A FINITE PRESENTATION OF THE MAPPING CLASS GROUP OF A PUNCTURED SURFACE

SYLVAIN GERVAIS

ABSTRACT. We give a finite presentation of the mapping class group of an oriented (possibly bounded) surface of genus greater or equal than 1, considering Dehn twists on a very simple set of curves.

Introduction and notations

Let $\Sigma_{g,n}$ be an oriented surface of genus $g \geq 1$ with n boundary components and denote by $\mathcal{M}_{g,n}$ its mapping class group, that is to say the group of orientation preserving diffeomorphisms of $\Sigma_{g,n}$ which are the identity on $\partial \Sigma_{g,n}$, modulo isotopy:

$$\mathcal{M}_{g,n} = \pi_0 \left(\mathrm{Diff}^+(\Sigma_{g,n}, \partial \Sigma_{g,n}) \right).$$

For a simple closed curve α in $\Sigma_{g,n}$, denote by τ_{α} the Dehn twist along α . If α and β are isotopic, then the associated twists are also isotopic: thus, we shall consider curves up to isotopy. We shall use greek letters to denote them, and we shall not distinguish a Dehn twist from its isotopy class.

It is known that $\mathcal{M}_{g,n}$ is generated by Dehn twists [2, 10, 11]. Using the result of Hatcher and Thuston [6], Wajnryb gave in [12] a presentation of $\mathcal{M}_{g,1}$ and $\mathcal{M}_{g,0}$ with the minimal possible number of twist generators given by Humphries in [7]. In [3], the author gave a presentation considering either all possible Dehn twists, or just Dehn twists along non-separating curves. These two presentations appear to be very symmetric, but infinite. The aim of this article is to give a finite presentation of $\mathcal{M}_{g,n}$.

Notation. Composition of diffeomorphisms in $\mathcal{M}_{g,n}$ will be written from right to left. For two elements x, y of a multiplicative group, we will denote indifferently by x^{-1} or \overline{x} the inverse of x and by y(x) the conjugate $y \times \overline{y}$ of x by y.

Key words and phrases. Surfaces, Mapping class groups, Dehn twists.

Next, considering the curves of figure 1, we denote by $\mathcal{G}_{g,n}$ and $\mathcal{H}_{g,n}$ (we may on occasion omit the subscript "g, n" if there is no ambiguity) the following sets of curves in $\Sigma_{q,n}$:

$$\mathcal{G}_{g,n} = \{\beta, \beta_1, \dots, \beta_{g-1}, \alpha_1, \dots, \alpha_{2g+n-2}, (\gamma_{i,j})_{1 \le i,j \le 2g+n-2, i \ne j} \},$$

$$\mathcal{H}_{g,n} = \{\alpha_1, \beta, \alpha_2, \beta_1, \gamma_{2,4}, \beta_2, \dots, \gamma_{2g-4,2g-2}, \beta_{g-1}, \gamma_{1,2}, \alpha_{2g}, \dots, \alpha_{2g+n-2}, \delta_1, \dots, \delta_{n-1}\}$$

where $\delta_i = \gamma_{2g-2+i,2g-1+i}$ is the ith boundary component. Note that $\mathcal{H}_{g,n}$ is a subset of $\mathcal{G}_{g,n}$.

Finally, a triple $(i, j, k) \in \{1, \dots, 2g + n - 2\}^3$ will be said to be good when:

- $\begin{array}{ll} \mathrm{i)} & (i,j,k) \not\in \left\{ \left(x,x,x\right) / x \in \left\{1,\ldots,2g+n-2\right\} \right\}, \\ \mathrm{ii)} & i \leq j \leq k \ \, \mathrm{or} \ \, j \leq k \leq i \ \, \mathrm{or} \ \, k \leq i \leq j \,. \end{array}$

figure 1

Remark 1. For n=0 or n=1, Humphries' generators are the Dehn twists relative to the curves of \mathcal{H} .

We will give a presentation of $\mathcal{M}_{g,n}$ taking as generators the twists along the curves in \mathcal{G} . The relations will be of the following types.

The braids: If α and β are two curves in $\Sigma_{g,n}$ which do not intersect (resp. intersect in a single point), then the associated Dehn twists satisfy the relation $\tau_{\alpha}\tau_{\beta} = \tau_{\beta}\tau_{\alpha}$ (resp. $\tau_{\alpha}\tau_{\beta}\tau_{\alpha} = \tau_{\beta}\tau_{\alpha}\tau_{\beta}$).

The stars: Consider a subsurface of $\Sigma_{g,n}$ which is homeomorphic to $\Sigma_{1,3}$. Then, if α_1 , α_2 , α_3 , β , γ_1 , γ_2 , γ_3 are the curves described in figure 2, one has in $\mathcal{M}_{g,n}$ the relation

$$(\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_3}\tau_{\beta})^3 = \tau_{\gamma_1}\tau_{\gamma_2}\tau_{\gamma_3}.$$

Note that if γ_3 bounds a disc in $\Sigma_{q,n}$, then this relation becomes

$$(\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_2}\tau_{\beta})^3 = \tau_{\gamma_1}\tau_{\gamma_2}.$$

figure 2

The handles: Pasting a cylinder on two boundary components of $\Sigma_{g-1,n+2}$, the twists along these two boundary curves become equal in $\Sigma_{g,n}$.

Theorem 1. For all $(g,n) \in \mathbb{N}^* \times \mathbb{N}$, $(g,n) \neq (1,0)$, the mapping class group $\mathcal{M}_{g,n}$ admits a presentation with generators $b, b_1, \ldots, b_{g-1}, a_1, \ldots, a_{2g+n-2}, (c_{i,j})_{1 \leq i,j \leq 2g+n-2, i \neq j}$ and relations

- (A) "handles": $c_{2i,2i+1} = c_{2i-1,2i}$ for all $i, 1 \le i \le g-1$,
- (T) "braids": for all x, y among the generators, xy = yx if the associated curves are disjoint and xyx = yxy if the associated curves intersect transversaly in a single point,
- $\begin{array}{ll} (E_{i,j,k}) & \text{``stars''}\colon \ c_{_{i,j}}c_{_{j,k}}c_{_{k,i}}=(a_{_i}a_{_j}a_{_k}b)^3 \ \textit{for all good triples}\ (i,j,k)\,,\\ & \textit{where}\ c_{_{l,l}}=1. \end{array}$

Remark 2. It is clear that the handle relations are unnecessary: one has just to remove $c_{2,3}, \ldots, c_{2g-2,2g-1}$ from $\mathcal{G}_{g,n}$ to eliminate them. But it is convenient for symmetry and notation to keep these generators.

Let $G_{g,n}$ denote the group with presentation given by theorem 1. Since the set of generators for $G_{g,n}$ that we consider here is parametrized by $\mathcal{G}_{g,n}$, we will consider $\mathcal{G}_{g,n}$ as a subset of $G_{g,n}$. Consequently, $\mathcal{H}_{g,n}$ will also be considered as a subset of $G_{g,n}$.

The paper is organized as follows. In section 1, we prove that $G_{g,n}$ is generated by $\mathcal{H}_{g,n}$. Section 2 is devoted to the proof of theorem 1 when n = 1. Finally, we conclude the proof in section 3 by proving that $G_{g,n}$ is isomorphic to $\mathcal{M}_{g,n}$.

1. Generators for $G_{q,n}$

In this section, we prove the following proposition.

Proposition 1. $G_{g,n}$ is generated by $\mathcal{H}_{g,n}$.

We begin by proving some relations in $G_{g,n}$.

Lemma 2. For $i, j, k \in \{1, ..., 2g + n - 2\}$, if $X_1 = a_i a_j$, $X_2 = b X_1 b$ and $X_3 = a_k X_2 a_k$, then:

(i)
$$X_p X_q = X_q X_p$$
 for all $p, q \in \{1, 2, 3\}$.

$$(ii) (a_i a_j a_k b)^3 = X_1 X_2 X_3,$$

(iii)
$$(a_i a_i a_j b)^3 = X_1^2 X_2^2 = (a_i a_j b)^4 = (a_i b a_j)^4$$
,

(iv)
$$a_i$$
, a_j , a_k and b commute with $(a_i a_j a_k b)^3$.

Remark 3. Combining the braid relations and lemma 2, one can see that the star relations $(E_{j,k,i})$ and $(E_{k,i,j})$ are consequences of $(E_{i,j,k})$, and that the star relation $(E_{i,j,j})$ is a consequence of $(E_{i,i,j})$ when $i \neq j$. Thus, one just needs relations $(E_{i,j,k})$ with good triples (i,j,k) such that $i \leq j \leq k$. This will be used latter for proving lemma 6.

Proof. (i) Using relations (T), one has

$$\begin{array}{rcl} a_i \, X_2 & = & a_i \, b \, a_i \, a_j \, b \\ & = & b \, a_i \, b \, a_j \, b \\ & = & b \, a_i \, a_j \, b \, a_j \\ & = & X_2 \, a_j \, , \end{array}$$

and in the same way, $a_j X_2 = X_2 a_i$. Thus, we get $X_1 X_2 = X_2 X_1$ and $X_1 X_3 = X_3 X_1$ since $X_1 a_k = a_k X_1$. On the other hand, the braid relations imply

$$\begin{array}{rcl} b(X_3) & = & b \, a_k \, b \, a_i \, a_j \, b \, \underline{a_k} \, \overline{b} \\ & = & a_k \, b \, a_k \, a_i \, a_j \, \overline{a_k} \, b \, a_k \\ & = & X_3 \, , \end{array}$$

and we get $X_2 X_3 = X_3 X_2$.

(ii) Using relations (T) and (i), one obtains:

$$\begin{array}{rcl} X_1 X_2 X_3 & = & X_1 X_3 X_2 \\ & = & a_i \, a_j \, a_k \, b \, a_i \, a_j \, b \, a_k \, b \, a_i \, a_j \, b \\ & = & a_i \, a_j \, a_k \, b \, a_i \, a_j \, a_k \, b \, a_k \, a_i \, a_j \, b \\ & = & (a_i a_j \, a_k \, b)^3 \, . \end{array}$$

(iii) Replacing a_k by a_i in X_3 , we get

$$X_3 = a_i X_2 a_i = a_i a_i X_2 = X_1 X_2.$$

Thus, using relations (T), (i) and (ii), one has:

$$\begin{array}{rcl} (a_i a_i a_j b)^3 & = & X_1 X_2 X_1 X_2 = X_1^2 X_2^2 \\ & = & a_i \, a_j \, b \, a_i \, a_j \, b \, a_i \, a_j \, b \, a_i \, a_j \, b \\ & = & a_i \, b \, a_j \, b \, a_i \, b \, a_j \, b \, a_i \, b \, a_j \, b \\ & = & a_i \, b \, a_j \, a_i \, b \, a_i \, a_j \, b \, a_i \, a_j \, b \, a_j \\ & = & (a_i b \, a_j)^4. \end{array}$$

(iv) One has just to apply the star and braid relations. \Box

Lemma 3. For all good triples (i, j, k), one has in $G_{g,n}$ the relation

$$(L_{\scriptscriptstyle i,j,k}) \quad a_{\scriptscriptstyle i} \; c_{\scriptscriptstyle i,j} \; c_{\scriptscriptstyle j,k} \; a_{\scriptscriptstyle k} = c_{\scriptscriptstyle i,k} \; a_{\scriptscriptstyle j} \; X \; a_{\scriptscriptstyle j} \; \overline{X} = c_{\scriptscriptstyle i,k} \; \overline{X} \; a_{\scriptscriptstyle j} \; X \; a_{\scriptscriptstyle j}$$
 where $X = b \; a_{\scriptscriptstyle i} \; a_{\scriptscriptstyle k} \; b$.

