A FINITE PRESENTATION OF THE MAPPING CLASS
GROUP OF A PUNCTURED SURFACE

SYLVAIN GERVAIS

ABSTRACT. We give a finite presentation of the mapping class
group of an oriented (possibly bounded) surface of genus greater
or equal than 1, considering Dehn twists on a very simple set of
curves.

INTRODUCTION AND NOTATIONS

Let ¥,, be an oriented surface of genus g > 1 with n boundary
components and denote by M, its mapping class group, that is to
say the group of orientation preserving diffeomorphisms of ¥, which
are the identity on 0%, ,, modulo isotopy:

Mg, = mo (DI (2,0, 05,)) -

For a simple closed curve o in Y, ,, denote by 7, the Dehn twist
along a. If a and 3 are isotopic, then the associated twists are also
isotopic: thus, we shall consider curves up to isotopy. We shall use
greek letters to denote them, and we shall not distinguish a Dehn twist
from its isotopy class.

It is known that M, is generated by Dehn twists [2, 10, 11]. Using
the result of Hatcher and Thuston [6], Wajnryb gave in [12] a presen-
tation of My, and Mg, with the minimal possible number of twist
generators given by Humphries in [7]. In [3], the author gave a presen-
tation considering either all possible Dehn twists, or just Dehn twists
along non-separating curves. These two presentations appear to be
very symmetric, but infinite. The aim of this article is to give a finite
presentation of M.

Notation. Composition of diffeomorphisms in M., will be written
from right to left. For two elements z, y of a multiplicative group, we
will denote indifferently by z~! or T the inverse of z and by y(z) the
conjugate yzy of x by y.

Key words and phrases. Surfaces, Mapping class groups, Dehn twists.
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2 SYLVAIN GERVAIS

Next, considering the curves of figure 1, we denote by G,,, and H,,,
(we may on occasion omit the subscript “g,n” if there is no ambiguity)
the following sets of curves in X

gg,n = {5, B, ... ,ﬁg—l, Ay, ... ,024¢4n-2, (7i,j)1§i,j§2g+n—2,i¢j },
Hon = {oa,8, 00, 81,74, 02, - - s Y2g-4,29-25 Bg—1, 71,2,
agg, ceey a2g+n_2, 51, .. ,(5n_1 }

where 0; = 7Y2g_2+i24—1+4i 1S the ith boundary component. Note that
Hgn is a subset of G, .

Finally, a triple (7,7,k)€{1,...,2g9+n—2}® will be said to be good
when:

i) (5,5,k)¢{(z,z,2) /ze{1,...,2g+n—2}},
i) i<j<kor j<k<ior k<i<j.

Remark 1. For n =0 or n = 1, Humphries’ generators are the Dehn
twists relative to the curves of .

We will give a presentation of Mg, taking as generators the twists
along the curves in G. The relations will be of the following types.

The braids: If o and 3 are two curves in X, , which do not intersect
(resp. intersect in a single point), then the associated Dehn twists
satisfy the relation 7,75 = 737, (resp. TaTgTa = T3TaTs)-
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The stars: Consider a subsurface of >, which is homeomorphic to
Yi1,3. Then, if oy, a9, as, B, Y1, 72, 73 are the curves described in
figure 2, one has in M, , the relation

(Ta1Ta2TaaTﬁ)3 = Ty Ty Tys -
Note that if 43 bounds a disc in X, then this relation becomes

3 _
(Ta17-a27-0427-ﬁ) =TTy, -

figure 2

The handles: Pasting a cylinder on two boundary components of
Y4-1,n+2, the twists along these two boundary curves become equal in
)y

Theorem 1. For all (g,n) € N* xN, (g,n) # (1,0), the mapping
class group My, admits a presentation with generators b, b,,... b, ,,

Qyyoon s Oy, (€5)1<ij<2g4n—2,i%; and relations

g,n-

(A) “handles”: ¢ =Cyp_yq Joralli, 1<i<g—1,

24,241
(T) “braids”: for all z,y among the generators, xy = yz if
the associated curves are disjoint and xzyx = yxy if the
associated curves intersect transversaly in a single point,

(Eijx) “stars’: ¢ .c. .c..=(a,a.a b)® for all good triples (i, j, k),

i,J j.k "k, i ]k
where ¢, =1.

