in Example 3.1.6 then

a map from A to X0
c // X1 is given by a pair of map (a, b) from A to

X0 and to X1 respectively. The differential of such a pair is µ1((a, b)) =
(µ1(a), µ1(b) + µ2(c, a)). This is the differential of the cone of the chain map
given by µ2(c, ·) (this is a chain map since c is closed). We will refer to the

twisted complex X0
c // X1 as the cone of the closed map c.

Another useful remark is that a map A = (aij) between two twisted
complexes

X0
x01 //

x0i

''

x0k

22X1 · · · Xi · · ·
xij

((
Xj · · · Xk

and

X ′0
x′01 //

x′0i

((

x′0k

22X ′1 · · · X ′i · · ·
xij

((
X ′j · · · X ′k′

is closed if an only

X0
a01 //

a0k

&&

a00

""

a0k′

55X1 · · · Xk
ak0 //

akk′

''
X ′0 · · · X ′k′

is a twisted complex.
It is shown in [Sei08, Section 3.k] that the set of twisted complexes with

operations µdTwA constitutes an A∞-category TwA which contains A as a
full subcategory. Furthermore it is shown in [Sei08, Lemma 3.32 and Lemma
3.33] that TwA is the pre-triangulated envelope of A and thus H0Tw(A) is
the derived category of A.
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Definition 3.1.8. We say that a collection of objectsX1, . . . , Xk ofA generates
A if and only if any object A of A is quasi-isomorphic in TwA to a twisted
complex built from the objects Xi’s.

Remark 3.1.9. Generation criterion allows to reduce the study of an object
in the Fukaya category just by studying its morphism toward the generating
sets. In other word the Yoneda embedding into the module over the generating
objects is cohomologically full and faithful.

The following Lemma is useful to check that a collection of objects gen-
erates:

Lemma 3.1.10. If there is a twisted complex L built from X0, . . . , Xk (here
we assume that X0 only appear on the left of the twisted complex) such that,
for every object T of A we have H homTwA(T,L) = 0, then X0 is quasi-
isomorphic in TwA to a twisted complex built from X1, . . . , Xk.

Proof. This follows from the iterated cone description of twisted complexes
from [Sei08, Lemma 3.32]. More precisely, from the definition of twisted
complexes, for any object T we have that homA(T,X0) is a quotient complex
of homTwA(T,L) by the twisted complex L′ built from L starting at X1 (i.e.
“chopping” out X0 from the twisted complex L), and thus those three objects
fit in an exact triangle. The vanishing of H homTwA(T,L) implies then that

H homA(T,X0) ∼= H homTwA(T,L′).

The result follows now because the map from X0 to L′, which is given by the
maps (x0j), is a map of twisted complexes.

3.1.3 A∞-quotient and localisation.

The last notion we need to continue our exposition with is the one of A∞-
quotient. It derives from the notion of dg-quotient defined in [Dri04] and
an explicit formula is given in [LO06]. The goal is to set some objects to
be quasi-isomorphic to 0 (thus creating lots of new quasi-isomorphisms) but
keeping interesting A∞-operations.

Definition 3.1.11. LetA be a strictly unital category and B a full subcategory.
The quotient category A/B is the A∞-category defined by:

1. Ob(A/B) = Ob(A).
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2. Given two objects X0, X1,

homA/B(X0, X1) =

hom(X0, X1)
⊕
j

⊕
B1,···Bj∈Ob(B

hom(B1, X1)⊗ hom(B2, B3) · · · ⊗ hom(X0, Bj)

(this is huge!).

3. The differential and compositions are given by the formula

µdA/B((akdd ⊗ a
kd−1
d ⊗ · · · ⊗ a2

d ⊗ a1
d), (a

kd−1

d−1 ⊗ · · · a
1
d−1 ⊗ a1

d−1), · · ·
· · · (ak1

1 ⊗ · · · a1
1 ⊗ a1

1))

=
∑

0≤i≤k1≤

∑
0≤j≤kd

akdd ⊗ a
kd−1
d ⊗ µd+i+j+

∑d−1
l=1 kl

A (ajd, · · · , a
k1−i
1 )⊗ · · ·

· · · ⊗ a2
1 ⊗ a1

1 (3.4)

We apologise the reader who got use to us developing the formula but we
will not detail much more. We just want to remark that for every object B in
B then there is a particular element homA/B(B,B) given by ε = eb⊗ eb such
that µ1

A/B(ε) = µ2(eB, eB) = eB. Therefore the identity of B is exact and

thus in the homological category of A/B B becomes the 0 object. This has
the following consequence: let c be a closed morphism such that the cone of c,

X0
c // X1 (a priori an object of TwA) is (quasi-isomorphic to) an object

of B. Then the map given by µ2(µ2(x, ε), y) where y : X1 → ( X0
c // X1 )

is the inclusion given by eX1 and x : ( X0
c // X1 ) → X0 is the projection

given by eX0 is quasi-inverse to c. (This is a fun computation playing with
many of the definition given here, remember the behaviour of strict unit with
higher order composition! The details are given in the dg-case in [CNS19,
Remark 10].)

Now given a set C of closed morphisms in A consider the subcategory
C in Tw(A) generated by the set Cone(C) of all cones of elements in C.
We denote D the quotient Tw(A)/C. We define the localisation of A at C,
A[C−1], to be the image of A in D via the natural map. It follows from the
preceding paragraph that all maps from C are now quasi-isomorphisms in
A[C−1]. We highlight two useful properties of the localisation
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1. A and A[C−1] have the same objects,

2. The localisation functor A → A[C−1] is the identity on objects and
morphisms. It has trivial higher order terms (i.e. it matches A∞ oper-
ations on the nose).

3.2 The augmentation category.

We proceed now to the description of an A∞-category whose objects are
augmentations of a given Legendrian link Λ. Its construction was given first
[BC14b] where augmentation was taken in a field but works equally well in a
commutative ring. In [Cha+16] we extend the construction to any ring. We
propose there two different definitions in the case where the coefficient ring
admits an involution (for instance transposition in matrix algebra or inversion
in group rings). In [CNS19] we verified on the Legendrian (2,m)-torus knots
that one of the definition was isomorphic to the category of sheaves with
micro-support on those. We proceed now to describe it slightly modifying
the presentation from [BC14b] in order to incorporate units in the definitions
simplifying the invariance statement of these categories.

In this section, following Remark 2.1.17, we consider the Legendrian con-
tact homology complex LCC(Λ0,Λ1, ε0, ε1) to be ⊕γA〈γ〉. Indeed since all
augmentations take value in a fixed A we can see A as an A0 ⊗Aop

1 module.
We denote by Aug−(Λ, A) the A∞-category constructed as follows:

1. Objects of Aug−(Λ, A) are augmentations of Λ with value in A.

2. The morphisms space between two augmentations ε0 and ε1 is given by

hom(ε0, ε1) = A〈e〉 ⊕ LCC(Λ,Λ′; ε0, ε
′
1)

where e as grading 0. The differential is given by the linearised contact
cohomology differential on the second summand and µ1e =

∑
γ(ε0(γ)−

ε1(γ)) · γ on the first.

3. Compositions are given by

µk(a1γ1, a2γ2, ·, akγk)

=
∑
γ+

∑
δi

∑
u∈M(γ+;δ1,γ1,δ2,γ2,··· ,δk−1,γk,δk)

c0(u)a1c1(u)a2 · · · ck(u) · γ+.

(3.5)
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The other composition are characterised by the fact that e acts as a
strict unit.

Remark 3.2.1. As mentioned earlier this is the augmentation category from
[BC14b] and [Cha+16] to which we add a strict unit e. The formula for
the differential of e when thought as a morphism between different objects
is justified by the following: an augmentation is a map from the algebra
generated by Reeb chords to A, thus turning A into a module of A(Λ) (the
Chekanov-Eliashberg algebra). As pointed out in [EL17, Section 1.2] the hom-
spaces between two augmentations ε0 and ε1 in Aug−(Λ) should compute the
derived hom of the two associated A(Λ) modules. Under this correspondence,
the element e is the identity A → A and the formula for the differential is
simply the differential on the set of maps whose closed element are exactly
modules map.

The main theorem from [BC14b] (generalised to non-commutative coeffi-
cients in [Cha+16]) is:

Theorem 3.2.2. The category Aug(Λ, A) is a strictly unital A∞-category
over F2. A Legendrian isotopy from Λ0 to Λ1 induces a quasi-equivalence from
Aug(Λ0, A) to Aug(Λ1, A) (note that the isotopy induces an isomorphism
from R[π1(Λ0)] to R[π1(Λ1)]).