Remark 4. These relations are just the well known lantern relations.

Proof. If $X_1 = a_i a_k$ and $X_3 = a_j X a_j$, one has by lemma 2 and the star relations $(E_{i,j,k})$ and $(E_{i,k,k})$:

$$X_1\,X\,X_3 = c_{{}_{i,j}}\;c_{{}_{j,k}}\;c_{{}_{k,i}}\;\;\mathrm{and}\;\;X_1^2\,X^2 = c_{{}_{i,k}}\;c_{{}_{k,i}}\,.$$

From this, we get, using the braid relations, that

$$\overline{c_{\scriptscriptstyle k,i}}\,X_1\,X=c_{\scriptscriptstyle i,j}\,c_{\scriptscriptstyle j,k}\,\overline{X_3}=c_{\scriptscriptstyle i,k}\,\overline{X}\,\overline{X_1}\,,$$

that is to say, by lemma 2 and (T),

$$a_{\scriptscriptstyle i} \, c_{{\scriptscriptstyle i},{\scriptscriptstyle j}} \, c_{{\scriptscriptstyle j},{\scriptscriptstyle k}} \, a_{\scriptscriptstyle k} = c_{{\scriptscriptstyle i},{\scriptscriptstyle k}} \, \overline{X} \, a_{{\scriptscriptstyle j}} \, X \, a_{{\scriptscriptstyle j}} = c_{{\scriptscriptstyle i},{\scriptscriptstyle k}} \, a_{{\scriptscriptstyle j}} \, X \, a_{{\scriptscriptstyle j}} \, \overline{X} \, .$$

Lemma 4. For all i, k such that $1 \le i \le g-1$ and $k \ne 2i-1, 2i$, one has in $G_{g,n}$

$$a_{\scriptscriptstyle k} \; = \; b \; a_{\scriptscriptstyle 2i} \; b_{\scriptscriptstyle i} \; a_{\scriptscriptstyle 2i-1} \; b \; \overline{c_{\scriptscriptstyle 2i,2i-1}} \; a_{\scriptscriptstyle 2i} \; c_{\scriptscriptstyle 2i,k}(b_{\scriptscriptstyle i}) \; .$$

Proof. If $X = b a_{2i-1} a_{2i} b$, one has by the lantern relations

$$(L_{2i,k,2i-1}): a_{2i} c_{2i,k} c_{k,2i-1} a_{2i-1} = c_{2i,2i-1} \overline{X} a_k X a_k$$

which implies

$$\overline{c_{2i,2i-1}} \, a_{2i} \, c_{2i,k} = \overline{X} \, a_k \, X \, a_k \, \overline{a_{2i-1}} \, \overline{c_{k,2i-1}} \, .$$

Thus, denoting $b \, a_{2i} \, b_i \, a_{2i-1} \, b \, \overline{c_{2i,2i-1}} \, a_{2i} \, c_{2i,k}(b_i)$ by y, we can compute using the relations (T):

$$\begin{array}{lll} y & = & b \, a_{2i} \, b_i \, a_{2i-1} \, b \, \overline{X} \, a_k \, X \, a_k \, \overline{a_{2i-1}} \, \overline{c_{k,2i-1}}(b_i) \\ & = & b \, \underline{a_{2i}} \, b_i \, a_{2i-1} \, b \, \overline{b} \, \overline{a_{2i-1}} \, \overline{a_{2i}} \, \overline{b} \, a_k \, b \, a_{2i-1} \, a_{2i} \, b \, (b_i) \\ & = & b \, \overline{b_i} \, a_{2i} \, b_i \, a_k \, b \, \overline{a_k} \, \overline{b_i} \, (a_{2i}) \\ & = & b \, \underline{a_k} \, \overline{b_i} \, a_{2i} \, \overline{a_{2i}}(b) \\ & = & b \, \overline{b}(a_k) \\ & = & a_k \, . \end{array}$$

Proof of proposition 1. If H denotes the subgroup of $G_{g,n}$ generated by $\mathcal{H}_{g,n}$, we have to prove that $\mathcal{G}_{g,n} \subset H$.

a) We first prove inductively that a_{2i-1} , a_{2i} , $c_{2i-1,2i}$ and $c_{2i,2i-1}$ are elements of H for all i, $1 \le i \le g-1$.

For i=1, one obtains a_1 , a_2 and $c_{1,2}$ which are in H, and the relation $(E_{1,2,2})$ gives $c_{2,1}=(a_1a_2a_2b)^3\overline{c_{1,2}}\in H$. So, suppose inductively that a_{2i-1} , a_{2i} , $c_{2i-1,2i}$, $c_{2i,2i-1}$ are elements of H $(i\leq g-2)$ and let us prove that a_{2i+1} , a_{2i+2} , $c_{2i+1,2i+2}$, $c_{2i+2,2i+1}$ are also in H. Recall that by the handle relations, one has $c_{2i,2i+1}=c_{2i-1,2i}\in H$. Applying lemma 4 respectively with k=2i+1 and k=2i+2, we obtain

$$\begin{array}{ll} a_{2i+1} \; = \; b \; a_{2i} \; b_i \; a_{2i-1} \; b \; \overline{c_{2i,2i-1}} \; a_{2i} \; c_{2i,2i+1}(b_i) \in H \; , \\ a_{2i+2} \; = \; b \; a_{2i} \; b_i \; a_{2i-1} \; b \; \overline{c_{2i,2i-1}} \; a_{2i} \; c_{2i,2i+2}(b_i) \in H \; . \end{array}$$

The star relations allow us to conclude the induction as follows:

$$(E_{2i,2i+2,2i+2}) \ : \quad c_{2i,2i+2} \ c_{2i+2,2i} = (a_{2i} \ a_{2i+2} \ b)^4,$$
 which gives $c_{2i+2,2i} \in H \ (\gamma_{2i,2i+2} \in \mathcal{H}_{g,n} \ \text{ by definition});$

$$(E_{2i,2i+1,2i+2}): \quad c_{2i,2i+1}c_{2i+1,2i+2}c_{2i+2,2i} = (a_{2i}a_{2i+1}a_{2i+2}b)^3,$$
 which gives $c_{2i+1,2i+2} \in H$;

$$(E_{2i+1,2i+2,2i+2}): \quad c_{2i+1,2i+2} \ c_{2i+2,2i+1} = (a_{2i+1} \ a_{2i+2} \ b)^4,$$
 which gives $c_{2i+2,2i+1} \in H.$

b) By lemma 4, one has (i = g - 1 and k = 2g - 1)

$$a_{2g-1} = b \, a_{2g-2} \, b_{g-1} \, a_{2g-3} \, b \, \overline{c_{2g-2,2g-3}} \, a_{2g-2} \, c_{2g-2,2g-1}(b_{g-1}).$$

Recall that $c_{2g-2,2g-1}=c_{2g-3,2g-2}\in H$. Thus, combined with the case a), this relation implies $a_{2g-1}\in H$.

- c) It remains to prove that $c_{i,j} \in H$ for all i, j.
- * By definition of H and the case a), one has $c_{i,i+1} \in H$ for all i such that $1 \le i \le 2g+n-3$.
- * Let us show that $c_{\scriptscriptstyle 1,j}$ and $c_{\scriptscriptstyle j,1}$ are elements of H for all j such that $2\leq j\leq 2g+n-2$.

We have already seen that $c_{1,2}, c_{2,1} \in H$. Thus, suppose inductively that $c_{1,j}, c_{j,1} \in H$ $(j \leq 2g+n-3)$. Using the star relations, one obtains:

$$\begin{split} (E_{1,j,j+1})\colon & \ c_{1,j} \ c_{j,j+1} \ c_{j+1,1} = (a_1 \ a_j \ a_{j+1} \ b)^3, \ \text{which gives} \ c_{j+1,1} \in H, \\ (E_{1,j+1,j+1})\colon & \ c_{1,j+1} \ c_{j+1,1} = (a_1 \ a_{j+1} \ b)^4, \ \text{which gives} \ c_{1,j+1} \in H. \end{split}$$

* Now, fix j such that $2 \le j \le 2g + n - 2$ and let us show that $c_{i,j}, c_{j,i} \in H$ for all $i, 1 \le i < j$. Once more, the star relations allow us to prove this using an inductive argument:

$$\begin{split} (E_{i,i+1,j}): \ c_{i,i+1} \ c_{i+1,j} \ c_{j,i} &= (a_i \ a_{i+1} \ a_j \ b)^3, \ \text{which gives} \ c_{i+1,j} \in H, \\ (E_{i+1,j,j}): \ c_{i+1,j} \ c_{j,i+1} &= (a_{i+1} \ a_j \ b)^4, \ \text{which gives} \ c_{j,i+1} \in H. \end{split}$$

2. Proof of theorem 1 for n=1

Let us recall Wajnryb's result:

Theorem 2 ([12]). $\mathcal{M}_{g,1}$ admits a presentation with generators $\{\tau_{\alpha} / \alpha \in \mathcal{H}\}$ and relations

- (I) $\tau_{\lambda}\tau_{\mu}\tau_{\lambda} = \tau_{\mu}\tau_{\lambda}\tau_{\mu}$ if λ and μ intersect transversaly in a single point, and $\tau_{\lambda}\tau_{\mu} = \tau_{\mu}\tau_{\lambda}$ if λ and μ are disjoint.
- (II) $(\tau_{\alpha_1}\tau_{\beta}\tau_{\alpha_2})^4 = \tau_{\gamma_{1,2}}\theta$ where $\theta = \tau_{\beta_1}\tau_{\alpha_2}\tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_1}\tau_{\beta}\tau_{\alpha_2}\tau_{\beta_1}(\tau_{\gamma_{1,2}})$.

$$(III) \quad \tau_{\alpha_2}\tau_{\alpha_1}\varphi \ \tau_{\gamma_{2,4}} = \overline{t_1} \ \overline{t_2} \ \tau_{\gamma_{1,2}} \ t_2 \ t_1 \ \overline{t_2} \ \tau_{\gamma_{1,2}} \ t_2 \ \tau_{\gamma_{1,2}} \quad where \\ t_1 = \tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\beta} \ , \quad t_2 = \tau_{\beta_1}\tau_{\alpha_2}\tau_{\gamma_{2,4}}\tau_{\beta_1} \ , \\ \varphi = \tau_{\beta_2}\tau_{\gamma_{2,4}}\tau_{\beta_1}\tau_{\alpha_2}\tau_{\beta} \ \sigma(\omega) \ , \quad \sigma = \overline{\tau_{\gamma_{2,4}}} \ \overline{\tau_{\beta_2}} \ \overline{t_2}(\tau_{\gamma_{1,2}}) \\ and \quad \omega = \overline{\tau_{\alpha_1}} \ \overline{\tau_{\beta}} \ \overline{\tau_{\alpha_2}} \ \overline{\tau_{\beta_1}}(\tau_{\gamma_{1,2}}).$$

Remark 5. When g=1, one just needs the relations (I). The relations (II) and (III) appear respectively for g=2 and g=3.

