Tensor product of coherent functors

Vincent Franjou

Laboratoire Jean-Leray, Université de Nantes & CRM

November 13, 2007

Joint work with Teimuraz Pirashvili

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 1 / 19

The project started when T. Pirashvili saw that J. A. Green's 1987 paper *On three functors of M. Auslander's* covered some of the material used in M. Chałupnik's 2005 paper on functor cohomology. So this is where I'll start.

I shall not use derived categories.

K is a (finite) field A and B are (f.d.) K-algebras A-Mod (A-mod) is the category of (f.d.) A-modules M is an A - B-bimodule

Examples

- *M* is in *A*-mod and $B = \operatorname{End}_A(M)$, e.g.
- $A = \mathbb{K}\mathfrak{S}_d$, $M = V^{\otimes d}$ for a \mathbb{K} -vector space V of dimension $\geq d$, $B = \operatorname{End}_{\mathfrak{S}_d}(M)$ is the Schur algebra.

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 3 / 19

On three functors of M. Auslander's

The bimodule M ties representations:

$$A\operatorname{-mod}^{op} \to B\operatorname{-Mod}$$

 $X \mapsto \operatorname{Hom}_A(X, M) =: \operatorname{h}_X(M)$
 $A\operatorname{-mod} \to B\operatorname{-Mod}$

$$X \mapsto X \otimes_A M =: \operatorname{t}_X(M)$$

Or putting both in one exact functor:

$$\mathcal{L}(A\operatorname{-mod}, \mathbb{K}\operatorname{-Mod}) o B\operatorname{-Mod}$$

 $\mathrm{f} \mapsto \mathrm{f}(M)$

The evaluation functor

$$j^*: \mathcal{L}(A\operatorname{-mod}, \mathbb{K}\operatorname{-mod}) o B\operatorname{-mod} \ \mathrm{f} \mapsto \mathrm{f}(M)$$

admits a right adjoint j_* :

$$(j_*Y)(X) = \operatorname{Nat}(\operatorname{h}_X, j_*Y) = \operatorname{Hom}_B(\operatorname{Hom}_A(X, M), Y).$$

The adjoint j_* is a right inverse of j^* in our example.

There is also a left adjoint $j_{!}$, so we get a recollement situation:

$$kernel \rightarrow \mathcal{L}(A\text{-}mod, \underbrace{\mathbb{K}\text{-}mod}_{j_*}) \xrightarrow{j_!} B\text{-}mod$$

The three functors of Auslander's are the two adjoints and the *extension* intermédiaire of this recollement, that is the image of the norm: $j_! \rightarrow j_*$.

The middle term in the above is quite large. However, the adjoints take values in a smaller class.

Plan of the talk

- On three functors of M. Auslander's
- Coherent functors
- Tensor products of coherent functors
- Modules over the Schur algebra as polynomial functors
- Cohomological applications

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 7 / 19

Coherent functors

Definition

A linear functor f is *coherent* if it is finitely presented, that is if there are X_0 and X_1 in *A*-mod and an exact sequence:

 $\mathbf{h}_{X_1} \to \mathbf{h}_{X_0} \to \mathbf{f} \to \mathbf{0}.$

For a given group G, we let $\mathcal{C}(G)$ be the category of coherent functors in $\mathcal{L}(A\operatorname{-mod}, \mathbb{K}\operatorname{-mod})$. It is an abelian category whose projectives are the h_X s.

Proposition

The adjoints $j_{!}$ and j_{*} take values in C(G).

Recall that the functors

$$\begin{array}{lll} \mathbb{K}G\operatorname{-mod}^{op} \to B\operatorname{-mod} & \mathbb{K}G\operatorname{-mod} \to B\operatorname{-mod} \\ X \mapsto \operatorname{Hom}_{\mathcal{A}}(X,M) & X \mapsto X \otimes_{\mathcal{A}} M \end{array}$$

extend to an exact functor: $\mathcal{C}(G) \rightarrow B$ -mod.

Proposition

- For an additive functor $T : \mathbb{K}G$ -mod $\rightarrow \mathcal{E}$, there exists a (unique) left exact functor $\overline{T} : \mathcal{C}(G) \rightarrow \mathcal{E}$ such that: $\overline{T}(t_X) = T(X)$.
- Por an additive functor H : KG-mod^{op} → E, there exists a (unique) right exact functor \overline{H} : C(G) → E such that: $\overline{H}(h_X) = H(X)$.
- If T is right exact, \overline{T} is exact; if H is left exact, \overline{H} is exact; if furthermore $T(P) = H(P^{\#})$ for all projective P, then $\overline{T} = \overline{H}$.