The proof follows algebraically from the invariance properties of Chekanov-
Eliashberg algebra from [Che02] and [EES05]. One can also give one using
Lagrangian cobordisms. Indeed we have the following:

Theorem 3.2.3. Let Σ be a graded exact Lagrangian cobordisms from Λ−

to Λ+. Let A be a ring together with a map ι : F2[π1(Σ)]→ A. Then the maps
Fd : homAug(Λ−,A)(ε

−
d−1, ε

−
d )⊗· · ·⊗homAug(Λ−,A)(ε

−
0 , ε

−
1 )→ homAug(Λ+,A)(ε

+
0 , ε

+
d )

defined by

Fd(adγ−d , · · · , a1γ
−
1 ) =∑

γ+

∑
δ0,··· ,δd

∑
u∈MΣ(γ+,δd,γ

−
d ,··· ,γ

−
1 )

= c0(u)a1c1(u)a2 · · · ck(u) · γ+ (3.6)

gives an strictly unital A∞-functor from Aug(Λ−, A) to Aug(Λ+, A).

Sketch of proof. This follow from similar analysis of degeneration of holo-
morphic curves as we sketched several times: aside from ∂-breakings such
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a family can degenerate in height two buildings giving contribution the left
hand side or right hand side of Equation (3.2) depending if the top level of
the building has boundary on R× Λ+ or Σ .

Perspective 7. This functor is well-behaved under concatenation of cobor-
disms. If Σ0�Σ1 is obtained as concatenation of Σ0 and Σ1 then the functor
induced by Σ0�Σ1 is homotopic to the composition of the one induced by Σ0

with the one induced by Σ1. This is hardly a functor because this homotopy
is far from canonical (if we want to stay at the chain level in order to retain
interesting homotopical information). Actually the category of cobordism is
not in any reasonable way a category, it is more canonically a quasi-category
(∞-category). It would be interesting to write this construction has a mor-
phism between this quasi-category and the homotopy nerve of Aug(Λ, A).

Theorem 3.2.2 follows from Theorem 3.2.3 together with this concatena-
tion property applied to the cylinder induced by a Legendrian isotopy.

Note that for any pairs of object ε0 and ε1 the complex LCCε0,ε1(Λ;A) is
a subcomplex of hom(ε0, ε1), this leads to a long exact sequence:

LCH•rel(Λ; ε0, ε1) i // H•(hom(ε0, ε1), µ1
ε0,ε1

)

π

ttjjjj
jjjj

jjjj
jjjj

jj

A〈0〉

[1]f

OO
(3.7)

For a single object ε it follows from the definition of the differential of e that
the map f in this sequence is 0. Therefore in Aug(Λ, A) the homology of the
endomorphism space of ε is A⊕ LCHrel(Λ; ε).

The first factor is somewhat confusing. It reflect that we added a unit to
our category algebraically. However recall that Seidel–Ekholm–Dimitroglou-
Rizell isomorphism in its simplest case states when A = F2 and ε is induced
by an exact Lagrangian filling L then LCHrel(Λ; ε) ' H•(L,Λ;F2) which
is not a unital algebra, the homology of the endomorphism space should
be understood through this isomorphism as the cohomology of L where we
attached the cone of its boundary (creating this a unit in cohomology). When
the involved Legendrian is a sphere then this is simply the cohomology of
the closed Lagrangian obtained by capping L with the Lagrangian core in
the handle attachment along Λ (a viewpoint adopted in [EL17]).

For two different objects the behaviour of f is related to homotopies of
augmentations.
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Definition 3.2.4. We say that two augmentations ε0 and ε1 are homotopic if
the map f in (3.7) is 0.

Remark 3.2.5. Note that by definition f(e) =
∑

γ(ε0(γ)−ε1(γ))·γ thus f is

trivial in homology if and only if there is chain
∑
aiγi for which µ1

ε0,ε1
(
∑
aiγi) =∑

γ(ε0(γ)− ε1(γ)) · γ. This implies that for any γ+

ε0(γ+)− ε1(γ+) =
∑
γ

∑
δ,ζ

∑
u∈M(γ+;δ,γ,ζ)

ε0(u)K(γ)ε1(u)

for K(γi) = ai. This coincide with the usual definition of homotopic aug-
mentations using ε0 − ε1-derivations from the Chekanov-Eliashberg algebra.
(Compare also [Ng+15, Section 5.3] and [BG19]).

Perspective 8. Homotopic augmentations induces quasi-isomorphic object in
Aug(Λ, A), this follows from [FHT01, Lemma 26.3] similarly as in [Ng+15,
Proposition 5.16]. This would be interesting to extend this homotopy defi-
nition to higher homotopies building a quasi-category of augmentations that
conjecturally would recover the homotopy nerves of Aug(Λ, A) (which would
be functorial under cobordisms as speculated in Perspective 7).

3.3 Positive category and relation with sheaf

category.

We now proceed to give a description of the category Aug+(Λ;A) as intro-
duced in [Ng+15] extended in [Cha+16] and used in [CNS19] to compare it
to sheaves with micro-support on Λ with any rank. This category is a modifi-
cation of Aug(Λ;A) which allows to see the unit geometrically. In [Ng+15] it
is defined only for Legendrian link in R3 because some explicit deformation of
the n-copy Legendrian link is needed. However we believe that using an idea
of Seidel in [Sei13, Lecture 10] using localisation to define various Fukaya
types categories (we will recall one instance of such a category in Section
4.5) can be used to construct Aug+(Λ) in any dimension. We describe this
procedure here.

We assume that Λ is in general position so that it has a discrete set of
Reeb chords. We denote by 2c the length of the smallest Reeb chords. Fix
δ > 0 so that

∑
i∈N δ

i < c. We choose a family fi : Λ→ R of Morse functions
inductively such that:
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1. For each j > i the function fi − fj is Morse.

2. The C0-norm of fi is less than δi/2.

Given such a family we denote by Λi the deformation of φδ
i

Rα
(Λ) by the

function fi in its Weinstein neighbourhood.
We now denote by O the A∞ category whose objects are given by pairs

(ε, i) for ε an augmentation of Λ and i ∈ N. The morphisms spaces are given
by:

homO((ε, i), (ε′, j)) =


LCC(Λi,Λj; ε, ε

′) if i < j,

A if i = j and ε = ε′,

0 otherwise.

The A∞-operations are given on all non-zero chains of morphisms by the
restriction of the operation in Aug(Λi1∪Λi2∪· · ·Λik , A) (with i1 < i2 < · · · <
ik) to the appropriate mixed chords. The rest of the operation is determined
by requiring O to be strictly unital.

Remark 3.3.1. It follows from [EES09, Theorem 5.5] that on a two copy
the class cm coming from the minima of the function f is always a cycle in
LCC(Λ,Λ′; ε, ε) and that multiplication by cm always induces isomorphisms
on the cohomology groups. This what should become the unit in Aug+(Λ;A).

We denote by C the set of all morphisms cij ∈ homO((ε, i), (ε′, j)) given
by the sum of all minima of fj − fi, we define Aug+(Λ;A) to be O[C−1].

Given another family of function gi we have another category O′. Ap-
plying a global contactomorphism one arrange the data associated to O to
be transverse to those associated to O′. This gives a bigger category O′′
into which both O and O′ include fully and faithfully. Quotienting by C ′′

induces a functor from both O[C−1] and O′[(C ′)−1] into O′′[(C ′′)−1]. Those
functors are cohomologically full and faithful and as elements in C ′′ become
quasi-isomorphisms. The functors induced in homology become essentially
surjective. Hence both categories are quasi-isomorphic to a common cate-
gory, this implies:

Proposition 3.3.2. The quasi-isomorphism type of Aug+(Λ;A) is well de-
fined and is invariant under Legendrian isotopy of Λ.



3.3. POSITIVE AUGMENTATION CATEGORY 85

This description of Aug+(Λ;A) has the advantage to work in any di-
mension. However the quotient procedure make the hom-spaces huge which
can make explicit computations hard. Note at least that H•(hom(ε0, ε1)) =
LCH•(Λ; ε0, ε1) (we dropped the index i for object in the quotient cate-
gory has by definition (ε, i) and (ε, j) are canonically quasi-isomorphic). In
[Ng+15] when A = Z an explicit description of this category and of the A∞-
product. From [Cha+16], in [CNS19] we extends this explicit description to
the case when A is a matrix algebra Mn×n(F2) and explicitly compute it on
the Legendrian whose Lagrangian projections are given on Figure 3.2.

a1 a2 a3 am

b1

b2

Figure 3.2: A Lagrangian projection of the Legendrian (2,m) torus link Λm.

The objects and morphisms spaces are given by the following proposition:

Proposition 3.3.3. An augmentation of Λm in A is given by a n-uple
(A1, . . . , Am) of n × n matrices so that Pm(A1, . . . , Am) is invertible where
Pm is the standard continuant polynomial.

Let ρ = (A1, . . . , Am) and ρ′ = (A′1, . . . , A
′
m) be two objects in Aug+(Λm, A).