Denote by $\Phi: G_{g,1} \to \mathcal{M}_{g,1}$ the map which associates to each generator a of $G_{g,1}$ the corresponding twist τ_{α} . Since the relations (A), (T) and $(E_{i,j,k})$ are satisfied in $\mathcal{M}_{g,1}$, Φ is an homomorphism. Now, consider $\Psi: \mathcal{M}_{g,1} \to G_{g,1}$ defined by $\Psi(\tau_{\alpha}) = a$ for all $\alpha \in \mathcal{H}$.

Lemma 5. Ψ is an homomorphism.

This lemma allows us to prove the theorem 1 for n=1. Indeed, since $\mathcal{M}_{g,1}$ is generated by $\{\tau_{\alpha} / \alpha \in \mathcal{H}_{g,1}\}$, one has $\Phi \circ \Psi = Id_{\mathcal{M}_{g,1}}$. On the other hand, $\{a / \alpha \in \mathcal{H}_{g,1}\}$ generates $G_{g,1}$ by proposition 1, so $\Psi \circ \Phi = Id_{G_{g,1}}$.

Proof of lemma 5. We have to show that the relations (I), (II) and (III) are satisfied in $G_{g,1}$. Relations (I) are braid relations and are therefore satisfied by (T). Let us look at the relation (II). The star relation $(E_{1,2,2})$, together with lemma 2, gives $(a_1 b a_2)^4 = c_{1,2} c_{2,1}$. Thus, relation (II) is satisfied in $G_{g,1}$ if and only if $\Psi(\theta) = c_{2,1}$. Let us compute:

$$\begin{array}{lll} \Psi(\theta) & = & b_1 \, a_2 \, b \, a_1 \, a_1 \, b \, a_2 \, b_1(c_{1,2}) \\ & = & b_1 \, a_2 \, b \, a_1 \, a_1 \, b \, a_2 \, \overline{c_{1,2}}(b_1) & \text{by } (T), \\ & = & b_1 \, \underline{a_2} \, b \, \underline{a_1} \, \underline{a_1} \, b \, \underline{a_2} \, (\overline{a_1} \, \overline{a_1} \, \overline{a_2} \, \overline{b})^3 c_{2,1}(b_1) & \text{by } (E_{1,1,2}), \\ & = & b_1 \, \overline{b} \, \overline{a_1} \, \overline{a_1} \, \overline{b} \, \overline{a_1} \, \overline{a_1} \, c_{2,1}(b_1) & \text{by lemma } 2, \\ & = & b_1 \, \overline{b_1}(c_{2,1}) & \text{by } (T), \\ & = & c_{2,1}. \end{array}$$

Wajnryb's relation (III) is nothing but a lantern relation. Via Ψ , it becomes in $G_{g,1}$

$$a_{_{2}}\,a_{_{1}}\,f\,\,c_{_{2,4}}=l\,m\,\,c_{_{1,2}}\quad(*)$$

 $\begin{array}{ll} \text{where} \ \ m=\overline{b_1}\,\overline{a_2}\,\overline{c_{2,4}}\,\overline{b_1}(c_{1,2}), \ l=\overline{b}\,\overline{a_1}\,\overline{a_2}\,\overline{b}(m) \ \ \text{and} \ \ f=\underline{b_2}\,c_{2,4}\,b_1\,a_2\,b\,s(w), \\ \text{with} \ \ s=\Psi(\sigma)=\overline{c_{2,4}}\,\overline{b_2}(m) \ \ \text{and} \ \ w=\Psi(\omega)=\overline{a_1}\,\overline{b}\,\overline{a_2}\,\overline{b_1}(c_{1,2}). \end{array}$

In $G_{g,1}$, the lantern relation $(L_{1,2,4})$ yields

$$a_1 \, c_{1,2} \, c_{2,4} \, a_4 = c_{1,4} \, \overline{X} \, a_2 \, X \, a_2 \quad (L_{1,2,4})$$

where $X=b\,a_1\,a_4\,b$. To prove that the relation (*) is satisfied in $G_{g,1}$, we will see that it is exactly the conjugate of the relation $(L_{1,2,4})$ by $h=b_2\,a_4\,\overline{c_{4,1}}\,\overline{b_2}\,b\,a_2\,a_1\,b\,b_1\,c_{1,2}\,a_2\,b_1$. This will be done by proving the following seven equalities in $G_{g,1}$:

1)
$$h(a_1) = a_2$$
 2) $h(c_{1,2}) = a_1$ 3) $h(c_{2,4}) = f$ 4) $h(a_4) = c_{2,4}$
5) $h(c_{1,4}) = l$ 6) $h(a_2) = c_{1,2}$ 7) $h\overline{X}(a_2) = m$.

1) Just applying the relations (T), one obtains:

$$\begin{array}{lll} h(a_1) & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ c_{1,2} \ a_2 \ b_1(a_1) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ \overline{a}_2 \ a_1 \ \overline{a_1}(b) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ \overline{b}(a_2) \\ & = & a_2 \ . \end{array}$$

2) Using the relations (T) again, we get

$$\begin{array}{lll} h(c_{1,2}) & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, c_{1,2} \, a_2 \, b_1(c_{1,2}) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, c_{1,2} \, a_2 \, \overline{c_{1,2}}(b_1) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, \overline{b_1}(a_2) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, \overline{a_2} \, a_1 \, \overline{a_2}(b) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, \overline{b}(a_1) \\ & = & a_1 \, . \end{array}$$

3) The relation $(L_{2,3,4})$ yields

$$a_2 c_{2,3} c_{3,4} a_4 = c_{2,4} \overline{Y} a_3 Y a_3$$
 where $Y = b a_2 a_4 b$.

Since $c_{2,3} = c_{1,2}$ by the handle relations, this equality implies the following one:

$$\overline{c_{_{2,4}}}\,a_{_{2}}\,c_{_{1,2}} = \overline{Y}\,a_{_{3}}\,Y\,a_{_{3}}\,\overline{a_{_{4}}}\,\overline{c_{_{3,4}}} \qquad (1).$$

From this, we get:

$$\begin{array}{llll} h(c_{2,4}) & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, c_{1,2} \, a_2 \, b_1(c_{2,4}) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, \overline{c_{2,4}} \, c_{1,2} \, a_2(b_1) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, \overline{Y} \, a_3 \, Y \, a_3 \, \overline{a_4} \, \overline{c_{3,4}}(b_1) & \text{by } (1) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, \underline{a_1} \, b \, b_1 \, \overline{b} \, \overline{a_2} \, \overline{a_4} \, \overline{b} \, a_3 \, b \, a_2 \, a_4 \, b(b_1) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_1 \, \overline{b_1} \, a_2 \, b_1 \, \overline{a_4} \, a_3 \, b \, \overline{a_3} \, \overline{b_1}(a_2) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_1 \, \overline{b_1} \, a_2 \, \overline{a_4} \, a_3 \, \overline{a_2}(b) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, b \, a_1 \, a_3 \, \overline{b_2} \, b(a_4) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{a_3} \, \overline{a_4} \, \overline{b})^3 \, c_{1,3} \, c_{3,4} \, b \, a_1 \, a_3 \, \overline{b_2} \, b(a_4) & \text{by } (E_{1,3,4}) \\ & = & b_2 \, \overline{a_1} \, \overline{a_3} \, \overline{b} \, (\overline{a_1} \, \overline{a_3} \, \overline{a_4} \, \overline{b})^2 \, b \, a_1 \, a_3 \, c_{3,4} \, b \, a_4(b_2) & \text{by } (T) \\ & = & b_2 \, \overline{a_1} \, \overline{a_3} \, \overline{b} \, \overline{a_1} \, \overline{a_3} \, \overline{b} \, \overline{a_4} \, \overline{b} \, b \, a_4 \, \overline{b_2}(c_{3,4}) & \text{by } (T) \\ & = & c_{3,4} & \text{by } (T). \end{array}$$

Now, if $x = c_{_{1,2}} \, b_{_1} \, c_{_{2,4}} \, a_{_2} \, b_{_1} \, b_{_2} \, c_{_{2,4}} \, \overline{a_{_1}} \, \overline{b} \, \overline{a_{_2}} \, \overline{b_{_1}}(c_{_{1,2}}),$ one has

$$f = b_2 \, c_{{\scriptscriptstyle 2},{\scriptscriptstyle 4}} \, b_{{\scriptscriptstyle 1}} \, a_{{\scriptscriptstyle 2}} \, b \, \overline{c_{{\scriptscriptstyle 2},{\scriptscriptstyle 4}}} \, \overline{b_{{\scriptscriptstyle 2}}} \, \overline{b_{{\scriptscriptstyle 1}}} \, \overline{a_{{\scriptscriptstyle 2}}} \, \overline{c_{{\scriptscriptstyle 2},{\scriptscriptstyle 4}}} \, \overline{b_{{\scriptscriptstyle 1}}}(x) \, .$$

First, let us compute x:

Next, using the braid relations, we prove that $b_1,\ c_{2,4},\ b_2$ and a_2 commute with x :

$$\begin{split} b_1(x) &= b_1 \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, \overline{b}(a_4) = c_{1,2} \, b_1 \, c_{1,2} \, c_{2,4} \, b_2 \, \overline{b}(a_4) = x, \\ c_{2,4}(x) &= c_{1,2} \, b_1 \, c_{2,4} \, b_1 \, b_2 \, \overline{b}(a_4) = x, \\ b_2(x) &= c_{1,2} \, b_1 \, b_2 \, c_{2,4} \, b_2 \, \overline{b}(a_4) = c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, \overline{b}(a_4) = x, \\ a_2(x) &= a_2 \, c_{1,2} \, b_1 \, c_{2,4} \, a_2 \, b_1 \, b_2 \, c_{2,4} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \\ &= c_{1,2} \, b_1 \, a_2 \, b_1 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \\ &= c_{1,2} \, b_1 \, a_2 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, b_2 \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \\ &= c_{1,2} \, b_1 \, a_2 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, b_2 \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \\ &= c_{1,2} \, b_1 \, a_2 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \\ &= c_{1,2} \, b_1 \, a_2 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \\ &= c_{1,2} \, b_1 \, a_2 \, c_{2,4} \, b_1 \, b_2 \, c_{2,4} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{b_1}(c_{1,2}) \quad \text{by } (T) \end{split}$$