Remark 2. It is clear that the handle relations are unnecessary: one
has just to remove c,,,... ,c, ,,. , from G, to eliminate them. But
it is convenient for symmetry and notation to keep these generators.

Let G,, denote the group with presentation given by theorem 1.
Since the set of generators for G, that we consider here is parametrized
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by G, we will consider G, , as a subset of G,,. Consequently, H,,,
will also be considered as a subset of G ,,.

The paper is organized as follows. In section 1, we prove that Gy,
is generated by H,,. Section 2 is devoted to the proof of theorem 1
when n = 1. Finally, we conclude the proof in section 3 by proving
that Gy, is isomorphic to Mg .

1. GENERATORS FOR G,

In this section, we prove the following proposition.
Proposition 1. G, is generated by Hg .
We begin by proving some relations in G .
Lemma 2. For i,j,k€{l,...,29+n—2}, if X1 =a,a,, Xo=0X;b
and X3 = a, X»a,, then:

(1) X, X, = X, X, for all p,qe{1,2,3}.

(i) (a;a;a,b)® = X1 XX,

(i1i) (a,0,0,b)* = X1 X3 = (a,a,0)* = (a,ba,)?,

(w) a,, a;, a, andb commute with (a,a,a,b)’.

Remark 3. Combining the braid relations and lemma 2, one can see
that the star relations (E;;) and (Ej,; ;) are consequences of (E; ),
and that the star relation (F;;;) is a consequence of (F;;;) when
i # j. Thus, one just needs relations (E; ;) with good triples (¢, j, k)
such that ¢ < j < k. This will be used latter for proving lemma 6.

Proof. (i) Using relations (7T), one has
a, Xo = a,ba, ajb
= ba,ba; b
= ba,a;ba,
= Xzaj,
and in the same way, a, Xy = Xga,. Thus, we get X; Xy, = Xy X,
and X; X3 = X3 X; since X;a, =a, X;.
On the other hand, the braid relations imply
b(X;) = ba,ba,a,ba,b
a,ba,a;a;,aba
= X3a
and we get X2 X3 = X3 .X2.

k
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(i1) Using relations (7) and (i), one obtains:

X1XoXs = X1X3X,
= aaabaaba baab

= azajabaaabaaab

= (a,a,a,b)>.

i ]k

(iii) Replacing a, by a, in X3, we get
X3 =aqa, Xzai =a, aj X2 = X1X2.
Thus, using relations (7), (i) and (ii), one has:

(a.a.a.b)3 = X1X2X1X2 X2X2

Y = aabaabaza]baab—(aiajb)4

= a;ba;ba,ba;ba;ba, b
= albaja balajbala]baj

[

= (a,ba,)".

(iv) One has just to apply the star and braid relations. O
Lemma 3. For all good triples (i,7,k), one has in Gy, the relation
(L) a.cc.a =c, a Xa, X = Cik Yaj Xa,

where X =ba,a, b.

Remark 4. These relations are just the well known lantern relations.

Proof. If X;=a,a, and X3=a,; X a,, one has by lemma 2 and the
star relations (£, ,,) and (£, ,):

XiXXs5=c¢ .c .c . and X2X2—c c

i, 3.k Tk,i ik Tk,

From this, we get, using the braid relations, that
le X = Cii Cin X; = Cir X X,
that is to say, by lemma 2 and (7T),
a, ¢ ¢ a,=c,Xa,Xa =c,a Xa X.

6] g,k

O

Lemma 4. For all i,k such that 1<i<g—1 and k # 2i—1,2i, one
has in G4,

., = ba, ba, bt

2¢ 7 24,2i—1

a,; ¢y, (b)) .

21 724,k
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Proof. If X=ba,, , a,, b, one has by the lantern relations

(LQi,k,%*l) D09 Co ke Crninn Qo1 = Gy Xa X a,
which implies
C2i,2i71 am 2i,k Xa Xa a2z 1 Ck 2i—1 °
Thus, denoting ba,, b, a,, , b¢, 5. a, ¢, . (b;,) by y, we can compute

using the relations (7):

bXa,Xa o Ty 1 Crois (D))
ba, b, a,,_ lbbam LGy, ba ba,_,a,b(b,)
bb, a, b, a bakbz( 5)

ba 21(1))

bb(ak)

= a

y = ba,b a

26 T4 T2i—1

2i—1

X
O

Proof of proposition 1. If H denotes the subgroup of G, ,, generated
by M4, we have to prove that G,, C H.

a) We first prove inductively that a a,,, C and c¢ are
elements of H for all, 1 <:<g—1.