Then we have:

H0 Hom(ρ, ρ′) ∼= {(u1, u2) ∈ (Matn(F2))2 |
u1A

′
j = Aju2 for j odd and Aju1 = u2A

′
j for j even};
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H1 Hom(ρ, ρ′) ∼= (Matn(F2))m /

{(u1A
′
1 − A1u2, u2A

′
2 − A2u1, u1A

′
3 − A3u2, . . . , u1A

′
m − Amu2) |u1, u2 ∈ Matn(F2)}

if m is odd, and

H1 Hom(ρ, ρ′) ∼= (Matn(F2))m /

{(u1A
′
1 − A1u2, u2A

′
2 − A2u1, u1A

′
3 − A3u2, . . . , u2A

′
m − Amu1) |

u1, u2 ∈ Matn(F2)}

if m is even; and H i Hom(ρ, ρ′) = 0 for i ≥ 2.

We also give an explicit description of the A∞-compositions which allows
us to compare the so-called category Shn(Λ,F2). We will not describe it
here but just say it is the category of (complexes of) sheaves whose sections
can change only in the direction normals to the front of Λ quotiented by
acyclic complexes. In [CNS19] we computes its homology category using
combinatorial description from [STZ17] to verify:

Theorem 3.3.4. For m ≥ 1, let Λm be the Legendrian (2,m) torus link
whose Lagrangian projection is shown in Figure 3.2, equipped with its stan-
dard binary Maslov potential. Then the cohomology categories H•Aug+(Λm, A)
and H• Shn(Λm,F2) are equivalent.

Perspective 9. The previous theorem is to support some more general con-
jecture generalising the results from [Ng+15] proving an A∞-equivalence be-
tween the two categories for n = 1 (for Legendrian knots in R3). A third
category that relates to those is the infinitesimally wrapped category of Λ
(i.e. the subcategory of the partially wrapped category stopped at Λ gener-
ated by objects asymptotic to Λ). The general picture that still have to be
fully understood is that given a filling L of a Legendrian Λ in S(T ∗Q) the
infinitesimally wrapped homology of L corresponds to the morphism space
in the sheaf category, the Legendrian contact homology corresponds to the
high energy part of the wrapped homology of L. When the full wrapped
homology vanishes those two are isomorphic leaving ground to speculate on
an equivalence of categories. For knots in R3 (i.e. in space of contact element
with no vertical tangencies) this vanishing is guaranteed because such objects
do not meet a generator of the partially wrapped category of T ∗(D2) (see
Section 4.5). Note that in this direction, forthcoming work of Bourgeois and
Viterbo (building on the construction [Vit19]) associates to an augmentation
in F2 a simple sheaf with the correct singular support.
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Perspective 10. The functoriality under cobordisms of the category Aug+ is
not as clear as the one of Aug(Λ). In [Ng+15] for dimension 1 a formula
is given but follows from the fact that in this dimension Aug+ is charac-
terised by Aug. This is also confirmed by the work of [Pan17]. It gives a
geometric description of the functorial property using the Cthulhu complex
associated to a deformation of a single cobordisms. But note that in this
situation also a low dimensional property is used to make the map going in
the correct direction. In general it follows from the long exact sequence (4.3)
that the Cthulhu complex gives a natural map from LCH(Λ+) to LCH(Λ−),
i.e. it goes in the opposite direction than expected by pullback of augmen-
tations (we emphasise that we should not expect in general to be able to
push augmentation forward). This is interesting to compare with the diffi-
culties people have to find functorial properties of the sheaf category under
Lagrangian cobordisms.

3.4 Product structure in Cthulhu complex and

augmentation category.

We now briefly exposed some of the results from [Leg18] which studies prod-
uct structures on the complex CF−∞(Σ0,Σ1). Increasing the zoology of holo-
morphic curves used to define the differential the first result from [Leg18] is

Theorem 3.4.1. Given a d+1-uple of Lagrangian cobordisms Σ0, · · · ,Σd in
the symplectisation of a contactisation. There is a product:

µd : CF∞(Σd−1,Σd))⊗ · · · ⊗ CF−∞(Σ0,Σ1)→ CF−∞(Σ0,Σd).

All together these operations satisfy the A∞-equation.

Extending the terms (d+0+ d+− d+0−) to higher order maps to LCC(Λ+
0 ,Λ

+
d )

satisfying the A∞ functor relation, the second Theorem from [Leg18] is:

Theorem 3.4.2. Given Legendrians Λ+,Λ− there is an A∞-category whose
object are cobordisms from Λ− to Λ+ and the operations are given by the µd

of the previous theorem. There is a cohomologically full and faithful function
from this category to Aug(Λ+) whose linear term is (d+0+ d+− d+0−).
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Remark 3.4.3. In the case of filling, this theorem upgrade Seidel’s isomor-
phism to an A∞-functor which is a quasi-equivalence when wrapped homology
vanishes. This allows Lagrangian filling to be a possible intermediate step into
proving an equivalence between sheaves and augmentations as in Perspective
9.



Chapter 4

Applications.

We now turns to applications of the theory developed in the previous chap-
ters. In order to use the Cthulhu complex one finds it useful to first start
to play with some geometric constructions to simplify its filtration. Indeed
as it is constructed it is naturally a triple cone (acyclic in the case of con-
tactisation of Liouville manifold) but if it were a double cone it would lead
to exact triangles and if it were a simple cone it would induce some quasi-
isomorphisms. So we illustrate here how some geometric inputs allows us to
show that some generators of the complex do not exists. This leads to the
following situations:

• No negative chords: this is for instance the case of Lagrangian filling
(actually only one of the two cobordisms have to be a filling). In
this situation this leads to a slight generalisation the isomorphisms of
Theorem 2.1.19: its consequence holds not in case of filling but also
when no mixed chords on the negative end exist.

• No positive intersection points. In this situation the Cthulhu com-
plex induces an exact sequence involving a map from the Legendrian
contact cohomology of the bottom to the one of the top. Such situ-
ation arises in two ways: when perturbing a single Legendrian by a
small negative Hamiltonian (this leads to exact sequence involving the
homology of the cobordisms as in Section 4.1) and when intersecting
a trivial cobordism with one coming from a positive isotopy (this is
developed in Section 4.4).

• No negative intersection points. This is similar to the previous

89
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case but in this situation the map between the Legendrian contact
cohomology groups goes from the top to the bottom (see Perspective
10 on that matter). This is also discussed in Section 4.1.

• No intersection points at all. In this situation the Cthulhu complex
becomes a simple cone and thus induces a quasi-isomorphism between
the Legendrian contact cohomology groups of both ends. A simple sit-
uation when this occurs is by lifting exact Lagrangian in Liouville man-
ifold and study cobordisms between them. Applied to surgery cobor-
disms this is one of the key ingredients of the proof of the generation
of the wrapped Fukaya category (Theorem 0.0.8) and this is described
in details in Section 4.5.

• No chords on the positive ends. This situation arises for instane
when we consider what is known as Lagrangian caps. They do ex-
ists in abundance when the negative ends of the cobordism is flexible
(hence admits no augmentations). In symplectisations of contactisa-
tions caps with negative ends admitting augmentations do not exist:
this is proven in [Dim15] and also in [Cha+15b, Corollary 1.4]. In more
general situations those can arise, for instance core of a critical point in
a Weinstein cobordism is a nice example. Though we will not discuss
more this case here.

In the next sections we details this and deduce some consequences on the
topology of Lagrangian cobordisms (Section 4.2) and some obstructions to
the existence of some Lagrangian cobordisms (Section 4.3). We conclude this
chapter with Section 4.5 where we give an overview of the arguments from
[Cha+17] proving that co-core generates the wrapped Fukaya category of a
Weinstein sector.

4.1 Exact sequences associated to Lagrangian

cobordisms.

In this section we study the Cthulhu complex associated to some pairs built
out of a single cobordisms.

Let Σ be a single cobordism from Λ− and Λ+ in the symplectisation of a
Liouville manifold P ×R. Let ε−0 be an augmentation of Λ− with value in a
ring A (with a fixed map ι : F2[π(Σ)]→ A) and ε−1 an augmentation in F2.
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Long exact sequence of triple. Let Σ−− be a small deformation of Σ
such that, in the Weinstein neighbourhood of Σ, Σ−− is the graph of the
differential of a Morse function with critical point only in Σ and such that
over the negative and positive and Σ−− is the cylinder over a deformation
Λ±def of Λ± − δ ∂

∂z
by some small Morse function f±. (We refer the reader to

[Cha+15b, Section 7.2] for formulas of such an Hamiltonian deformation and
remain here on the high-level picture).

For sufficiently small deformations one can arrange for intersection points
to have small negative actions. This implies that the complex CF+(Σ,Σ−−)
is 0. Furthermore a standard argument going back to [Flo88] then shows
that

Hk
−(CF (Σ,Σ−−), d00) = Hk(Σ,Λ+;R).

(The only things we want to point out is that curves involved in the compu-
tation of d00 do not have any extra asymptotics toward Reeb chords as those
chords have too big action).