To conclude, we get,

$$\begin{array}{lll} f &=& b_2\,\,c_{2,4}\,b_1\,\,a_2\,\,b\,\,\overline{c_{2,4}}\,\overline{b_2}\,\overline{b_1}\,\,\overline{a_2}\,\,\overline{c_{2,4}}\,\overline{b_1}(x) \\ &=& b_2\,\,c_{2,4}\,b_1\,\,a_2\,\,b(x) \\ &=& b_2\,\,c_{2,4}\,b_1\,\,a_2\,\,b\,\,c_{1,2}\,b_1\,\,c_{2,4}\,b_2\,\,\overline{b}(a_4) \\ &=& b_2\,\,c_{2,4}\,b_1\,\,a_2\,\,c_{1,2}\,b_1\,\,c_{2,4}\,\,\overline{a_4}(b_2) & \text{by }(T) \\ &=& b_2\,\,c_{2,4}\,\,\overline{a_4}\,\,\overline{b_2}\,\,b_1\,\,a_2\,\,c_{1,2}\,\,b_1(c_{2,4}) & \text{by }(T) \\ &=& b_2\,\,(a_1\,a_2\,a_4\,b)^3\,\,\overline{c_{1,2}}\,\,\overline{c_{4,1}}\,\,\overline{a_4}\,\,\overline{b_2}\,\,b_1\,\,a_2\,\,c_{1,2}\,\,b_1(c_{2,4}) & \text{by }(E_{1,2,4}) \\ &=& b_2\,\,(a_1\,a_2\,a_4\,b)^3\,\,\overline{a_4}\,\,\overline{c_{4,1}}\,\,\overline{b_2}\,\,\overline{c_{1,2}}\,\,b_1\,\,c_{1,2}\,\,a_2\,\,b_1(c_{2,4}) & \text{by }(T) \\ &=& b_2\,\,(a_1\,a_2\,b)^2\,a_4\,\,b\,\,a_1\,\,a_2\,\,b\,\,\overline{c_{4,1}}\,\,\overline{b_2}\,\,\overline{c_{1,2}}\,\,b_1\,\,c_{1,2}\,\,a_2\,\,b_1(c_{2,4}) & \text{by lemma } 2 \\ &=& (a_1\,a_2\,b)^2\,b_2\,a_4\,\,\overline{c_{4,1}}\,\,\overline{b_2}\,b\,\,a_1\,a_2\,b\,\,b_1\,\,c_{1,2}\,\,\overline{b_1}\,\,a_2\,b_1(c_{2,4}) & \text{by }(T) \end{array}$$

$$= (a_1 a_2 b)^2 b_2 a_4 \overline{c_{4,1}} \overline{b_2} b a_2 a_1 b b_1 c_{1,2} a_2 b_1 \overline{a_2}(c_{2,4}) \text{ by } (T)$$

$$= (a_1 a_2 b)^2 h(c_{2,4})$$

$$= (a_1 a_2 b)^2 (c_{3,4})$$

$$= c_{2,4} \text{ by } (T).$$

Finally, we have proved that $h(c_{2,4}) = c_{3,4} = f$.

4) We can compute $h(a_4)$ as follows:

$$\begin{array}{lll} h(a_4) & = & b_2\,a_4\,\overline{c_{4,1}}\,\overline{b_2}\,b\,a_2\,a_1\,b\,b_1\,c_{1,2}\,a_2\,b_1(a_4) \\ & = & b_2\,a_4\,\overline{c_{4,1}}\,\overline{b_2}\,b\,a_2\,a_1\,b(a_4) & \text{by }(T) \\ & = & b_2\,a_4\,\left(\overline{a_1}\,\overline{a_2}\,\overline{a_4}\,\overline{b}\right)^3\,c_{1,2}\,c_{2,4}\,\overline{b_2}\,b\,a_2\,a_1\,b(a_4) & \text{by }(E_{1,2,4}) \\ & = & b_2\,c_{2,4}\,\overline{a_1}\,\overline{a_2}\,\overline{b}\,\overline{a_1}\,\overline{a_2}\,\overline{a_2}\,\overline{a_4}\,\overline{b}\,\overline{a_1}\,\overline{a_2}\,\overline{a_2}\,\overline{a_4}\,\overline{b}\,\overline{b_2}\,b\,a_2\,a_1\,b(a_4) & \text{by }(T) \\ & = & b_2\,c_{2,4}\,\overline{a_1}\,\overline{a_2}\,\overline{b}\,\overline{a_1}\,\overline{a_2}\,\overline{b}\,\overline{a_4}\,\overline{b}\,\overline{b_2}\,b(a_4) & \text{by }(T) \\ & = & b_2\,c_{2,4}\,\overline{a_1}\,\overline{a_2}\,\overline{b}\,\overline{a_1}\,\overline{a_2}\,\overline{b}\,\overline{a_4}\,a_4(b_2) & \text{by }(T) \\ & = & b_2\,c_{2,4}(b_2) & \text{by }(T) \\ & = & c_{2,4} \end{array}$$

5) For $h(c_{14})$, we have:

$$\begin{array}{lll} h(c_{1,4}) & = & b_2 \, a_4 \, \overline{c_{4,1}} \, \overline{b_2} \, b \, a_2 \, a_1 \, b \, b_1 \, c_{\underline{1,2}} \, a_2 \, b_1(c_{1,4}) \\ & = & b_2 \, a_4 \, \overline{c_{4,1}} \, b \, a_2 \, a_1 \, b \, b_1 \, a_2 \, \overline{b_2}(c_{1,4}) & \text{by } (T) \\ & = & b_2 \, a_4 \, \overline{a_4} \, \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{a_1} \, c_{1,2} \, c_{2,4} \, b_1 \, a_2 \, \overline{b_2}(c_{1,4}) & \text{by } (E_{1,2,4}) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_2 \, c_{2,4} \, b_1 \, \overline{a_4} \, \overline{a_1} \, a_2 \, c_{1,4}(b_2) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_2 \, c_{2,4} \, b_1 \, c_{1,2} \, c_{2,4} \, \overline{X} \, \overline{a_2} \, X(b_2) & \text{by } (L_{1,2,4}) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_2 \, c_{2,4} \, b_1 \, c_{2,4} \, \overline{b} \, \overline{a_1} \, \overline{a_4} \, \overline{b} \, \overline{a_2} \, b \, a_4(b_2) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_2 \, b_1 \, c_{2,4} \, b_1 \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, b \, \overline{a_4} \, \overline{b}(b_2) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, b_2 \, c_{2,4} \, b_1 \, \overline{b} \, \overline{a_1} \, a_2 \, b \, \overline{a_4} \, \overline{b}(b_2) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, b_1 \, \overline{b} \, \overline{a_1} \, a_2 \, b \, b_2(a_4) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, b_1 \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{a_4}(b) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, b_1 \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{a_4}(b) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{a_4}(b) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, \overline{b} \, \overline{a_1} \, \overline{a_4} \, \overline{b} \, \overline{b_1} \, \overline{a_2} \, \overline{a_4}(b) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, c_{2,4} \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{a_4}(b) & \text{by } (T) \end{array}$$

Now, by $(E_{1,2,4})$ and lemma 2, one has

$$c_{\scriptscriptstyle 1,2}\,c_{\scriptscriptstyle 2,4}\,c_{\scriptscriptstyle 4,1} = a_{\scriptscriptstyle 1}\,a_{\scriptscriptstyle 4}\,a_{\scriptscriptstyle 2}\,X\,a_{\scriptscriptstyle 2}X,$$

which gives, using the braid relations (recall that $X = b a_1 a_4 b$):

$$c_{{\scriptscriptstyle 2},{\scriptscriptstyle 4}}\,\overline{b}\,\overline{a_{{\scriptscriptstyle 1}}a_{{\scriptscriptstyle 4}}}\,\overline{b}\,\overline{a_{{\scriptscriptstyle 2}}}=a_{{\scriptscriptstyle 1}}\,a_{{\scriptscriptstyle 4}}\,a_{{\scriptscriptstyle 2}}\,X\,\overline{c_{{\scriptscriptstyle 1},{\scriptscriptstyle 2}}}\,\overline{c_{{\scriptscriptstyle 4},{\scriptscriptstyle 1}}}\,.$$

Thus, we get

$$\begin{array}{lll} h(c_{1,4}) & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, c_{1,2} \, b_1 \, c_{2,4} \, b_2 \, a_1 \, a_4 \, a_2 \, X \, \overline{c_{1,2}} \, \overline{c_{4,1}}(b_1) & \text{by } (E_{1,2,4}) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, c_{1,2} \, \overline{a_2} \, b_1 \, \underline{a_2} \, \overline{c_{1,2}} \, \underline{c_{2,4}}(b_1) & \text{by } (T) \\ & = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, c_{1,2} \, b_1 \, a_2 \, \overline{b_1} \, \overline{c_{1,2}} \, \overline{b_1}(c_{2,4}) & \text{by } (T) \end{array}$$

$$\begin{array}{ll} = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \underline{c_{1,2}} \, b_1 \, a_2 \, \overline{c_{1,2}} \, \overline{b_1} \, \overline{c_{1,2}}(c_{2,4}) & \text{by } (T) \\ = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{b_1} \, c_{1,2} \, b_1 \, a_2 \, \overline{b_1}(c_{2,4}) & \text{by } (T) \\ = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{b_1} \, c_{1,2} \, \overline{a_2} \, b_1 \, a_2(c_{2,4}) & \text{by } (T) \\ = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{b_1} \, \overline{a_2} \, \overline{c_{2,4}} \, c_{1,2}(b_1) & \text{by } (T) \\ = & \overline{b} \, \overline{a_2} \, \overline{a_1} \, \overline{b} \, \overline{b_1} \, \overline{a_2} \, \overline{c_{2,4}} \, \overline{b_1}(c_{1,2}) & \text{by } (T) \\ = & l \, . \end{array}$$

6) By the relations (T), one has

$$\begin{array}{lll} h(a_2) & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ c_{1,2} \ a_2 \ b_1(a_2) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ \underline{c_{1,2}} \ a_2 \ \overline{a_2}(b_1) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ \overline{b_1}(c_{1,2}) \\ & = & c_{1,2} \ . \end{array}$$

7) Using the braid relations, one gets

$$\begin{array}{lll} h(b) & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ \underline{c_{1,2}} \ a_2 \ b_1(b) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ a_1 \ b \ b_1 \ \overline{b}(a_2) \\ & = & b_2 \ a_4 \ \overline{c_{4,1}} \ \overline{b_2} \ b \ a_2 \ \overline{a_2}(b_1) \\ & = & b_1 \ . \end{array}$$

Thus, one has $h\overline{X}(a_{\scriptscriptstyle 2})=\overline{b_{\scriptscriptstyle 1}}\,\overline{a_{\scriptscriptstyle 2}}\,\overline{c_{\scriptscriptstyle 2,4}}\,\overline{b_{\scriptscriptstyle 1}}(c_{\scriptscriptstyle 1,2})=m.$

This concludes the proof of lemma 5.