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 9 / 19

Tensor products of coherent functors

One similarly extends the external tensor product: $\mathbb{K}G$ -mod $\times \mathbb{K}H$ -mod $\rightarrow \mathbb{K}(G \times H)$ -mod.

Proposition

There is a right exact balanced symmetric functor:

$$\boxtimes_{\scriptscriptstyle \ell} : \mathcal{C}(G) \times \mathcal{C}(H) \to \mathcal{C}(G \times H)$$

such that:

$$\mathbf{h}_{\boldsymbol{X}} \bigotimes_{\ell} \mathbf{h}_{\boldsymbol{Y}} = \mathbf{h}_{\boldsymbol{X} \otimes \boldsymbol{Y}} \; ,$$

and a natural transformation $f \boxtimes_{\ell} g \to f(g(\operatorname{Res}_{H}^{G \times H}))$ which is an isomorphism if g is projective.

Dually, there is $\stackrel{r}{\boxtimes}$ and $f(g(\operatorname{Res}_{H}^{G \times H})) \to f \stackrel{r}{\boxtimes} g$ etc.

DerCat 2007

10 / 19

Polynomial functors [Friedlander& Suslin 1997] [Pirashvili 2003]

For the rest of the talk, let us consider Schur's example. That is, we fix a positive integer d and evaluate a coherent functor in $\mathcal{C}(\mathfrak{S}_d)$ on the d-th tensor $\otimes^d(V) := V^{\otimes d}$ for dim $V \ge d$. To vary from Schur's thesis, \mathbb{K} is a finite field of characteristic p.

We start with the *d*-th divided power functor of a \mathbb{K} -vector space *V*:

 $\Gamma^d(V) := (V^{\otimes d})^{\mathfrak{S}_d} = \mathrm{h}_{\mathbb{K}}(V^{\otimes d})$

and consider the category $\Gamma^{d}(\mathbb{K}\text{-}mod)$ with same objects as $\mathbb{K}\text{-}mod$ and with morphisms

$$\operatorname{Hom}_{\Gamma^{d}(\mathbb{K}\operatorname{-}mod)}(V,W) := \Gamma^{d}(\operatorname{Hom}_{\mathbb{K}}(V,W)).$$

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 11 / 19

Polynomial functors

Definition

An homogeneous polynomial functor of degree d is a \mathbb{K} -linear functor $\Gamma^d(\mathbb{K}\text{-}mod) \to \mathbb{K}\text{-}mod$. We let $\mathcal{P}_d = \mathcal{L}(\Gamma^d(\mathbb{K}\text{-}mod), \mathbb{K}\text{-}mod)$ be the category of (natural transformations between) homogeneous polynomial functors of degree d.

That is: the structural map is an homogeneous degree d polynomial. The functor $P_V := \Gamma^d(\operatorname{Hom}(V, -))$ is a projective generator for dim $V \ge d$. Since

$$\operatorname{End}_{\mathcal{P}_d}(P_V) = \Gamma^d(\operatorname{End}(V)) = \operatorname{End}_{\mathfrak{S}_d}(V^{\otimes d}) = B$$

is the Schur algebra, the category \mathcal{P}_d is indeed equivalent to the category *B*-mod of f. d. degree *d* polynomial representations of GL_n for $n \ge d$.

Examples

- the *d*-th tensor power functor \otimes^d ;
- for any f. d. representation M of \mathfrak{S}_d , $\operatorname{Hom}_{\mathfrak{S}_d}(M, \otimes^d)$; e.g. Γ^d ;
- d = p^r: the r-th Frobenius twist I^(r), which send V to V^(r) same as V additively but with scalar action given by base change along the r-th power of the Frobenius.