Furthermore the complex CF−∞(Σ,Σ−−) is the sum

LCC(Λ−,Λ−def)⊕ CF−(Σ,Σ−−)

with differential

(
d−− d−0−

0 d0−0−

)
, i.e. it is the cone of the map d−0− . Combin-

ing the exact sequence associated to the cone together with the isomorphism
given by the Cthulhu complex give the following exact sequence:

· · · // LCHk−1
rel (Λ+; ε+

0 , ε
+
1 )

��

Hk−1(Σ, ∂+Σ;R)
d−0 // LCHk

rel(Λ
−; ε−0 , ε

−
1 )

d+−// LCHk
rel(Λ

+; ε+
0 , ε

+
1 ) // · · · ,

(4.1)
This prove Theorem 0.0.4. (The fact that the map between the linearised

contact homology group require some tracking of the quasi-isomorphism
given by the Cthulhu complex).

Exact sequence of pair. Consider now a deformation Σ+− of Σ similar
to the one in the previous paragraph but for which the negative end is a
deformation of Λ+ +δ ∂

∂z
. This time it is CF−(Σ0,Σ1) that vanishes therefore

CF−∞(Σ0,Σ1) decomposes as

LCC(Λ−,Λ−def)⊕ CF+(Σ,Σ+−).
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The homology of the complex CF (Σ,Σ+−) is this time H•(Σ) and we get
the exact sequence

· · · // LCHk−1(Λ+; ε+
0 , ε

+
1 )

Gε0,ε1��

Hk−1(Σ;A)
d−0 // LCHk

rel(Λ
−; ε−0 , ε

−
1 ) // LCHk(Λ+; ε+

0 , ε
+
1 ) // · · · ,

(4.2)

This prove Theorem 0.0.5. The map Gε0,ε1 in the previous exact sequence
shows some interesting behaviour as stated in the following:

Theorem 4.1.1. Assume that ε+
0 = ε+

1 = ε. Let cm be the minimum class
in LCH0(Λ+, ε). Then Gε,ε(cm) is the generator of H0(Σ;A).

Sketch of Proof. It suffices to notice that cm cannot be in the image of d+−.
Indeed it follows from equation a curve with a negative asymptotic toward
a generator of LCCrel(Λ

−; ε−0 , ε
−
1 ) can only have asymptotic toward a long

chord of the link Λ+ ∪ Λ+
def. As cm is generated only by small chords we

conclude the result.

Other exact sequences. There are other exact sequences we can get con-
sidering deformation we would denote Σ++ and Σ+−. For instance for Σ++

the term d−0− vanishes which leads to a sequence:

· · · // LCHk−1(Λ−; ε−0 , ε
−
1 )

��

Hk(Σ, ∂−Σ;A) // LCHk(Λ+; ε+
0 , ε

+
1 ) // LCHk(Λ−; ε−0 , ε

−
1 ) // · · ·

(4.3)

We let the reader figure out what the last of this simple constructions
leads to.

4.2 Restrictions on the topology of cobordisms.

We now exploit these exact sequences to deduce some restrictions on the
topology of some cobordisms.
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Homology of endocobordisms.

Theorem 4.2.1. Let Λ be a F2-homology sphere. Let Σ be an exact La-
grangian cobordism from Λ to Λ. If Λ admits an augmentation with value in
F2, then

H•(Σ,Λ;F2) = 0,

i.e. the inclusion of Λ in Σ is a F2-homology equivalence.

Proof. Since the negative end of Σ equals its positive end we can form Σ�k,
the cobordism obtain by the concatenation of k copies of Σ. Since Λ is a F2-
homology sphere we have that the rank dimF2 H(Σ�k) = k · dimF2 H(Σ;F).
However the long exact sequence (1) imply that dimF2 H(Σ�k) ≤ 2#R(Λ).
Thus for all k ∈ N k · dimF2 H(Σ;F2)2#R(Λ) which imply H•(Σ,Λ;F2) =
0

Remark 4.2.2. Note that we used only the triangle associated to the LES
(1), this is one example of a theorem that holds verbatim when considering
ungraded cobordisms.

Verification 5. A natural question that we can ask is: do we really need ho-
mology sphere? In [Cha+15b, Theorem 1.6] where using the Mayer-Vietoris
type exact sequence that we choose not to reproduce here we show that in
general the total rank of the homology of an endocobordism equal the total
rank of the Legendrian sub-manifolds at his end. There exists though ex-
ample of endocobordisms that are not homology cylinder: for instance the
Legendrian surface on Figure A.5 that admits a cobordisms from and to the
Whitney sphere: thus there is an endocobordism that is not an homology
cylinder. The reason is that when concatenating the two cobordisms the
handles are in cancelling position and thus the rank of the homology is not
increasing.

In [Cha+15b, Theorem 9.1] the preceding theorem is proved to hold even
when we introduce signs and thus with no restriction on the field of coefficient.
This has the following consequence:

Theorem 4.2.3. If Λ is a homology sphere which admits an augmentation
over Z, then any exact Lagrangian cobordism Σ from Λ to itself is a homology
cylinder (i.e. H•(Σ,Λ) = 0).
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Sketch of proof. Since Λ is assumed to have an augmentation over Z it ad-
mits an augmentation over Q as well. And thus it follows from Theorem
4.2.1 that H•(Σ,Λ;Q) = 0 and thus that H•(Σ,Λ;Z) is torsion. The aug-
mentation over Z also induces an augmentation over any finite field, and
thus Theorem 4.2.1 implies that H•(Σ,Λ;Z) has no p-torsion for any prime
p. Thus H•(Σ,Λ;Z) = 0.

Such a result raise the question if in addition of being able to propagate
trivial homology through endocobordisms we are also able to propagate sim-
ple connectedness. This lead to study of augmentation with coefficient in
F[π1(Λ)] to extract information on the fundamental group of a cobordisms.
This the subject of the next paragraph.

Fundamental group of cobordisms. In this paragraph we want to high-
light two results which allows to show that some cobordism are simply con-
nected. The first one is similar in spirit to Theorem 4.2.1. Unfortunately we
have to state in the theorem some conditions which guarantee that we can
work outside of F2 and use signs so we can only be sketchy here for the proof.

Theorem 4.2.4. Let Λ be a simply connected Legendrian sub-manifold which
is relatively Pin, and let Σ be an exact Lagrangian cobordism from Λ to itself.
If Λ admits an augmentation over C, then Σ is simply connected as well.

Remark 4.2.5. In the statement of the theorem we do not ask for the cobor-
dism to be relatively Pin. This because in [Cha+15b] we show that vanishing
of some characteristic classes of a Legendrian propagates to endocobordisms
([Cha+15b, Theorem 1.9]) this implies that orientability and relatively Pin
properties of the ends guarantee the same properties on an endocbordism.

The complete proof of this theorem requires an extension of the Cthulhu
complex to coefficients in an L2 completion of C[π1(Σ)]. This completion
allows us to speak about L2-rank of homology (as introduced in [Ati76]) and
do the same type of arguments as in the proof of Theorem 4.2.1. In order to
do so we must introduce the language of L2-complexes and L2-cohomology.
We were brief on that in [Cha+15b, Section 8.5] and we feel it would be
useless to summarise this here. Instead we refer to the book of [Lüc02].
Nevertheless the reader can have a good idea on how to prove the result with
the following sketch of proof:
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Elements of proof. As before we denote by Σ�k the concatenation of k-copies
of Σ. As mentioned in the previous remark all cobordisms Σ�k are rela-
tively Pin and thus we can consider the Cthulhu complex with coefficient
in C[π1(Σ)]. We denote by Σ̃. We denote by Σ̃� the cover of Σ�k the

universal cover of Σ obtained as a concatenation of k copies of Σ̃ glued
π1(Σ)-equivariantly (since Λ is simply connected the the negative and pos-

itive end of Σ̃ are made each of π1(Σ) copies of Λ. In other words this
is the cover corresponding to the kernel of the natural map ι : π1(Σ�k) =
π1(Σ) ∗ π1(Σ) · · · ∗ π1(Σ)→ π1(Σ). Using the exact sequence of pair and the

fact that Λ is simply connected we compute that H1(Σ̃, ∂−Σ̃) ' C|π1(Σ)|−1.
Using Mayer-Vietoris exact sequence we then find

H1(Σ̃�k, ∂−Σ̃�k) ' Ck(|π1(Σ)|−1). (4.4)

The exact triangle associated to the long exact sequence (1) with coeffi-
cient in C[π1(Σ)] (via the morphism ι) becomes

LCH•(Λ; ε, ε) // LCH•(Λ; ε̃k,εk)

uukkkk
kkkk

kkkk
kk

H•(Σ̃
�k, ∂−Σ̃�k;C).

iiSSSSSSSSSSSSS

(4.5)

If π1(Σ) is finite the we deduce

dimC LCH
•(Λ; ε0, ε1) ≤ |π1(Σ)||R(Λ)|

.
Then Equation (4.4) forces |π1(Λ)|−1 = 0 and thus Σ is simply connected.
To complete the proof we must find a contradiction assuming π1(Σ) to

be infinite. The dimension argument fails though, this is why we use L2

completion and a result of [CG85] to construct a sequence analogue to (4.5) in
this context. The contradiction is similar using L2-rank instead of dimension.