3. Proof of theorem 1

We will proceed by induction on n. Thus, suppose that $g \ge 1$, $n \ge 2$, and consider the exact sequence (see [8]¹ and [9]):

$$1 \longrightarrow \mathbf{Z} \times \pi_1(\Sigma_{q,n-1}, p) \xrightarrow{f_1} \mathcal{M}_{q,n} \xrightarrow{f_2} \mathcal{M}_{q,n-1} \longrightarrow 1$$

where, f_2 is defined by collapsing δ_n with a disc centred at p and by extending each map over the disc by the identity. One has $f_1(k) = \tau_{\delta_n}^k$ for all $k \in \mathbf{Z}$, and, if α is the homotopy class of a simple closed curve in $\Sigma_{g,n-1}$, $f_1(\alpha)$ is equal to the spin map $\tau_{\alpha'}\tau_{\alpha''}^{-1}$, where α' and α'' are the two boundary components of an annulus on $\Sigma_{g,n-1}$ which contains the collapsed disc (see [9] for the details).

Let us denote by $a'_1,\ldots,a'_{2g+n-3},b',b'_1,\ldots,b'_{g-1},(c'_{i,j})_{1\leq i\neq j\leq 2g+n-3}$ the generators of $G_{g,n-1}$ corresponding to the curves in $\mathcal{G}_{g,n-1}$. We define $g_2:G_{g,n}\to G_{g,n-1}$ by

Johnson asserts that, if $g \ge 2$, the kernel of f_2 is isomorphic to the fundamental group of $U\Sigma_{g,n-1}$, the unit tangent bundle of $\Sigma_{g,n-1}$. Actually, his argument still works when g=1 and $n \ge 2$ since in this case, $\pi_1(\Sigma_{g,n-1},p)$ is centerless (see [8] and [4] for the details).

$$\begin{array}{rclcrcl} g_2(a_i) & = & a_i' & & \text{for all } i \neq 2g+n-2 \\ g_2(a_{2g+n-2}) & = & a_1' & & & \\ g_2(b) & = & b' & & & \\ g_2(b_i) & = & b_i' & & \text{for } 1 \leq i \leq g-1 \\ g_2(c_{i,j}) & = & c_{i,j}' & & \text{for } 1 \leq i, j \leq 2g+n-3 \\ g_2(c_{i,2g+n-2}) & = & c_{i,1}' & & \text{for } 2 \leq i \leq 2g+n-3 \\ g_2(c_{2g+n-2,j}) & = & c_{1,j}' & & \text{for } 2 \leq j \leq 2g+n-3 \\ g_2(c_{1,2g+n-2}) & = & (a_1' b' a_1')^4 \\ g_2(c_{2g+n-2,1}) & = & 1 \end{array}$$

Lemma 6. For all $(g, n) \in \mathbb{N}^* \times \mathbb{N}^*$, g_2 is an homomorphism.

Proof. We have to prove that the relations in $G_{g,n}$ are satisfied in $G_{g,n-1}$ via g_2 . Since for all i such that $1 \leq i \leq g-1$, one has $g_2(c_{2i,2i+1}) = c'_{2i,2i+1}$ and $g_2(c_{2i-1,2i}) = c'_{2i-1,2i}$, this is clear for the handle relations.

So, let λ , μ be two elements of $\mathcal{G}_{g,n}$ which do not intersect (resp. intersect transversaly in a single point). If l and m are the associated elements of $G_{g,n}$, we have to prove that

$$(\bullet) \left\{ \begin{array}{c} g_2(l)g_2(m) = g_2(m)g_2(l) \\ \Big(\text{resp.} \ g_2(l)g_2(m)g_2(l) = g_2(m)g_2(l)g_2(m) \Big). \end{array} \right.$$

When λ and μ are distinct from $\gamma_{2g+n-2,1}$ and $\gamma_{1,2g+n-2}$, these relations are precisely braid relations in $G_{g,n-1}$. If not, λ and μ do not intersect in a single point. Thus, it remains to consider the cases where $\lambda = \gamma_{1,2g+n-2}$ or $\gamma_{2g+n-2,1}$ and $\mu \in \mathcal{G}_{g,n}$ is a curve disjoint from λ . For $\lambda = \gamma_{2g+n-2,1}$, one has $g_2(l) = 1$ and the relation (\bullet) is satisfied in $G_{g,n-1}$. So, suppose that $\lambda = \gamma_{1,2g+n-2}$. Then, we have $g_2(l) = (a'_1 b' a'_1)^4$. The curves in $\mathcal{G}_{g,n}$ which are disjoint from λ are $\beta, \beta_1, \ldots, \beta_{g-1}, \alpha_1, \alpha_{2g+n-2}, \gamma_{2g+n-2,1}$ and $(\gamma_{i,j})_{1 \leq i < j \leq 2g+n-2}$. Let us look at the different cases:

- By lemma 2, $b' = g_2(b)$ and $a'_1 = g_2(a_1) = g_2(a_{2g+n-2})$ commute with $(a'_1 b' a'_1)^4 = g_2(l)$.
- For all i, $1 \le i \le g-1$, $b'_i = g_2(b_i)$ commutes with $(a'_1 b' a'_1)^4$ by the braid relations in $G_{g,n-1}$.
- For all i, j such that $1 \leq i < j \leq 2g+n-2$, one has $g_2(c_{i,j}) = c'_{i,j}$ if $j \neq 2g+n-2$, and $g_2(c_{i,j}) = c'_{i,1}$ otherwise. In all cases, one has that $g_2(c_{i,j})g_2(l) = g_2(l)g_2(c_{i,j})$ by the braid relations in $G_{g,n-1}$.

Now, let us look at the star relations. For $i,j,k \neq 2g+n-2$, $(E_{i,j,k})$ is sent by g_2 to $(E'_{i,j,k})$, the star relation in $G_{g,n-1}$ involving the same curves. For all i,j such that $2 \leq i \leq j < 2g+n-2$, $(E_{i,j,2g+n-2})$ is sent to $(E'_{i,j,1})$. Next, for $2 \leq j < 2g+n-2$, $(E_{1,j,2g+n-2})$ is sent to $(E'_{1,1,j})$. Finally, since $g_2(c_{2g+n-2,1})=1$ and $g_2(c_{1,2g+n-2})=(a'_1b'a'_1)^4$, the relation $(E_{1,1,2g+n-2})$ is satisfied in $G_{g,n-1}$ via g_2 by lemma 2. This concludes the proof by remark 3.

Since the relations (T), (A) and $(E_{i,j,k})$ are satisfied in $\mathcal{M}_{g,n}$ (see [3]), one has an homomorphism $\Phi_{g,n}: G_{g,n} \to \mathcal{M}_{g,n}$ which associates to each $a \in \mathcal{G}_{g,n}$ the corresponding twist τ_{α} . Since we view $\Sigma_{g,n}$ as a subsurface of $\Sigma_{g,n-1}$, we have $\Phi_{g,n-1} \circ g_2 = f_2 \circ \Phi_{g,n}$. Thus, we get the following commutative diagram:

where $h_{g,n}$ is induced by $\Phi_{g,n}$.

Proposition 7. $h_{g,n}$ is an isomorphism for all $g \ge 1$ and $n \ge 2$.

In order to prove this proposition, we will first give a system of generators for ker g_2 . Thus, we consider the following elements of ker g_2 :

$$\begin{split} x_0 &= a_1 \overline{a_{2g+n-2}}, \quad x_1 = b(x_0), \quad x_2 = a_2(x_1), \quad x_3 = b_1(x_2), \end{split}$$
 for $2 \leq i \leq g-1, \quad x_{2i} = c_{2i-2,2i}(x_{2i-1}) \quad \text{and} \quad x_{2i+1} = b_i(x_{2i}), \\ \text{and for } 2g \leq k \leq 2g+n-3, \quad x_k = a_k(x_1) \,. \end{split}$

Remark 6. If g=1, one has just to concider $x_0, x_1, x_2, \ldots, x_{n-1}$.

Lemma 8. For all $(g, n) \in \mathbb{N}^* \times \mathbb{N}^*$, $\ker g_2$ is normally generated by d_n and x_0 .

Proof. Let us denote by K the subgroup of $G_{g,n}$ normally generated by d_n and x_0 . Since $g_2(d_n) = 1$ and $g_2(a_{2g+n-2}) = g_2(a_1)$, one has $K \subset \ker g_2$. In order to prove the equality, we shall prove that g_2 induces a monomorphism $\widetilde{g_2}$ from $G_{g,n}/K$ to $G_{g,n-1}$.

Define $k: G_{g,n-1} \to G_{g,n}/K$ by

$$\begin{array}{rcl} k(b') & = & \widetilde{b} \\ k(b'_i) & = & \widetilde{b_i} & \text{for } 1 \leq i \leq g-1 \\ k(a'_i) & = & \widetilde{a_i} & \text{for all } i, \ 1 \leq i \leq 2g+n-3 \\ k(c'_{i,j}) & = & \widetilde{c_{i,j}} & \text{for all } i \neq j, \ 1 \leq i,j \leq 2g+n-3 \end{array}$$

where, for $x \in G_{g,n}$, \widetilde{x} denote the class of x in $G_{g,n}/K$. Pasting a pair of pants to $\gamma_{2g+n-3,1}$ allows us to view $\Sigma_{g,n-1}$ as a subsurface of $\Sigma_{g,n}$, and $\mathcal{G}_{g,n-1}$ as a subset of $\mathcal{G}_{g,n}$. Thus, k appears to be clearly a morphism. Let us prove that $k \circ \widetilde{g}_2 = Id$.

Denote by H the subgroup of $G_{g,n}/K$ generated by $\{\widetilde{b}, \widetilde{b_1}, \ldots, \widetilde{b_{g-1}}, \widetilde{a_1}, \ldots, \widetilde{a_{2g+n-3}}, (\widetilde{c}_{i,j})_{1 \le i \ne j \le 2g+n-3}\}$. Since, by definition of g_2 and k, one has $k \circ g_2(\widetilde{x}) = \widetilde{x}$ for all $\widetilde{x} \in H$, we just need to prove that $G_{g,n}/K = H$. We know that $G_{g,n}/K$ is generated by $\{\widetilde{x}/x \in \mathcal{G}_{g,n}\}$; thus, the following computations allow us to conclude.

$$-\widetilde{a}_{2q+n-2} = \widetilde{a_1}.$$

$$-\widetilde{c}_{2g+n-2,1} = \widetilde{d}_n = 1.$$

- By the star relation $(E_{1,1,2g+n-2})$, one has

$$\widetilde{c}_{_{1,2g+n-2}} = (\widetilde{a_{_1}} \; \widetilde{a_{_1}} \; \widetilde{a}_{_{2g+n-2}} \; \widetilde{b})^{-3} \; \widetilde{c}_{_{2g+n-2,1}} \; = \; (\widetilde{a_{_1}} \; \widetilde{a_{_1}} \; \widetilde{a_{_1}} \; \widetilde{b})^{-3} \; .$$

- For $2 \le i \le 2g + n - 3$, one has by the lantern relation $(L_{2g+n-2,1,i})$:

$$a_{2q+n-2} c_{2q+n-2,1} c_{1,i} a_i = c_{2q+n-2,i} a_1 X a_1 \overline{X}$$

where $X = b \, a_{2g+n-2} \, a_i \, b$. This relation implies the following one by (T):

$$\begin{array}{rcl} c_{2g+n-2,i} & = & c_{1,i} \; a_i \, X \, \overline{a_1} \, \overline{X} \, \overline{a_1} \, a_{2g+n-2} \; c_{2g+n-2,1} \\ & = & c_{1,i} \; X \, \overline{x_0} \, \overline{X} \, \overline{x_0} \, d_n \; , \end{array}$$

which yields $\tilde{c}_{2g+n-2,i} = \tilde{c}_{1,i}$.