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 13 / 19

Polynomial functors

Because

$$\operatorname{Hom}_{\mathfrak{S}_d}(V^{\otimes d}, W^{\otimes d}) = \Gamma^d(\operatorname{Hom}_{\mathbb{K}}(V, W))$$

the *d*-th tensor power defines a full embedding of $\Gamma^{d}(\mathbb{K}\text{-}mod)$ in $\mathbb{K}\mathfrak{S}_{d}\text{-}mod$, whose precomposition defines our recollement with:

$$j^* \mathrm{f}: \qquad \Gamma^d(\mathbb{K}\operatorname{-mod}) \xrightarrow{\otimes^d} \mathbb{K}\mathfrak{S}_d\operatorname{-mod} \xrightarrow{\mathrm{f}} \mathbb{K}\operatorname{-mod}$$

Examples

- The functors j₁ and j_{*} take the same value on projectives (tensor products of divided powers), injectives (tensor products of symmetric powers), or tensor products of exterior powers;
- the s. exact sequence in \mathcal{P}_p :

$$0 \to I^{(1)} \to S^p \to \Gamma^p \to I^{(1)} \to 0$$

implies: $j_*(I^{(1)}) = \hat{\mathrm{H}}^{-1}(\mathfrak{S}_p, -)$ and $j_!(I^{(1)}) = \hat{\mathrm{H}}^0(\mathfrak{S}_p, -)$

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 15 / 19

Polynomial functors

Several features are best seen through functors:

• Duality: \mathbb{K} -linear duality induces a duality for coherent functors

$$\mathrm{Df}(X) := \mathrm{f}(X^{\#})^{\#}$$

exchanging h_X and t_X , and similarly for polynomial functors; the functor j^* respects duality, and $j_!D = Dj_*$.

- Tensor product taken at the target: $\mathcal{P}_m \times \mathcal{P}_n \to \mathcal{P}_{m+n}$.
- Composition or plethysm: $\mathcal{P}_m \times \mathcal{P}_n \rightarrow \mathcal{P}_{mn}$.

Cohomological features:

- Ext in \mathcal{P}_d computes rational cohomology of GL_n for $n \geq d$;
- finite cohomological dimension of \mathcal{P}_d [Donkin 1989];
- Ext injectivity by pre-composition.

Most computations stem from the following:

Theorem

 $E_r := \operatorname{Ext}_{\mathcal{P}}(I^{(r)}, I^{(r)})$ is a divided power algebra on a generator e_0 in degree 2 truncated at height r. Thus, it is concentrated in even degrees up to $2(p^r - 1)$ and one-dimensional in those.

This has been widely extended in [FFSS 1999], which provided the basic computations for Chałupnik's 2005 paper.

Cohomology computations (after Chałupnik)

Chałupnik then proves formulae expressing $\operatorname{Ext}_{\mathcal{P}_{dp^r}}^*(F^{(r)}, G^{(r)})$ in terms of f, g and the graded $\mathfrak{S}_d^{op} \times \mathfrak{S}_d$ permutation representation

$$T_r := \operatorname{Ext}_{\mathcal{P}_{dp^r}}^* (\otimes^{d(r)}, \otimes^{d(r)}) = E_r^{\otimes^d} \otimes \mathbb{K}\mathfrak{S}_d.$$

In many cases, for instance for a projective F, it is given by:

$$\operatorname{Ext}^*_{\mathcal{P}_{dp^r}}(F^{(r)}, G^{(r)}) \cong j_*G((j_*\mathrm{D} F)(T_r)).$$

This is better written as a left exact functor $j_*G \boxtimes j_*(DF)(T_r)$: resolving a general F by projectives gives then rise to a spectral sequence.

Theorem (F-Pirashvili)

There is a natural graded functor e(F, G) in $\mathcal{C}(\mathfrak{S}_d^{op} \times \mathfrak{S}_d)$ such that $e(F, G)(T_r)$ is the second page of a spectral sequence converging to $\operatorname{Ext}_{\mathcal{P}}(F^{(r)}, G^{(r)})$, for all polynomial functors F and G of degree d.

Antoine Touzé uses A. Troesch resolutions in \mathcal{P} to derive a more explicit version of the spectral sequence. He has shown in many cases that the spectral sequence collapses.

Note, when this is the case, the amazing formula:

$$\operatorname{Ext}_{\mathcal{P}}^{*}(F^{(r)}, G^{(r)}) = \operatorname{Hom}_{\mathcal{P}}(F(E_{r}^{*}), G).$$

which seem to indicate that in these computations, derived Homs are unnecessary.

V. Franjou (LMJL)

Tensor product of coherent functors

DerCat 2007 19 / 19