Perspective 11. The fact that we choose not to give definition of L2 com-
pletion and L2-cohomology should not be understood that we think it is
something that should be undermined. We actually find that many things
can be explored using this languages. As L2-cohomology computes a kernel



96 CHAPTER 4. APPLICATIONS.

module the closure of an image it tends to vanish more than regular coho-
mology should. This makes it bad for estimate of number of periodic orbits
or chords. But this makes it good to find isomorphisms when complexes arise
as cone of maps. This is the case for the Cthulhu complex. Being acyclic it
might be interesting to study torsion in this context.

Theorem 0.0.6 becomes now a corollary of Theorem 4.2.4 and 4.2.3 to-
gether with the h-cobordism Theorem of [Sma62] for n ≥ 4. For n = 1 this
is the classification of surfaces (it also follows more easily from the trivial
remark in [Cha10, Theorem 1.3] that the genus of a cobordism is given by
the difference of the Thurston-Bennequin of its ends). For n = 2 this fol-
lows from Perelman’s proof of the Poincaré conjecture [Per]. The case n = 3
follows from [Fre82]. Finally n = 4 is a consequence of [KM63].

A second result allowing to show that some cobordisms are simply con-
nected is given by the following.

Theorem 4.2.6. Let Σ be a graded exact Lagrangian cobordism from Λ− to
Λ+. Assume that Λ− admits and augmentation over F2 and that Λ+ has no
Reeb chords in degree zero. If Λ− and Λ+ both are simply connected, then Σ
is simply connected as well.

Outline of proof. The condition on Λ+ guarantees that Λ+ has a unique aug-
mentation over any ring A. This imply that the pullback ε+

1 and ε+
0 of an

augmentation ε of Λ− in F2[π1(Σ)] coincides (note having this unicity of aug-
mentation we might end up with a twisted augmentation for ε+

0 ). However
as Λ+ is simply connected, LCH(Λ+, ε) = LCH(Λ+, εR)⊗R[π1(Σ)]. On the
other end H0(Σ, R[π1(Σ)]) = R with the trivial π1(Σ) action. From the fact
that Gε(cm) 6= 0 (see Theorem 4.1.1) and that the action of π1(Σ) on cm is
free we deduce π1(Σ) = 1.

Remark 4.2.7. The seemingly unnatural condition that Λ+ has no Reeb
chords in degree zero is used to ensure that A has at most one augmentation
in A for every unital R-algebra A.

This condition is clearly not invariant under Legendrian isotopy, but
the conclusion of Theorem 4.2.6 can be extended to every Legendrian sub-
manifold which is Legendrian isotopic to Λ+ because Legendrian isotopies
induce Lagrangian cylinders.

Verification 6. 1. The hypothesis of Theorem 4.2.6 seems essential for our
proof to work. It is actually not only a fact of the proof but a fact of life.
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Indeed Appendix A we find a Legendrian sphere which admits a non
simply connected filling (hence is cobordant to the Whitney sphere).
This sphere has an essential chord of degree 1 as the conclusion of the
theorem does not hold. This chords is the one that appears when we
do the surgery.

2. One might wonder also where the hypothesis that Λ− was simply con-
nected came in. This is when we allows ourselves to see an augmenta-
tion of Λ− in F2 as an augmentation in F2[π1(Σ)]. For instance in Figure
A.5 we see a non-simply connected Legendrian surface. In Appendix
A it is explained that it is fillable and hence admit an augmentation.
This augmentation does not extend to an augmentation in F2[π(Λ)]
(note that at best the augmentation induced by the filling takes values
with coefficient in the group ring of the solid torus). As described in
Appendix A there is a surgery cobordism Σ to the (simply connected)
Whitney sphere. As it is constructed with only one handle that cobor-
dism is not simply connected. One could imagine some similar theorem
with some hypothesis making the proof works but none of them are fully
satisfactory: either we lack of example satisfying the hypothesis, or we
would a priori ask to know what part of the fundamental group of the
negative end is killed in the cobordism.

4.3 Obstruction to the existence of cobordisms.

One of the first applications of the augmentation category was to show that
some Lagrangian concordances could not be reversed. The first occurrence
appeared in [Cha15b] where we showed that there was no concordances from
the Legendrian knot shown on Figure A.3 to the trivial Legendrian knot.
However on Figure A.4 one see a Lagrangian concordance going the other
way. Our original argument was showing that Λ was using composition in
the category Aug(Λ).

Note though that the exact sequence (1) has a corollary which allow to
simplify the argument. Indeed Theorem 0.0.4 has the following

Corollary 4.3.1. Let Λ− and Λ+ be two graded Legendrian sub-manifolds
and let ε−0 and ε−1 be two augmentations of Λ−. If there is a Lagrangian con-
cordance C from Λ− to Λ+ then LCH•rel(Λ

−; ε−0 , ε
−
1 ) ' LCH•rel(Λ

+; ε+
0 , ε

+
1 ).
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Remark 4.3.2. Of course using the long exact sequence (4.3) gives a similar
result for LCH• instead of LCH•rel.

Indeed in this situation first the concordance is necessarily graded (actu-
ally one need only to ask that Λ− is graded) and H•(C, ∂−C) = 0.

In the situation of the knot Λ from Figure A.3 the computation of [Cha15b]
show that there are two augmentation ε0 and ε1 of Λ so that LCHrel(Λ, ε0, ε1) =
Z2[0] + Z2

2[1]. However the Whitney sphere admits only one augmentation,
for which LCHrel(Λ0; ε) = Z2[1]. This implies that no concordance can exist
from Λ to Λ0. (Note that if an oriented cobordism between the two exists it is
necessarily a concordance because they have the same Thurston-Bennequin
number).

Using a Kunneth type formula giving the LCH of a Legendrian spinning
proved in [Cha+15a] we can use this criterion to generalise this examples to
higher dimension.

4.4 Positive Legendrian isotopies.

Here we outline how the Cthulhu complex can be used to obstruct the ex-
istence of certain positive isotopies. We first recall the definition of positive
isotopy.

Definition 4.4.1. Let (Y, ξ = kerα) be a co-oriented contact manifold. Let
Λ0 be a Legendrian sub-manifold of Y . A Legendrian isotopy {Λt}t∈[0,1] is
positive if

H(t0, q) := α(
d

dt
|t=t0Λt(q)) > 0

for all t0 ∈ [0, 1].
If Λ1 = Λ0 then the isotopy is called a positive Legendrian loop.

They arise naturally as propagations of Legendrian sub-manifolds along
the Reeb flow of a contact form. They have been introduced in [CFP16]
where first obstructions to existence of such positive isotopies between some
Legendrian sub-manifolds has been given.

Positive isotopies are related to orderability of contact manifolds as in-
troduced in [EP00] which in turns is related to some non-squeezing type
phenomenon in contact geometry. Indeed if a contact manifold is not or-
derable then any Legendrian sub-manifolds is in a positive Legendrian loop.
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Thus obstructing existence of such loop for a particular Legendrian shows
orderability of the ambient contact manifold.

Remark 4.4.2. There are different variations on the notion of orderability of
the contact manifold wether we want to find an invariant order on the group
of contactomorphisms or on its universal cover. Criterions to prove order-
ability using positive isotopy goes via obstructing positive Legendrian loops
or positive Legendrian loop which are contractible in the space of Legendrian
loops.

The relation between positive Legendrian isotopy and Lagrangian cobor-
disms uses the following construction from [EG98, Lemma 4.2]: let {Λt} be a
positive Legendrian isotopy in a contact manifold (Y, kerα), and letH(t, q) be
the function from definition 4.4.1. Then the map CT : [0, 1]×Λ→ R×Y de-

fined by CT (t, q) = (Tt− lnH(t, q),Λt(q)) satisfies C∗T (etα) = eTtdt = d( e
Tt

T
).

Hence CT is an exact Lagrangian immersion and for T big enough it is an
embedding. This can be smoothed and extended so that CT becomes a
Lagrangian concordance from Λ0 to Λ1 with the following crucial property:
the function f such that C∗T (etα) = df which vanishes near −∞ is strictly
positive outside the part where CT is the trivial cylinder over Λ0.

Remark 4.4.3. This is this properties that makes the cylinder from [EG98]
much more interesting in our opinion than the one from [Cha10].

Perspective 12. The constant at ∞ given by the value of f could be related
in a way that is not clear to us yet to some metric properties on the space
of Legendrian sub-manifolds (as in [CS15]) and to some capacities or size of
Lagrangian cobordisms as in [ST17] and [DS16].