– In the same way, using the lantern relation $(L_{i,2g+n-2,1})$, one proves that $\widetilde{c}_{i,2g+n-2}=\widetilde{c}_{i,1}$ for $2\leq i\leq 2g+n-3$.

Lemma 9. For all $(g,n) \in \mathbf{N}^* \times \mathbf{N}^*$, $\ker g_2$ is generated by $d_n = c_{2g+n-2,1}$ and x_0, \ldots, x_{2g+n-3} .

Proof. By lemma 8, ker g_2 is normally generated by d_n and x_0 . Furthermore, by the braid relations, d_n is central in $G_{g,n}$. Thus, denoting by K the subgroup generated by $d_n, x_0, \ldots, x_{2g+n-3}$, we have to prove

that $gx_0g^{-1} \in K$ for all $g \in G_{g,n}$. To do this, it is enough to show that K is a normal subgroup of $G_{g,n}$.

By proposition 1, $G_{g,n}$ is generated by $\mathcal{H}_{g,n} = \{a_1, b, a_2, b_1, \ldots, b_{g-1}, c_{2,4}, \ldots, c_{2g-4,2g-2}, c_{1,2}, a_{2g}, \ldots, a_{2g+n-2}, d_1, \ldots, d_{n-1}\}$. Since, by the braid relations, d_1, \ldots, d_{n-1} are central in $G_{g,n}$, we have to prove that $y(x_k)$ and $\overline{y}(x_k)$ are elements of K for all k, $0 \le k \le 2g+n-3$, and all $y \in \mathcal{E}$ where $\mathcal{E} = \mathcal{H}_{g,n} \setminus \{d_1, \ldots, d_{n-1}\}$.

- * Case 1: k=0.
 - $-b(x_0) = x_1.$
 - We prove, using relations (T), that $\overline{b}(x_0) = x_0 \overline{x_1} x_0$:

$$\begin{array}{rcl} x_0 \, \overline{x_1} \, x_0 & = & a_1 \, \overline{a_{2g+n-2}} \, \overline{b} \, \underline{a_{2g+n-2}} \, \overline{a_1} \, \overline{b} \, \underline{a_1} \, \overline{a_{2g+n-2}} \\ & = & a_1 \, b \, \underline{a_{2g+n-2}} \, \overline{b} \, \overline{b} \, \overline{a_1} \, \overline{b} \, \overline{a_{2g+n-2}} \\ & = & \overline{b} \, a_1 \, b \, \overline{b} \, \overline{a_{2g+n-2}} \, b \\ & = & \overline{b} (x_0) \, . \end{array}$$

- For $y \in \mathcal{E} \setminus \{b\}$, one has $y(x_0) = \overline{y}(x_0) = x_0$ by the braid relations.
- * Case 2: k=1.

$$\begin{array}{l} -\ a_1(x_1) = \ a_1\ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_1} = \ b\ a_1\ b\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_1} \\ = \ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_2} = x_1\ \overline{x_0}\ , \\ \\ \overline{a_1}(x_1) = \ \overline{a_1}\ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ a_1 = \ b\ a_1\ \overline{b}\ \overline{a_{2g+n-2}}\ \overline{b}\ a_1 \\ = \ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_{2g+n-2}} \\ -\ a_{2g+n-2}(x_1) = \ a_{2g+n-2}\ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ \overline{a_{2g+n-2}}\ \overline{b} \\ = \ a_{2g+n-2}\ b\ a_1\ \overline{b}\ \overline{a_{2g+n-2}}\ \overline{b} = \overline{x_0}\ x_1\ , \\ \\ \overline{a_{2g+n-2}}(x_1) = \overline{a_{2g+n-2}}\ b\ a_1\ \overline{a_{2g+n-2}}\ \overline{b}\ a_{2g+n-2} \\ = \ \overline{a_{2g+n-2}}\ b\ a_1\ b\ \overline{a_{2g+n-2}}\ \overline{b}\ a_{2g+n-2} \\ = \overline{a_{2g+n-2}}\ b\ a_1\ b\ \overline{a_{2g+n-2}}\ \overline{b}\ = x_0\ x_1\ . \end{array}$$

– One has $\overline{b}(x_1) = x_0$, and by the braid relations, $b(x_1) = x_1 \overline{x_0} x_1$:

$$\begin{array}{rcl} x_{1}\,\overline{x_{0}}\,x_{1} & = & b\,a_{1}\,\overline{a_{2g+n-2}}\,\overline{b}\,\overline{a_{1}}\,a_{2g+n-2}\,b\,a_{1}\,\overline{a_{2g+n-2}}\,\overline{b}\\ & = & b\,\overline{a_{2g+n-2}}\,\overline{b}\,\overline{a_{1}}\,b\,\overline{b}\,a_{2g+n-2}\,b\,a_{1}\,\overline{b}\\ & = & b\,b\,\overline{a_{2g+n-2}}\,\overline{b}\,b\,a_{1}\,\overline{b}\,\overline{b}\\ & = & b(x_{1}). \end{array}$$

– For $i \in \{2, 2g, 2g+1, \ldots, 2g+n-3\}$, we have $a_i(x_1) = x_i$ and $\overline{a_i}(x_1) = x_1 \overline{x_i} x_1$:

$$\begin{array}{lll} x_1\,\overline{x_i}\,x_1 &=& b\,x_0\,\overline{b}\,a_i\,b\,\overline{x_0}\,\overline{b}\,\overline{a_i}\,b\,x_0\,\overline{b} \\ &=& b\,x_0\,a_i\,b\,\overline{a_i}\,\overline{x_0}\,a_i\,\overline{b}\,\overline{a_i}\,x_0\,\overline{b} & \text{by }(T) \\ &=& b\,a_i\,x_0\,b\,\overline{x_0}\,\overline{b}\,x_0\,\overline{a_i}\,\overline{b} & \text{by case } 1 \\ &=& b\,a_i\,x_0\,\overline{x_1}\,x_0\,\overline{a_i}\,\overline{b} \\ &=& b\,a_i\,\overline{b}\,x_0\,b\,\overline{a_i}\,\overline{b} & \text{by case } 1 \\ &=& \overline{a_i}\,b\,a_i\,x_0\,\overline{a_i}\,\overline{b}\,a_i & \text{by }(T) \\ &=& \overline{a_i}(x_1) & \text{by case } 1. \end{array}$$

- Each $y \in \{b_1, \ldots, b_{g-1}, c_{2,4}, \ldots, c_{2g-4,2g-2}, c_{1,2}\}$ commutes with x_1 by the braid relations, so $y(x_1) = \overline{y}(x_1) = x_1$.
- * Case 3: $k \in \{2, 2g, \dots, 2g + n 3\}.$
 - By the braid relations and the preceding cases, we have:

$$\begin{split} a_1(x_k) &= a_k \ a_1(x_1) = a_k \ x_1 \, \overline{x_0} \, \overline{a_k} = x_k \, \overline{x_0} \,, \\ \overline{a_1}(x_k) &= a_k \, \overline{a_1}(x_1) = a_k \, x_1 \, x_0 \, \overline{a_k} = x_k \, x_0 \,, \\ a_{2g+n-2}(x_k) &= a_k \, a_{2g+n-2}(x_1) = a_k \, \overline{x_0} \, x_1 \, \overline{a_k} = \overline{x_0} \, x_k \,, \\ \overline{a_{2g+n-2}}(x_k) &= a_k \, \overline{a_{2g+n-2}}(x_1) = a_k \, x_0 \, x_1 \, \overline{a_k} = x_0 \, x_k \,. \end{split}$$

- It follows from the braid relations and the case 2 that

$$b(x_k) = b \, a_k \, b(x_0) = a_k \, b \, a_k(x_0) = a_k \, b(x_0) = x_k \,,$$

and we get also $\overline{b}(x_k) = x_k$.

– For $k \neq 2$, one has $b_1(x_k) = \overline{b_1}(x_k) = x_k$ by the braid relations. When k = 2, we get $b_1(x_2) = x_3$ and $\overline{b_1}(x_2) = x_2 \overline{x_3} x_2$:

$$\begin{array}{rclcrcl} x_2\,\overline{x_3}\,x_2 & = & a_2\,x_1\,\overline{a_2}\,b_1\,\underline{a_2}\,\overline{x_1}\,\overline{a_2}\,\overline{b_1}\,\underline{a_2}\,\overline{b_1}\,\underline{a_2}\,x_1\,\overline{a_2} & & \\ & = & a_2\,x_1\,b_1\,a_2\,\overline{b_1}\,\overline{x_1}\,\underline{b_1}\,\overline{a_2}\,\overline{b_1}\,x_1\,\overline{a_2} & & \text{by }(T) \\ & = & a_2\,b_1\,x_1\,\overline{x_2}\,x_1\,\overline{b_1}\,\overline{a_2} & & \text{by case } 2 \\ & = & \underline{a_2}\,b_1\,\overline{a_2}\,x_1\,\underline{a_2}\,\overline{b_1}\,\overline{a_2} & & & \text{by }(T) \\ & = & \overline{b_1}\,a_2\,b_1\,x_1\,\overline{b_1}\,\overline{a_2}\,b_1 & & & \text{by }(T) \\ & = & \overline{b_1}(x_2) & & & \text{by case } 2 \,. \end{array}$$

– Each $y\in\{b_2,\ldots,b_{g-1},c_{2,4},\ldots,c_{2g-4,2g-2},c_{1,2}\}$ commutes with x_k for $k=2,2g,\ldots,2g+n-3$ by the braid relations. Therefore, we get $y(x_k)=\overline{y}(x_k)=x_k$.