For 7 =1, one obtains a,, a, and c,, which are in H, and the
relation (F22) gives ¢,, =(a,a,a,b)*c,, € H. So, suppose inductively

that a a,,, ¢ c are elements of H (i < g —2) and let us

2i—17 297 T2i—1,2¢ 24,24—1

2i—19 Y2i1 “2i-1,2i0 “2i2i—1
prove that a,,. ., G, ., Coiiy0iver Coiraginn are also in H. Recall that by
the handle relations, one has c,, ., =c¢,_,,, € H. Applying lemma 4

respectively with k=2¢+ 1 and k=27 + 2, we obtain

ba, b a

a2i+1 - 24 74 T24—-1

= ba,b a

a’2i+2 - 2i Vi 21

be
be

24,2i—1 27, C2i,2i+1 ) € H’

Qi Cos 2142 (bl) € H.

(b,

3

24,29—1

The star relations allow us to conclude the induction as follows:

(E
which gives ¢

b4,

2i,2i+2,2i+2) : C2¢,2i+2 C2i+2,2z - (0, Qyiyn

€H (Y2i2i+2 € Mgy by definition);

2642,2i

(E
which gives ¢

c b)*,

2i,2i+1,2i+2) : C2i,2i+lc2i+1,2i+2 2i4+2,2¢ = (a'2ia a

€H,;

2i+1 72442

2i41,2i4+2
(E
which gives ¢

— 4
c 2i4+2,2i+1 (a2i+1 a2¢+2 b) )

2i+1,2i+2 c

2i+1,2i+2,2i+2) :

eH.

2i+42,2i41
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b) By lemma 4, one has (i =g —1 and k = 29 — 1)

a2g—1 = b a2g—2 bg—l a2g—3 b C2g—2,2g—3 a2g—2 CZg—2,2g—1 (bg—l)'
Recall that c,,_,,,_, =¢C,,_3,,_, € H. Thus, combined with the case a),
this relation implies a,,_, € H.

¢) It remains to prove that c,; € H foralli,j.

* By definition of H and the case a), one has c,,,, € H for all 4
such that 1 <i<2g+n—3.

* Let us show that ¢,; and c,, are elements of H for all j such
that 2 <73 <2g9g+n—2.

We have already seen that c, ,, ¢,, € H. Thus, suppose inductively
that ¢,.,c,, € H (j < 29+ n — 3). Using the star relations, one

152 G
obtains:
. _ 3 . .
(Byie1) €€ Cnn = (a,a;a,,, b)°, which gives ¢, € H,
. . 4 . .
(B i1 41) " Crjpr Coan = (@, a;,, b)%, which gives ¢, € H.

x Now, fix 7 such that 2 <j <29+ n — 2 and let us show that
;¢ € H forall 7, 1 <4 < j. Once more, the star relations allow

2

us to prove this using an inductive argument:

. . 3 . .
(B, 1) Ciipr Ciny o = (@, 0., a, b)°, which gives ¢, . € H,

. . 4 . .
(Bif1;5)t €y Cipn = (@, a,b)%, which gives ¢, € H.

Jit1

2. PROOF OF THEOREM 1 FOR n =1
Let us recall Wajnryb’s result:

Theorem 2 ([12]). M, admits a presentation with generators
{Ta Ja€H} and relations
(I) 7Tty = 7,727, if X and p intersect transversaly in a single
point, and T \T, = 7,7\ if A and p are disjoint.
(II) (TalTﬁTa2)4 = Tz 0 where 6 = T61Ta2TBTa1 Ta1 TBTas 7By (T’Yl,z)'

(II) TayTa,PTyas =tita Ty, totita Ty, ta Ty, where
lh = T8Tar1 Tas T8 » lg = TﬁlTa2T’72,4Tﬁ_17

P = TB2Ty24TB1 T T8 J(w), 0 = Tya T_ﬂ2t2 (T71,2)
and W = To; 75 Tay 751 (T ) -
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Remark 5. When g=1, one just needs the relations (1). The relations
(IT) and (III) appear respectively for g=2 and g=3.