Now assume Λ0 is connected, graded and has an augmentation. Let C1

be a trivial cylinder over a Legendrian Λ′ which admits an augmentation
ε′ and consider the complex Cth(CT , C1, ε, ε). Note that the positivity of
the function f implies that CF+(CT , C1) = 0 and thus when the Cthulhu
complex is acyclic then this leads to a long exact sequence similar to (1) that
reads as:

· · · // LCHk−1−µ(Λ1,Λ
′; ε+, ε′)

��
HF k−1(CT , C1; ε) // LCHk(Λ0,Λ

′; ε, ε′) // LCHk−µ(Λ1,Λ
′; ε+, ε′) // · · · ,
(4.6)
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Remark 4.4.4. The confusing µ degree shift comes from the fact that we
think of Λ0 at the positive end of the cobordisms as being graded by the same
grading as at the negative end. However the propagation of the grading of Λ0

to the cobordisms might induce a shift of the grading at the top, µ accounts
of this shift. If the loop is contractible through Legendrian loop then µ = 0.

This might sound strange that we spoke on the conditional about the
acyclicity of the Cthulhu complex, as the only one we have encountered
is acyclic. Of course in this discussion we are speculating along the lines of
Perspective 6 to see a general picture emerging. In the following we will state
actual theorems for which we develop the rigorous framework in [CCD19].

Let’s look at a simple situation: if Λ′ is in the contactisation of a Liouville
manifold P so that it maximum height in the z direction is smaller then the
minimal height of Λ0. Then in this situation CT and C1 can be arranged to
have no intersection point and therefore CF •(CT , C1) = 0. In this situation
the map LCHk(Λ0,Λ

′; ε, ε′) → LCHk−µ(Λ1,Λ
′; ε+, ε′) is an isomorphism.

Assuming those group are not 0 leads to a contradiction playing the following
game: the map counts holomorphic strips with boundary on CT and C1. But
since CT has positive potential the action of a mixed Reeb chord at the
positive end satisfies a(γ) = eT l(γ) − c where c > 0. Therefore if γ− and
γ+ are the ends of such a strip then (1.8) implies that eT l(γ+) − l(γ−) >
c > 0. We deduce a contradiction of the surjectivity of the map looking
at γ+ representing the smallest action and modifying the extremities of C1

(not changing its potential at infinities) so that this action gets as small as
we want by pushing Λ′ up (note that this does not change the fact that
CF− vanishes). The actual argument goes trough the introduction of some
spectral invariant cε0,ε1 associated to augmentations (see [CCD19, Section
4.4]). These considerations allow us to prove

Theorem 4.4.5. Let Λ0 and Λ′ be Legendrian sub-manifolds which admit
some augmentations ε and ε′. Assume that LCH(Λ0,Λ

′; ε, ε′) 6= 0 and that

min
Λ0

z > max
Λ′

z

then then Λ0 is not contained inside any positive loop of Legendrians.

Of course the non-acyclicity of the LCC complex is far from being granted,
for instance if Λ0 and Λ′ are horizontally displaceable it is always acyclic.
However a simple situation when this occurs is when Λ0 and Λ′ are two lift
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of the same exact Lagrangian sub-manifold L of P (hence both of them ad-
mits a unique augmentation). In this situation LCH•(Λ′,Λ0) = H•(L) thus
Theorem 4.4.5 has the following immediate

Corollary 4.4.6. The Legendrian lift ΛL ⊂ (P × R, αstd) of an exact La-
grangian embedding L ⊂ (P, dθ) is not contained in a positive loop of Legen-
drians.

This implies that contactisation of Liouville manifolds are orderable as
soon as the Liouville manifolds admits an exact Lagrangian.

Following the same stream of idea, let’s assume that we are in a situa-
tion where the Cthulhu complex is well defined and invariant. Let CT be a
Lagrangian cylinder is built out of a contractible positive loop. From the
contractibility of the loop we see that CT is Hamiltonian isotopic to the triv-
ial cylinder via a compactly supported Hamiltonian isotopy. It follows from
the invariance that the complex Cth(CT , C; ε0, ε1) is quasi-equivalent to the
complex which is the cone of the identity map on LCC(Λ−0 ,Λ

−
1 ), which is

acyclic. Applied when C1 is the trivial cylinder over a small deformation of
Λ0 in the positive direction (as in Section 4.1) we obtain the following exact
sequence:

· · · // LCHk−1(Λ0; ε, ε+)
Gε0,ε1��

HF k−1(C1, CT )
d−0 // LCHk(Λ0; ε)

d+−// LCHk(Λ0; ε, ε+) // · · · ,

(4.7)

This time with no shift µ thanks to the contractibility of the loop. It
would be a mistake to think that HF •(C1, CT ) = 0 thanks to the fact that
CT is equivalent to the trivial cylinder. Indeed some holomorphic curves
might slides to the negative ends to chords along the deformation. One
situation where it vanishes is when we have nowhere to slide to: if Λ0 has
no chords which a contractible. In [CCD19] we extend the construction of
the Cthulhu complex in the hyper-tight world and the same consideration on
classes with small action allows us to prove the following:

Theorem 4.4.7. A hyper-tight Legendrian sub-manifold Λ ⊂ (M,α) of a
closed hyper-tight contact manifold is not contained inside a contractible pos-
itive loop of Legendrians.
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When we are not able to guarantee vanishing of HF •(CT , C1) we can
still hope to find some contradiction if we are able to show that the minimal
class is natural under the cobordisms map. For instance this minimal class
corresponds to the unit of Wrapped Floer homology of a filling L when we
represent it by some high energy classes. This suggested us to prove the
following:

Theorem 4.4.8. If a Legendrian Λ ⊂ (M, ξ) admits an exact Lagrangian
filling L ⊂ (X,ω) inside a Liouville domain with contact boundary (∂X =
M, ξ), such that the wrapped Floer cohomology of L is non vanishing, then Λ
is not contained inside a contractible positive loop of Legendrians.

We will define wrapped Floer homology in the next section. For this
theorem we use only the Cthulhu complex as an inspiration and reformulated
all ideas in terms of wrapping as in [CO18]. Combining this result with
formula for wrapped Floer homology of a Lagrangian co-core in [BEE12] we
obtain:

Corollary 4.4.9. Let (M+, ξ+) obtained by performing a contact surgery
along a Legendrian link Λ ⊂ (M−, ξ−) of spheres where

• (M−, ξ−) is the boundary of a subcritical Weinstein domain,

• the Legendrian contact homology DGA of each component of Λ is not
acyclic.

Then there is no contractible positive Legendrian loops containing a Legen-
drian co-core sphere inside (M+, ξ+) created by the surgery.

We obtain many variations of these criterions. All those results show that
the ambient contact manifolds are orderable. This recover many of previously
known example and introduce new one. For instance applying the previous
theorem to the diagonal in the product of a Weinstein manifolds shows:

Theorem 4.4.10. If (M, ξ = kerα) is the contact boundary of a Liou-
ville domain (W,ω = dα) whose symplectic cohomology does not vanish,
i.e. SH•(W,ω) 6= 0, then (M, ξ) is strongly orderable.
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4.5 Generation of the wrapped Fukaya cate-

gories.

In this last section we present the results from [Cha+17] showing that the
wrapped Fukaya category of a Weinstein sector has a finite collection of gen-
erators. We begin by briefly recalling what is the wrapped Fukaya category
of a Weinstein sector.

Remark 4.5.1. As Weinstein manifold are particular cases of sectors we fo-
cus on the latter and deduce the results for manifold case from it. There are
several description of the wrapped Fukaya category using various of deforma-
tion of Lagrangians in the cylindrical boundary, namely the so-called linear
setting from [AS10] or the quadratic setting for instance used in [Abo10]. In
the former paper A∞-products used a lot of extra-data on the Stasheff polye-
dra due to object not being necessarily in transverse position. The language
of localisation from [Sei13] that is used in [GPS17] makes things easier. This
is the one we will be focusing on but in [Cha+17] we explain how our methods
works in any of those setting.

Wrapped Fukaya category. Let (S, f, λ) be a Weinstein sector. Let I be
a countable set of proper graded Lagrangian exact Lagrangian sub-manifolds
of the interior of S cylindrical at infinity. We assume that:

1. Any proper exact Lagrangian sub-manifold of S cylindrical outside of
a compact set is Hamiltonian isotopic to an element of I.

2. Any k-uple of distinct element of I have generic intersections (trans-
verse with only double points).

For each L ∈ I we choose a family L(i) of exact Lagrangian Hamiltonian
isotopic to L such that the Hamiltonian isotopy outside of a compact set is
the lift of a positive Legendrian isotopy of ∂+L and the value of the function
H(t, q) defined by the positive isotopy tends to infinity. (This guarantee
that the family {L(i)} is co-final in the wrapping category of L as defined

in [GPS17, Section 3.4]). We assume that all k-uple of element L
(ik)
k have

generic intersections.
Given two Lagrangians L

(i1)
1 and L

(i2)
2 consider their Floer complex is

CF •(L
(i1)
1 , L

(i2)
2 ) (already described in Section 2.1.3).

Those are the objects of a strictly unital A∞-category O defined by:
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• Ob(O) = {L(ik)
i |Li ∈ I, k ∈ Z}

• hom(L(i), K(j)) =


CF (L(i), K(j)) if i > j,

F if L(i) = K(j),

0 otherwise.