– Let $i \in \{2, 2g, \ldots, 2g + n - 3\}$. Suppose first that $i \ge k$. Then, if $m_k = \overline{x_1}(a_k)$, we have

$$a_{\scriptscriptstyle i}(x_{\scriptscriptstyle k}) = a_{\scriptscriptstyle i}\,a_{\scriptscriptstyle k}\,x_{\scriptscriptstyle 1}\,\overline{a_{\scriptscriptstyle k}}\,\overline{a_{\scriptscriptstyle i}} = a_{\scriptscriptstyle i}\,x_{\scriptscriptstyle 1}\,m_{\scriptscriptstyle k}\,\overline{a_{\scriptscriptstyle i}}\,\overline{a_{\scriptscriptstyle k}}\,.$$

By the braid relations, one has

$$m_{{\scriptscriptstyle k}} = b\,\overline{a_{\scriptscriptstyle 1}}\,a_{{\scriptscriptstyle 2g+n-2}}\,\overline{b}(a_{{\scriptscriptstyle k}}) = b\,\overline{a_{\scriptscriptstyle 1}}\,a_{{\scriptscriptstyle 2g+n-2}}\,a_{{\scriptscriptstyle k}}(b) = b\,a_{{\scriptscriptstyle 2g+n-2}}\,a_{{\scriptscriptstyle k}}\,b(a_{{\scriptscriptstyle 1}})$$

and the lantern relation $(L_{2q+n-2,1,k})$ says that

$$a_{2g+n-2} \, c_{2g+n-2,1} \, c_{1,k} \, a_k = c_{2g+n-2,k} \, a_1 \, Y \, a_1 \, \overline{Y}$$

where $Y = b a_{2g+n-2} a_k b$. Thus, we get

$$m_{_{k}} = Y(a_{_{1}}) = \overline{a_{_{1}}}\,\overline{c_{_{2g+n-2,k}}}\,a_{_{2g+n-2}}\,c_{_{2g+n-2,1}}\,c_{_{1,k}}\,a_{_{k}}\,,$$

which implies by the braid relations $m_k a_i = a_i m_k$ since $i \ge k$. From this, one obtains

$$a_{\scriptscriptstyle i}(x_{\scriptscriptstyle k}) = a_{\scriptscriptstyle i}\,x_{\scriptscriptstyle 1}\,\overline{a_{\scriptscriptstyle i}}\,m_{\scriptscriptstyle k}\,\overline{a_{\scriptscriptstyle k}} = a_{\scriptscriptstyle i}\,x_{\scriptscriptstyle 1}\,\overline{a_{\scriptscriptstyle i}}\,\overline{x_{\scriptscriptstyle 1}}\,a_{\scriptscriptstyle k}\,x_{\scriptscriptstyle 1}\,\overline{a_{\scriptscriptstyle k}} = x_{\scriptscriptstyle i}\,\overline{x_{\scriptscriptstyle 1}}\,x_{\scriptscriptstyle k}\;.$$

In particular, we have $x_k = x_1 \overline{x_i} a_i x_k \overline{a_i}$ and so:

$$\begin{array}{rcl} \overline{a_i}(x_k) & = & \overline{a_i}\,x_1\,\overline{x_i}\,a_i\,x_k\,\overline{a_i}\,a_i\\ & = & \overline{a_i}\,x_1\,a_i\,\overline{a_i}\,\overline{x_i}\,a_i\,x_k\\ & = & x_1\,\overline{x_i}\,x_1\,\overline{x_1}\,x_k & \text{by case 2}\\ & = & x_1\,\overline{x_i}\,x_k\,. \end{array}$$

$$\text{Conclusion:} \; \left\{ \begin{array}{l} a_i(x_{\scriptscriptstyle k}) = x_i\,\overline{x_1}\,x_{\scriptscriptstyle k}\,, & \overline{a_i}(x_{\scriptscriptstyle k}) = x_1\,\overline{x_i}\,x_{\scriptscriptstyle k} & \text{if} \;\; i \geq k, \\ a_i(x_{\scriptscriptstyle k}) = x_k\,\overline{x_1}\,x_i\,, & \overline{a_i}(x_{\scriptscriptstyle k}) = x_1\,\overline{x_k}\,x_i & \text{if} \;\; i \leq k. \end{array} \right.$$

- * Case 4: k = 3.
 - By the braid relations and the preceding cases, we have:

$$\begin{split} a_1(x_3) &= b_1 \, a_1(x_2) = b_1 \, x_2 \, \overline{x_0} \, \overline{b_1} = x_3 \, \overline{x_0} \,, \\ \overline{a_1}(x_3) &= b_1 \, \overline{a_1}(x_2) = b_1 \, x_2 \, x_0 \, \overline{b_1} = x_3 \, x_0 \,, \\ a_{2g+n-2}(x_3) &= b_1 \, a_{2g+n-2}(x_2) = b_1 \, \overline{x_0} \, x_2 \, \overline{b_1} = \overline{x_0} \, x_3 \,, \\ \overline{a_{2g+n-2}}(x_3) &= b_1 \, \overline{a_{2g+n-2}}(x_2) = b_1 \, x_0 \, x_2 \, \overline{b_1} = x_0 \, x_3 \,. \end{split}$$

- The relations (T) and the case 3 prove that

$$b(x_3) = b b_1(x_2) = b_1(x_2) = x_3 = \overline{b}(x_3),$$

and

$$a_{\scriptscriptstyle 2}(x_{\scriptscriptstyle 3}) = a_{\scriptscriptstyle 2} \, b_{\scriptscriptstyle 1} \, a_{\scriptscriptstyle 2}(x_{\scriptscriptstyle 1}) = b_{\scriptscriptstyle 1} \, a_{\scriptscriptstyle 2} \, b_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 1}) = b_{\scriptscriptstyle 1} \, a_{\scriptscriptstyle 2}(x_{\scriptscriptstyle 1}) = x_{\scriptscriptstyle 3} = \overline{a_{\scriptscriptstyle 2}}(x_{\scriptscriptstyle 3}).$$

- One has $\overline{b_1}(x_3) = x_2$. On the other hand, we get

$$\begin{array}{lll} b_{_1}(x_{_3}) & = & b_{_1}\,x_{_2}\,\overline{b_{_1}}\,\overline{x_{_2}}\,b_{_1}\,x_{_2}\,\overline{b_{_1}} & \text{by case 3} \\ & = & x_{_3}\,\overline{x_{_2}}\,x_{_3}\,. \end{array}$$

- Using the braid relations and the case 3, we get $\overline{c_{2,4}}(x_3) = x_3 \overline{x_4} x_3$:

$$\begin{array}{rcl} x_3\,\overline{x_4}\,x_3 & = & b_1\,x_2\,\overline{b_1}\,c_{2,4}\,b_1\,\overline{x_2}\,\overline{b_1}\,\overline{c_{2,4}}\,b_1\,x_2\,\overline{b_1}\\ & = & b_1\,x_2\,c_{2,4}\,b_1\,\overline{c_{2,4}}\,\overline{x_2}\,\underline{c_{2,4}}\,\overline{b_1}\,\overline{c_{2,4}}\,x_2\,\overline{b_1}\\ & = & b_1\,c_{2,4}\,\underline{x_2}\,\overline{x_3}\,x_2\,\overline{c_{2,4}}\,\overline{b_1}\\ & = & b_1\,c_{2,4}\,\overline{b_1}\,x_2\,b_1\,\overline{c_{2,4}}\,\overline{b_1}\\ & = & \overline{c_{2,4}}\,b_1\,c_{2,4}\,x_2\,\overline{c_{2,4}}\,\overline{b_1}\,c_{2,4}\\ & = & \overline{c_{2,4}}(x_3). \end{array}$$

On the other hand, we have $c_{2,4}(x_3) = x_4$.

- The braid relations assure that $y(x_3)=\overline{y}(x_3)=x_3$ for all $y\in\{b_2,\ldots,b_{g-1},c_{4,6},\ldots,c_{2g-4,2g-2}\}.$
- For each $i \in \{2g, \ldots, 2g + n 3\}$, one has by the case 3

$$a_{\scriptscriptstyle i}(x_{\scriptscriptstyle 3}) = b_{\scriptscriptstyle 1}\,a_{\scriptscriptstyle i}(x_{\scriptscriptstyle 2}) = b_{\scriptscriptstyle 1}\,x_{\scriptscriptstyle i}\,\overline{x_{\scriptscriptstyle 1}}\,x_{\scriptscriptstyle 2}\,\overline{b_{\scriptscriptstyle 1}} = x_{\scriptscriptstyle i}\,\,\overline{x_{\scriptscriptstyle 1}}\,x_{\scriptscriptstyle 3}$$

and

$$\overline{a_i}(x_3) = b_1 \, \overline{a_i}(x_2) = b_1 \, x_1 \, \overline{x_i} \, x_2 \, \overline{b_1} = x_1 \, \overline{x_i} \, x_3 \, .$$

– Finally, we shall prove that $\,c_{_{1,2}}(x_3)\,{=}\,x_3\,\overline{x_2}\,x_1\,\overline{x_0}\,d_n\,.$

The lantern relation $(L_{2g+n-2,1,2})$ says

$$a_{2g+n-2}\,c_{2g+n-2,1}\,c_{1,2}\,a_2 = c_{2g+n-2,2}\,\overline{X}\,a_1\,X\,a_1 = c_{2g+n-2,2}\,a_1\,X\,a_1\,\overline{X}$$

where $X=b\,a_2\,a_{2g+n-2}\,b$, that is to say $(d_n=c_{2g+n-2,1})$:

$$a_{2q+n-2} c_{1,2} \overline{a_1} = c_{2q+n-2,2} \overline{a_2} \overline{d_n} \overline{X} a_1 X \quad (\star)$$

and

$$c_{\scriptscriptstyle 2g+n-2,2}\,\overline{c_{\scriptscriptstyle 1,2}} = X\,\overline{a_{\scriptscriptstyle 1}}\,\overline{X}\,\overline{a_{\scriptscriptstyle 1}}\,a_{\scriptscriptstyle 2}\,d_{\scriptscriptstyle n}\,a_{\scriptscriptstyle 2g+n-2} \quad (\star\star).$$

Then, one can compute

$$\begin{array}{lll} \overline{x_3}(c_{1,2}) & = & b_1 \ a_2 \ b \ a_{2g+n-2} \ \overline{a_1} \ \overline{b} \ \overline{a_2} \ \overline{b_1}(c_{1,2}) \\ & = & b_1 \ a_2 \ b \ a_{2g+n-2} \ c_{1,2} \ \overline{a_1} \ \overline{b} \ \overline{a_2}(b_1) & \text{by } (T) \\ & = & b_1 \ a_2 \ b \ c_{2g+n-2,2} \ \overline{a_2} \ \overline{d_n} \ \overline{X} \ a_1 \ X \ \overline{b} \ \overline{a_2}(b_1) & \text{by } (\star) \\ & = & b_1 \ a_2 \ b \ c_{2g+n-2,2} \ \overline{a_2} \ \overline{d_n} \ \overline{X} \ a_1 \ b \ a_{2g+n-2}(b_1) \\ & = & b_1 \ c_{2g+n-2,2} \ \overline{b} \ a_2 \ b \ \overline{X}(b_1) & \text{by } (T) \\ & = & b_1 \ \overline{c_{2g+n-2,2}} \ \overline{b} \ a_2 \ b \ \overline{b} \ \overline{a_2} \ \overline{a_{2g+n-2}} \ \overline{b}(b_1) \\ & = & b_1 \ \overline{b_1}(c_{2g+n-2,2}) & \text{by } (T) \\ & = & c_{2g+n-2,2} \ . \end{array}$$