Denote by ®:G,;— M, the map which associates to each gener-
ator a of Gy the corresponding twist 7,. Since the relations (4), (T)
and (E; ;) are satisfied in M, , ® is an homomorphism.

Now, consider ¥ : M, — G, defined by ¥(r,) =a for all o € H.

Lemma 5. ¥V is an homomorphism.

This lemma allows us to prove the theorem 1 for n = 1. Indeed,
since M, is generated by {7, /a € Hy1}, one has @ o ¥ = Id,, -
On the other hand, {a/a € H,1} generates G, by proposition 1, S0
Vod=1Id, .

Proof of lemma 5. We have to show that the relations (I), (II)
and (III) are satisfied in G,;. Relations (I) are braid relations and
are therefore satisfied by (7). Let us look at the relation (II). The
star relation (E, ,,), together with lemma 2, gives (a, ba,)* =c,,c,,.
Thus, relation (1]) is satisfied in Gy, if and only if ¥U(0) =c,,. Let us
compute:

V(@) = bya,ba,aba,b(c,)
= bl a'2 b al al ba2 m(bl) _ by (T)’
= bl 92 ba’1 9’1 ba’2 a_1a_1a_26)302,1 (bl) by (E1,1,2)’
— bbmaba e, () by lemma 2,
= bl E(CZI) by (T)7
= ¢,,.

Wajnryb’s relation (III) is nothing but a lantern relation. Via W, it
becomes in Gy
a, G, f Coy = Im Cio (*)

where m = b, a,¢,, b,(c,,), l =ba, @, b(m) and f =b,c,,b, a,bs(w),
with s = ¥(o) =

In Gg1, the lantern relation (L, ,,) yields
Ay C5Cyy 0y = Cyy Ya@ X a, (L1,2,4)

where X = ba, a,b. To prove that the relation (k) is satisfied in Gy,
we will see that it is exactly the conjugate of the relation (L,,,) by
h =0, a4nga2 a,bb, c,,a,b,. This will be done by proving the
following seven equalities in G :
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5) he,) =1 6) hia,)=c,, 7) hX(a,)=m.

1) Just applying the relations (7'), one obtains:

h‘(al) = b2 CL4 qb2 ba2 a1 bbl cl,2 az bl (al)
= b,a,c,b,ba,a,a(b)
= b2 a4ng5(a’2)
= a

2) Using the relations (7)) again, we get
h’(c1,2) = b2

|
o

= b
_ b,
= b2 a4qb2
= a,.

3) The relation (L,,,) yields

a,c,, ¢, a,=c,,Ya,Ya, where Y =ba,a,b.

Since ¢, ,=c,, by the handle relations, this equality implies the follow-
ing one:

Eaﬁ Cl,2 _Y%Y%GTE (1)
From this, we get:
h(c2,4) = b2 a, mgbaz a, bbl 01,2 a, bl (62,4)
= b2 a44—,1b_26a2a1bb1 561,2 a, 1) by (T)
= b2 a, Tbiba2 albbl }/aa Y_as a_4@(b1) by (1)
= b2a4?b2ba2albblba_2a_4b 3ba2a4b(bl) by (T)
= b2 a4jb_2ba1b_1a2 b1a_4a3ba_3b1(a2 by (T)
= b2 a, 4—,1b2 bal b_1a2 a, ay _2(b by (T)
= bz a, 4—,1 a,ay bz b(a4) _ by (T)
= b2 a, (a_1_a_3_4b)3 C_1,3 cs,4 bal a, bz b(a4) by (E1,3,4)
= b,a,a,b(a,a,a,b)°ba, a,c,, ba,(b,) by (T)
= bya;a;ba,a;ba,bba,b,(c,,) by (T)
= ¢, by (T).
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First, let us compute z:

T = G, b, Coq @y b, b, Coa a_lba_2_bl (61,2)
= G b, Coa @y b, b, C24C12 a ba, bl) _ by (T)
= G b, Coa @y b, b, (al a, a, b)3 ma_1ba_2(b1_) by (E1,2,4)
= G b, Coa @y b, b, (al a, a, b)2 a,a, a, ba—l_ba_z bl) by (T)
Ci,2 b, Coa @y b, b, (a1 a, a, b)2 a,a,ba, bba—z(bl) by (T)
= Cip b1 Ca4 Oy b1 b2 (a’l a, a, b)2 a, b_2b(_bl) by (T)
= Gy b, Coq @y b, b,a,a,a,ba, a, ba, bb_2(b1) by (T)
Ci,2 b, Coa @y b, b,a,a,a,b al_b a, b(bl) by (T)
= G, b, Coa b,a,b, a,a,ba,bba, (b1) by (T)
= G, b, Coa b,b,a,b,a,bb, (az) by (T)
- 01,2 b1 02,4 b2 b1 az a4 _2(b) by (T)
= G, b, Coa b, b(a4) by (T)

Next, using the braid relations, we prove that b,, c,,, b, and a,
commute with z :

b1 (3?) = b1 Cip b1 Cya bz b(a4) =Cip b1 Ci2Cs4 bz 5(a4) =z,
Co4 ("E) =Cp bl Co4 bl bz 5(a4) =,

bz (x) = Cl,2 bl bz Cz,4 bz 5(a4) = C1,2 b1 Cz,4 bz 02,4 5(0,4) =7,

a2 (x) = a? C1,2 bl 62,4 a2 bl b2 CZ,4 a_l_g a_Zb__l(Cl 2)
= Cl,2 bl a2 bl 02,4 bl b2 02,4 a_lb9_2 1_(01,2) by (T)
= CI,Z bl aZ 02,4 bl C2,4 bZ C2 4 _l_ba_2_b1 (61,2) by (T)
= cl,2 bl a’Z CZ,4 bl bZ CZ,4 b2 @ba_lbl (01,2) by (T)
= cl,2 bl a2 62,4 bl b2 62,4 a_lba_2bl (Cl,2 by (T)
= .
To conclude, we get,
f = b2 Csa bl a, bm@a@ma(x)
= b2 Cz,4 bl a, b(l‘) _
= b2 cz,4 bl a, b 01,2 bl C2,4 b2 b(a'4)
= b2 Cz,4 bl &61,2 bl c2,4 a_4(b2) by (T)
b2 c2,4 a_4b2 bl a2 cl 2 bl (C2Q by (T)
= b2 (al a, a, b)3 mﬁ_a_z; 2 b1 a, C1,2 b1 (02,4) by (E1,2,4)
= b,(a,a,a,0)0°a, ¢, b, T ;b ¢, ,a,b(c,,) by (T)
b? (al a2 b)2 a4 balﬁQ bmb2 mbl C_1,2 a2 1(62,4) by lemma’ 2
= (a'l a2 b)2 b2 a4 mb2 bal aZ bbl cl 2 bl a2 bl (62,4) by (T)
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= G by (T)
Finally, we have proved that h(c,,) =c,, = f.
4) We can compute h(a,) as follows:
h(a4) b2 a, Zb_ﬂ)% a, bbl Ci2 0y bl (a'4)
= b2 ay, Gb2ba2 a, b(a4) by (T)
= b2 a, (a'_la_2a_45)3 Ci9Coy _2ba2 a, b(a'4) by (E1,2,4)
= b,0,,@,a,ba,a,a,ba,a,a,bb,ba,a,bla,) by (T)
= b,c,,a,a,ba;a,ba bb,b(a,) by (T)
= b,c,,a,a,ba a,ba a,(b,) by (T)
= b,¢,,(b,) by (T)
- ., by ().
5) For h(c,,), we have:
h(cl,4) = b2 a, me ba2 a, bb1 &2 a, b1 (61,4)
= b,a, Tl_b a, a1_b b, a, b, (01,4) o by (T)
92 a, a_zi_ba_2a_1b_4a_2a_101,2 Co4 b1 a, b2 (61,4) by (E1,2,4)
= ba—za_lba_zcl,2 bz Csa b1 a_4_1a2 Cy,4\0, by (T)
= éa_2a_1§a_261,2 b2 Cos b1 Cio 52,4 X@ (b2) by (L1,2,4)
= Qa_za_léa_261,2 b, Coa b, Cz,zx_ba_la_z;bg_zbaz;(bz) by (T)
= Qa_2a_léa_261,2 b, b, Coa bléa_la_4a2b9_2a4(b2) by (T)
= ba,a;ba,c,,b b,c,,b b3 a,ba, bb,) by (T)
= 0@, T, ba,c,,b,b,0,,b b7 a,bb,(a,) by (T)
= éa_2a_1§a_261,2 b, Caa b, Caa 91 ba_192 a'_4(b) by (T)
= Qa_za_léa_261,2 bl Coq b2 02,49_10'_49[)1(0'2) by (T)
= ba_za_1ba_261,2 bl Csa b2 02,46_1_4ba_2<b1) by (T)
Now, by (E,,,) and lemma 2, one has
C12C4Cy = 00,0, X a2X7