• Differential and higher compositions for d objects is given by the oper-
ation µd in Aug−(Λ

(i1)
1 ∪Λ

(i2)
2 · · ·Λ(id)

d ) when i1 < i2 < · · · id. The other
composition being characterised by the strict unitality of O.

We will be primarily interested by a quotient of O but note that with this
one can immediately enlarge O to a category O′ where the index set I ′ con-
tains exact Lagrangian immersions with augmentations of their Legendrian
lifts.

When L′ is a small Hamiltonian deformation of L which is positive on
the cylindrical ends then HF k(L,L′) = Hk(L) (we’ve encounters similar fact
in Section 4.1 and in Theorem 2.1.19). Thus HF k(L,L′) has a particular
element cL,L′ which correspond to the unit under this isomorphism. We call
cL,L′ the continuation element of L to L′. For i < j HF (L(i), L(j)) has a
continuation element which is defined as the composition of all continuation
element for a decomposition of the isotopy from L(i) to L(j) into small one.

Remark 4.5.2. If the isotopy was negative on the cylindrical end then we
find HF k(L,L′) = Hk(L, ∂+L) which contains no unit this is why no contin-
uation element exists in this situation.

We denote by C the set of all continuation element arising in O this way
and define the wrapped Fukaya of S by the localisation WF (S) := O[C−1].

Remark 4.5.3. Of course this rushing through the definition. We did not
show that it was well defined (in particular independent on the choices of I).
We refer to [Sei13], [Aur18] and [GPS17, Section 3.4] for more details and
discussions.

On the level of morphisms space the homology is given by HW (L,K) :=
H•(homWF (L,K)) = limi→∞HF (L,K(i)) where the maps in the direct sys-
tem is given by the composition with the continuation elements.

Note that the collection {Di} of co-core and spreading of co-core of the
boundary can be seen as object of WF (S). The main result from [Cha+17]
is to show that:
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Theorem 4.5.4. Any object L of WF (S) is isomorphic in TwWF (S) to an
twisted complex build out of the {Di}.

To prove that objects are isomorphic we use the fact that the cone of a
quasi-isomorphism represents the 0 object. We then use a geometric charac-
terisation of these 0 objects given by the following theorem:

Theorem 4.5.5. Let (S, θ, I) be a Liouville sector and let K and L be ex-
act Lagrangian sub-manifolds of S with cylindrical ends. We allow K to be
immersed, and in that case we assume its Legendrian lift admits an augmen-
tation ε. If the Liouville flow of (S, θ) displaces K from every compact set of
S, then HW (L, (K, ε)) = 0.

When L and K are embedded there are many occurrences of this fact in
the literature, see for instance [CO18, Theorem 9.8] or [AS10, Section 4k].
The proof relies on estimate on the the displacement energy by the Liouville
flow (which induces Hamiltonian isotopies of exact Lagrangian). In [Cha+17]
we extended this estimate to the immersed case to prove this result.

Cobordisms and wrapped Floer homology. The relevance of the Cthulhu
complex to prove Theorem 4.5.4 goes with the following construction. Let
Σ be a graded exact Lagrangian cobordisms from Λ− to Λ+. Let ε− be an
augmentation of Λ−. For an exact Lagrangian L of S we choose a Legendrian
lift ΛP such that the cylinder of ΛP is contained under Σ in the z-direction.
The Cthulhu complex has now the simple description as Cth(CΛp ,Σ) =
CF (P, (π(Λ+))[1] ⊕ CF (P, (π(Λ−), ε)) and the differential is the cone of a
map from CF (P, (π(Λ−), ε)) to CF (P, (π(Λ+), ε+)[1]. Its acyclicity implies
that the homology groups HF (P, (π(Λ−), ε)) and HF (P, (π(Λ+), ε+)) are
isomorphic. This isomorphism commutes with the product µ2 (in particu-
lar with composition with continuation elements), this as immediate from
[Leg18] (see Theorem 3.4.2). Therefore:

Theorem 4.5.6. Let Σ be a graded exact Lagrangian cobordisms from Λ− to
Λ+ and let ε− be an augmentation of Λ−. Then for any exact Lagrangian T

WF (T, (L+, ε+) ' WF (T, (L−, ε−))

(where L± denotes the Lagrangian projection of Λ±).
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Remark 4.5.7. Applied to the surgery cobordism this theorem states that
certain Lagrangian surgeries represent some iterated cones in the Fukaya
category. There have been several instance of phenomenon similar to these
in the past: see [Sei03] for the case of spheres intersecting in one point,
[BC13] and [BC14a] for surgeries leading to embedded Lagrangian and the
recent paper [PW19] for a comprehensive treatment of surgery of one point
in the monotone case.

We want to use this theorem to use Lagrangian cobordisms to go from an
immersed Lagrangian to a Lagrangian which is displaced from the skeleton
(and hence is the 0 object). More precisely we want to use some surgery to
remove some intersection points with the skeleton. Note however that the
surgery cobordism described in Section 1.3.6 goes from the surgered manifold
to the original one. This is the opposite direction that augmentation goes.
Hence we need a criterion that tells us when we can push forward augmen-
tation instead of pulling them back. This can be achieved by the following
result from [Dim16a, Theorem 1.1]:

Theorem 4.5.8. Let Λ be a graded Legendrian and a1, · · · ak some con-
tractible chords of Λ. Let Σ be the Lagrangian cobordisms from Λ(a1, · · · , ak)
to Λ. Let ε be an augmentation of Λ such that ε(ai) = 1 for all i = 1 · · · k.
Then there exist an augmentation ε of Λ(a1, · · · , ak) such that ε = φΣε.

Twisted complexes and augmentation. Consider now k exact Lagrangian
sub-manifolds Lk and fix Legendrian lifts Λk of each Lk. Let ε be an aug-
mentation of the link ∪kΛk such that ε(γ) if γ is a chord from Λi to Lj with
i ≤ j. Then the element X =

∑
ε(γ)γ satisfies the Maurer-Cartan equation

and
WF (T, (∪kLk, ε)) ' WF (T, ({Li}, X).

Where the homology on the left corresponds to the homology of the mor-
phisms spaces in TwWF (S). This statement is almost a tautology has on
the nose the differential on the complex as defined on the right corresponds
to the differential in the twisted complex. This is of course before localisation
but it goes down to the localisation as everything tautologically commutes
with products with continuation elements.

All of this implies the following

Theorem 4.5.9. Let L1, . . . , Lm, be embedded exact Lagrangian sub-manifolds
with cylindrical ends. If there exist a Legendrian lift L+ of L = L1∪ . . .∪Lm,
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an augmentation ε of the Chekanov-Eliashberg algebra of L+ and a set of
contractible Reeb chords {a1, . . . , ak} such that:

(1) ε(ai) = 1 for i = 1, . . . , k, and

(2) ε(q) = 0 if q is a Reeb chord from L+
i to L+

j ,

then there exist a twisted complex L built from L1, . . . , Lm and an augmen-
tation ε of the Chekanov–Eliashberg algebra of L(a1, . . . , ak)

+ such that, for
any other exact Lagrangian sub-manifold with cylindrical end T there is an
isomorphism

HW (T, (L(a1, . . . , ak), ε)) ∼= H homWF (T,L).

Construction of the augmentation and generation criterion. All of
this leads to the following plan to prove generation by co-cores and their
spreadings. Start with a Lagrangian L and assume it intersects transversely
the skeleton of S in points a1, · · · ak. Then through each intersection points
we take a copy of the corresponding co-core or spreading Dai . Then lift L and
each of the Dai such that each chords corresponding to an intersection point
ai is contractible (note that this forces a choice of grading for each Dai once
L is graded). Then the surgery (L∪iDai)(a1, · · · , ak) is an exact Lagrangian
immersion disjoint from the skeleton and thus if it admits an appropriate
augmentation it represents a twisted complex built out of the Di and L that
is a 0 object.

Of course all is fine up to that last bit about the appropriate augmenta-
tion. Indeed its existence is not granted if we do not modify our configura-
tion. In [Cha+17, Section 9] we explain how wrapping the object Di near the
skeleton allow to ensure the existence of such an augmentation. We will not
reproduce it here but instead we would like to illustrate this procedure on
an explicit example that we find relevant for the understanding of the global
argument. The simple case of the cotangent of S1 is actually rich enough to
understand most of what is involved in the construction of the augmentation.
For instance lets try to generate the 0-section in T ∗S1. We first deform it so
that it is transverse to the skeleton (i.e. itself) as in Figure 4.1.