Thus, we get

$$\begin{array}{lll} c_{1,2}(x_3) & = & c_{1,2} \, x_3 \, \overline{c_{1,2}} \\ & = & x_3 \, \overline{x_3} \, c_{1,2} \, x_3 \, \overline{c_{1,2}} \\ & = & x_3 \, c_{2g+n-2,2} \, \overline{c_{1,2}} \\ & = & x_3 \, X \, \overline{a_1} \, \overline{X} \, \overline{a_1} \, a_2 \, a_{2g+n-2} \, d_n & \text{by } (\star \star) \\ & = & x_3 \, b \, a_2 \, a_{2g+n-2} \, b \, \overline{a_1} \, \overline{b} \, \overline{a_2} \, \overline{a_{2g+n-2}} \, \overline{b} \, a_2 \, \overline{x_0} \, d_n \\ & = & x_3 \, b \, a_{2g\pm n-2} \, a_2 \, \overline{a_1} \, \overline{b} \, a_1 \, \overline{a_2} \, \overline{a_{2g+n-2}} \, \overline{b} \, a_2 \, \overline{x_0} \, d_n \\ & = & x_3 \, b \, \overline{x_0} \, \overline{b} \, \overline{a_2} \, b \, x_0 \, \overline{b} \, a_2 \, \overline{x_0} \, d_n & \text{by } (T) \\ & = & x_3 \, \overline{x_1} \, \overline{a_2} \, x_1 \, \overline{a_2} \, \overline{x_1} \, \overline{d_n} \, d_n & \text{by case } 2 \\ & = & x_3 \, \overline{x_2} \, x_1 \, \overline{x_0} \, d_n \, . \end{array}$$

It follows from this that

$$\overline{c_{\scriptscriptstyle 1,2}}(x_{\scriptscriptstyle 3}) = \overline{c_{\scriptscriptstyle 1,2}} \, c_{\scriptscriptstyle 1,2} \, x_{\scriptscriptstyle 3} \, \overline{c_{\scriptscriptstyle 1,2}} \, \overline{d_n} \, x_{\scriptscriptstyle 0} \, \overline{x_{\scriptscriptstyle 1}} \, x_{\scriptscriptstyle 2} \, c_{\scriptscriptstyle 1,2} = x_{\scriptscriptstyle 3} \, \overline{d_n} \, x_{\scriptscriptstyle 0} \, \overline{x_{\scriptscriptstyle 1}} \, x_{\scriptscriptstyle 2} \, .$$

* Case 5:
$$k \in \{4, 5, \dots, 2g - 1\}$$
.

In order to simplify the notation, let us denote

$$\begin{aligned} e_3 &= b_1 \;,\;\; e_4 = c_{2,4} \;,\;\; e_5 = b_2 \;,\;\; \dots \;,\;\; e_{2g-2} = c_{2g-4,2g-2} \;,\;\;\; e_{2g-1} = b_{g-1} \;, \end{aligned}$$
 so that, for $i \in \{3, \dots, 2g-1\}, \;\; x_i = e_i(x_{i-1}).$

- Then, one has by the braid relations and the case 4:

$$a_{\scriptscriptstyle 1}(x_{\scriptscriptstyle k}) = e_{\scriptscriptstyle k} \ e_{\scriptscriptstyle k-1} \cdots e_{\scriptscriptstyle 4} \ a_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 3}) = e_{\scriptscriptstyle k} \cdots e_{\scriptscriptstyle 4} x_{\scriptscriptstyle 3} \ \overline{x_{\scriptscriptstyle 0}} \ \overline{e_{\scriptscriptstyle 4}} \cdots \overline{e_{\scriptscriptstyle k}} = x_{\scriptscriptstyle k} \ \overline{x_{\scriptscriptstyle 0}} \ .$$

Likewise, we get

$$\label{eq:alpha_sum} \begin{split} \overline{a_{\scriptscriptstyle 1}}(x_{\scriptscriptstyle k}) &= x_{\scriptscriptstyle k} \, x_{\scriptscriptstyle 0} \,, \quad a_{\scriptscriptstyle 2g+n-2}(x_{\scriptscriptstyle k}) = \overline{x_{\scriptscriptstyle 0}} \, x_{\scriptscriptstyle k} \,, \quad \overline{a_{\scriptscriptstyle 2g+n-2}}(x_{\scriptscriptstyle k}) = x_{\scriptscriptstyle 0} \, x_{\scriptscriptstyle k} \,, \\ \text{and} \quad b(x_{\scriptscriptstyle k}) &= \overline{b}(x_{\scriptscriptstyle k}) = x_{\scriptscriptstyle k} = a_{\scriptscriptstyle 2}(x_{\scriptscriptstyle k}) = \overline{a_{\scriptscriptstyle 2}}(x_{\scriptscriptstyle k}) \,. \end{split}$$

- For $i \in \{3, 4, \dots, 2g - 1\}$, i < k, one obtains, using the braid relations, $e_i(x_k) = \overline{e_i}(x_k) = x_k$:

$$\begin{array}{l} e_i(x_k) = e_k \cdots e_i \, e_{i+1} \, e_i \cdots e_3(x_2) \, = \, e_k \cdots e_{i+1} \, e_i \, e_{i+1} \cdots e_3(x_2) \\ = e_k \cdots e_3(x_2) = x_k \, . \end{array}$$

For i > k+1, e_i commutes with e_k , . . . , e_4 and x_3 , thus we also have

$$e_{\scriptscriptstyle i}(x_{\scriptscriptstyle k}) = \overline{e_{\scriptscriptstyle i}}(x_{\scriptscriptstyle k}) = x_{\scriptscriptstyle k} \ (i>k+1) \quad (*).$$

– One has $e_{k+1}(x_k)=x_{k+1}$. Let us prove by induction on k that $\overline{e_{k+1}}(x_k)=x_k\,\overline{x_{k+1}}\,x_k$. We have seen in case 4 that this equaliy is

satisfied at the rank k=3. Suppose it is true at the rank k-1, $4 \le k \le 2g-2$. Then, we get:

– This last relation implies $x_k = x_{k-1} \overline{e_k} \overline{x_{k-1}} e_k x_{k-1}$. Thus, we get

$$e_{\scriptscriptstyle k}(x_{\scriptscriptstyle k}) = e_{\scriptscriptstyle k}\,x_{\scriptscriptstyle k-1}\,\overline{e_{\scriptscriptstyle k}}\,\overline{x_{\scriptscriptstyle k-1}}\,e_{\scriptscriptstyle k}\,x_{\scriptscriptstyle k-1}\,\overline{e_{\scriptscriptstyle k}} = x_{\scriptscriptstyle k}\,\overline{x_{\scriptscriptstyle k-1}}\,x_{\scriptscriptstyle k}\,.$$

On the other hand, one has $\overline{e_k}(x_k) = x_{k-1}$.

- For $i \in \{2g, \ldots, 2g + n - 3\}$, we have, by the braid relations and the cases 2, 3 and 4:

$$a_i(x_k) = e_k \cdots e_4 a_i(x_3) = e_k \cdots e_4 x_i \overline{x_1} x_3 \overline{e_4} \cdots \overline{e_k} = x_i \overline{x_1} x_k ,$$

and likewise, we get $\overline{a_i}(x_k) = x_1 \, \overline{x_i} \, x_k$.

– Finally, since $c_{1,2}(x_3) = x_3 \, \overline{x_2} \, x_1 \, \overline{x_0} \, d_n$, it follows from the braid relations and the preceding cases that $c_{1,2}(x_k) = x_k \, \overline{x_2} \, x_1 \, \overline{x_0} \, d_n$. In the same way, we get $\overline{c_{1,2}}(x_k) = x_k \, \overline{d_n} \, x_0 \, \overline{x_1} \, x_2$.

Proof of proposition 7. If $\pi: \mathbf{Z} \times \pi_1(\Sigma_{g,n-1}, p) \to \pi_1(\Sigma_{g,n-1}, p)$ denotes the projection, the loops $\pi \circ h_{g,n}(x_0), \ldots, \pi \circ h_{g,n}(x_{2g+n-3})$ form a basis of the free group $\pi_1(\Sigma_{g,n-1}, p)$. Thus, F, the subgroup of ker g_2 generated by x_0, \ldots, x_{2g+n-3} is free of rank 2g+n-2 and the restriction

of $\pi \circ h_{g,n}$ to this subgroup is an isomorphism.

Now, for every element x of $\ker g_2$, there are, by lemma 9, an integer k and an element f of F such that $x = d_n^k f$ (d_n is central in $\ker g_2$). Then, one has $h_{g,n}(x) = (k, \pi \circ h_{g,n}(x))$ and therefore, $h_{g,n}$ is one to one. But $h_{g,n}$ is also onto. This concludes the proof.

Proof of theorem 1. In section 2, we proved that $\Phi_{g,1}$ is an isomorphism. Thus, by the five-lemma, proposition 7 and an inductive argument, $\Phi_{g,n}$ is an isomorphism for all $n \geq 1$. In order to conclude the proof, it remains to look at the case n=0.

Consider once more the commutative diagram

Wajnryb proved in [12] that ker f_2 is normally generated by τ_{δ_1} and $\tau_{\alpha_1}\tau_{\alpha_{2g-1}}^{-1}$. Thus, since ker g_2 is normally generated by d_1 and $a_1 \overline{a_{2g-1}}$ (lemma 8), we conclude that $h_{g,1}$ is still an isomorphism. So, we get that $\Phi_{g,0}$ is an isomorphism.

Acknowledgement. This paper originates from discussions I had with Catherine Labruère. I want to thank her.

References

- 1. J. BIRMAN. *Braids, Links, and Mapping Class Groups*, Annals of Math. Studies 82, Princeton Univ. Press (1975).
- 2. M. Dehn. Die Gruppe der Abbildungsklassen, Acta Math. 69, 135-206 (1938).
- 3. S. Gervais. Presentation and central extension of mapping class groups, Trans. of A.M.S. 348 (8), 3097-3132 (1996).
- 4. A. Gramain. Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Ann. scient. Éc. Norm. Sup. 6, 53-66 (1973).
- 5. J. Harer. The Second Homology Group of the Mapping Class Group of an Orientable Surface, Invent. math. 72, 221-239 (1983).
- 6. A. HATCHER & W. THURSTON. A presentation for the mapping class group of a closed orientable surface, Topology 19, 221-237 (1980).
- 7. S. Humphries. Generators for the mapping class group, Lecture Notes in Math. 722, 44-47 (1979).
- 8. D. JOHNSON The structure of the Torelli group I: A finite set of generators for \mathcal{T} , Ann. of Math. 118, 423-442 (1983).
- 9. C. Labruere. Generalized braid groups and mapping class groups, J. Knot Theory and its Ramifications 6, No.5, 715-726 (1997).
- 10. W.B.R. LICKORISH. A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60, 769-778 (1964).
- 11. W.B.R. LICKORISH. On the homeotopy group of a 2-manifold (Corrigendum), Proc. Cambridge Philos. Soc. 62, 679-681 (1966).
- 12. B. Wajnryb. A simple presentation for the Mapping Class Group of an orientable surface, Israel Journal of Math. 45, 157-174 (1983).

Université de Nantes-UMR 6629, 2 rue de la Houssinière, BP 92208, 44322 NANTES CEDEX 3, FRANCE

 $E ext{-}mail\ address: ext{gervais@math.univ-nantes.fr}$