We then normalise its intersections with the skeleton so that around each
intersection point the triple of Lagrangians given by the skeleton, the object
we want to generate and the co-core (here the cotangent fibre) are always
equivalent (see Figure 4.2). We then lift the Lagrangian and the copies of
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Figure 4.1: A deformation of the 0-section.

the co-core to a Legendrian link such that each co-core are slightly under the
object we want to generate above the intersection points with the skeleton.
This leads to contractible Reeb chords γi that we can surger which would
have the effect to remove intersection points with the skeleton (see right hand
side of Figure 4.2). However there are other Reeb chords from the co-core Di

to the object: this might obstructs the existence of an augmentation sending
the chord γi to 1. For instance on Figure 4.2 the augmentation equation (2.1)
applied to δ1 (or δ2) forces ε(γ1) = 0: there is only one punctured disks out
of δ1 and it has negative end only at γ1.

To resolve this problem with start by wrapping co-cores in the neigh-
bourhood of the skeleton (increasing the z coordinated of their Legendrian
lifts) so that all chords outside a neighbourhood of the skeleton are going
from the object to co-cores (or from co-cores to co-cores with higher index)
those are not problematic for defining a twisted complex. There is most
likely still chords from co-cores to the object but they happen near an in-
tersection point with the skeleton where the object is a small deformation of
co-cores. So for any such chords δij near γj there is a twin chord ζij from
the corresponding co-core and the triple formed by those two chords and
the intersection with the skeleton are asymptotics of a holomorphic trian-
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γ1 γ2

δ1

δ2

D1 D2

Figure 4.2: Normalising intersection near the skeleton.

gles in M(δij; γj, ζij). For instance on Figure 4.3 the chords δ12 still have a
punctured disks toward γ1 but also one to (γ2, ζ12) so now the augmentation
equation become ε(γ1)+ε(γ2)ε(ζ12) = 0 which we can solved mapping γ1 and
γ2 to 1 (as needed to push the augmentation forward). A similar argument
works for the chords on the opposite side of the figure. We build in this a
way an augmentation that we can push-forward along the surgery cobordism.
The surgery leads to a Lagrangian disjoint from the skeleton (see right hand
side of Figure 4.3). It represents the 0-object by Theorem 4.5.5. Theorem
4.5.9 and Lemma 3.1.10 implies thus that the 0-section is generated by two
copies of the cotangent fibre.

The general argument works similarly: we order the copies of the co-
cores according to the height of the lift of the Lagrangian L we want to
generate. And we wrap similarly in neighbourhoods of the skeleton that we
nest so that new modifications do not alter previous ones until all a priori
problematic intersection points comes with a triangle allowing us to construct
the augmentation inductively by action.

Remark 4.5.10. In the case of sectors it is possible that this wrapping brings
us dangerously close to the boundary of the sector but in that situation we
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γ1 γ2

δ12 ζ12

D′1D2

Figure 4.3: Wrapping to construct the correct augmentation.

can just stop wrapping as we know that our object is away from the boundary
and thus no problematic intersection points can exists.



Appendix A

Some useful examples of
Legendrians and cobordisms.

1-jets of functions. After conormals of sub-manifolds which are Legen-
drians in spaces of contact element. The most natural family of exam-
ple of Legendrian sub-manifolds are graph 1-jets of functions. Given a
function f : M → R its one jet is j1(f)(q) = (q, [f ]q) = (q, dfq, f(q)) in
J 1(M) = T ∗M × R.

For any critical point q of f there is a Reeb chord (q, 0, t) going from the
0-section to j1(f) if f(q) > 0 and from j1(f) to the 0-section if f(q) < 0. If
f(q) = 0 then j1(f) intersects the 0-section.

The Whitney sphere. The first useful Legendrian sub-manifold which is
not the jet of a function or a co-normal is the Whitney sphere. Consider
the sphere given in coordinates by Sn = {(q, z) ∈ Rn × R||q|2 + z2 = 1}. It
admits a Legendrian embedding in J 1(Rn) by

(q, z)→ (q, z · q,−z
3

3
).

On Figure A.1 we see the projection to R × R (on the left) and to T ∗R
(on the right) of this Legendrian when n = 1. In any dimension it admits a
single Reeb chords γ(t) = 1

3
(0, · · · , 0, t) t ∈ [−1, 1].

It is the boundary of a Lagrangian disc in R×J 1(R)n whose front is half
of the Whitney sphere 1-dimension higher (completed conically as in Section
1.3.3).

111
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Figure A.1: Front and Lagrangian projections of the trivial Legendrian knot.

The Legendrian trefoil. On Figure A.2 we see the Lagrangian projection
of a Legendrian knot Λ in J 1(R) which has the the topological type of a
right-handed trefoil knot. It admits 5 Reeb chords. The star denotes a point
outside the capping paths of each of those chords (this determines uniquely
the homotopy type of those path).

All chords bi’s are contractible and we can perform the surgery cobordism
to each of them. Depending on the order we perform the surgery this leads
to 5 different genus 1 cobordisms from Λ0 to Λ. As we fill cap Λ0 with a disk
this gives 5 Lagrangian fillings of Λ by punctured torus.

b1 b2 b3

a1

a2

∗

Figure A.2: A Lagrangian projections of the Legendrian trefoil.
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Figure A.3: The front and Lagrangian projection of a Legendrian represen-
tative of the knot m(946).

The m(946) Legendrian knots. On Figure A.3 we see the front and La-
grangian projections of a Legendrian knots. It is relevant because it is the
simplest Legendrian knot after Λ0 in J 1(R) that admits a Lagrangian disk
filling. On Figure A.4 we see the movie of a concordance from Λ0 to Λ that
leads to this filling once we fill Λ0. This concordance is not unique and we
can find other by surgery on the chords highlighted in Figure A.3.

Spinnings. Given a Legendrian sub-manifold Λ ⊂ (R2n+1, ξst), the so called
front spinning construction produces a Legendrian embedding of Λ× S1 in-
side (R2(n+1)+1, ξst), as described by Ekholm, Etnyre and Sullivan [EES05].
In [Gol14] this construction was extended to the Sm-front spinning, which
produces a Legendrian embedding of Λ × Sm inside (R2(n+m)+1, ξst). It was
also shown that this construction extends to exact Lagrangian cobordisms.

The spinning of 1-dimensional Legendrian knots along a circle leads to a
Legendrian surface whose 2-dimensional front is simply the rotation of the
1-dimensional front. For instance the spinning of the Whitney sphere is the
torus depicted on Figure A.5: it has two circle of cusps. It can be shown
that it is obtain by subcritical surgery on the 2-dimensional Whitney sphere,
hence there is an exact cobordism from Λ0 to this Legendrian spun. Note
also that we can do surgery along the inner circle of cusp which lead to a
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Figure A.4: A concordance from the Whitney sphere to the m(946) Legen-
drian knot.

cobordisms from the spinning to the Whitney sphere.

Figure A.5: Front of the spinning of the Whitney sphere.

A non simply connected filling of a Legendrian sphere. We start
with a Legendrian knot Λ ⊂ (R3, ξstd) which admits a non-simply connected
Lagrangian filling Σ. For instance, we can take the Legendrian right handed
trefoil knot and one of its exact Lagrangian filling diffeomorphic to a punc-
tured torus. It follows that ΣSmΛ ⊂ (R2(m+1)+1, ξstd) is a Legendrian Sm×S1

which admits an exact Lagrangian filling ΣSmΣ diffeomorphic to Sm×Σ; this
filling is of course also not simply connected.

The Legendrian ambient surgery along a cusp-edge in the class Sm×{p}
for p ∈ Λ corresponding to the left-most cusp edge of Λ ⊂ (R3, ξstd) as
described above produces a Legendrian sphere Λ′, and concatenating ΣSmΣ
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with the corresponding elementary Lagrangian (m + 1)-handle provides a
non-simply connected filling Σ′ of Λ′.
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Résumé

Ce mémoire fait état des travaux de l’auteur sur l’étude des invariants des
sous-variétés legendriennes provenant des augmentations de celles-ci. Après
un chapitre introduisant les notions de bases, la notions d’augmentations
est introduite dans le chapitre 2. Il y est décrit comment de tels objets
permettent de définir un complexe de Floer pour les cobordismes lagrang-
iens entre sous-variétés legendriennes. Dans le chapitre 3 nous discutons
comment les augmentations peuvent être organisées en une catégorie A∞,
la catégorie d’augmentations. Dans le chapitre 4 nous présentons diverses
applications des chapitres précédents à la topologie des cobordismes lagrang-
iens, les isotopies legendriennes positives et la génération des catégories de
Fukaya enroulées des secteurs de Weinstein.

Abstract

This memoir presents an overview of the author’s contribution to the study
of invariants of Legendrian sub-manifolds arising from augmentations. After
a chapter introducing basic notions of symplectic and contact topology, aug-
mentations are defined in Chapter 2. It is explained how augmentations are
used to define a Floer complex associated to Lagrangian cobordisms between
Legendrian sub-manifolds. In Chapter 3 we explain how augmentations can
be organised in an A∞-category, the augmentation category. In Chapter 4
we present various application of the preceding chapter to the topology of
Lagrangian cobordisms, positive Legendrian isotopies and the generation of
the wrapped Fukaya category of a Weinstein sector.
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