which gives, using the braid relations (recall that X = ba, a, b):

C2,4Ba1a45a_2:a1 a4 a2X612C41
Thus, we get
hc,,) = ba,aba,c,,bc,,b,a,a,0,X¢,c,(b) by (E,,,)
ba,a;be,,a,b,a,¢;¢,,(0,) by (T)
= b_2_1b61,2b1a2 1:b1(02,4) by (T)

11
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= éa_2a_1§c_12 bl a, m_bl E(c2,4) by (T)
= éa’_2a_1§b_161,2b1 a2b1(c2,4) by (T)

éa_2a_1§b_1012a_2b1 a’2(c2,4) by (T)
= ba,a,bb, a,c,,c,,(b) by (T)
= ba,a, bb,a,c,,b(c,,) by (T)
= [.

6) By the relations (T'), one has
h(a’2) = b2 a, KE a, a, bbl Ci2 @y bl (a’2)

ol
> O
N (V]
SRS
FNIEFS
| £
Jb “»h
= | =
ey
N (V]
SN oY O
IS
[V
=
=
(e
N
-

|

e
-
o

7) Using the braid relations, one gets

h(b) = b,a,c, b,ba,a,bb,c,,a,b,(b)
= b2a4c—gba a, bb, b( )
= 22 a, le ba’z a'_z(bl)

Thus, one has hX(a,) = b, a,¢c,,b,(c,,) =m.

This concludes the proof of lemma 5.

3. PROOF OF THEOREM 1

We will proceed by induction on n. Thus, suppose that g>1, n>2,
and consider the exact sequence (see [8]' and [9]):

1 —Z xm(Zgn-1,p) il’ Mg iz» Mgp-1—1

where, fy is defined by collapsing d,, with a disc centred at p and by
extending each map over the disc by the identity. One has fi(k)=7}
for all £ € Z, and, if « is the homotopy class of a simple closed curve
in ¥,,-1, fi(@) is equal to the spin map 7,7, where o/ and o' are
the two boundary components of an annulus on 3,, ; which contains
the collapsed disc (see [9] for the details).

Let us denote by a’l, e ,a;g+n_3, b,, b,1’ ey b;_l, (Ci,j)1§i7éj§29+n_3 the
generators of G,,_1 corresponding to the curves in G, ,_1. We define
g2 : Gg,n — Gg,nfl by

! Johnson asserts that, if g>2, the kernel of f» is isomorphic to the fundamental
group of UX, ,,_1, the unit tangent bundle of ¥, ,_1. Actually, his argument still
works when g=1 and n> 2 since in this case, m1(24,,—1,p) is centerless (see [§]
and [4] for the details).
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g2(a;) = a forall i £A2g+n—2
92(a2g+n—2) = a’l
g2(b) = V'
g(b) =V for 1<i<g-1
gac,;) = ¢ for 1<4,j<29+n-—3
g2(ci,2g+n—2) = C;,l for 2 S Z S 29 + n— 3
92gc2g+n2,j; = ((:1; ¥ 1)4 for 2 < J<29+n-3
92\Cy 5y tp—s = a, o a,
92(029—{»7172,1) =1
l

Proof. We have to prove that the relations in Gy, are satisfied in
Ggn—1 Via go. Since for all 7 such that 1 < 7 < g — 1, one has
92(Coinip1) =€ 5y a0d g2(cyy5)=c),_ ., this is clear for the handle
relations.

So, let A, 4 be two elements of G,, which do not intersect (resp.
intersect transversaly in a single point). If [ and m are the associated

elements of Gy, we have to prove that

m)ga(l)

92(1)g2(m) = ga(
= ga(m)g2(1)g2(m) ).

(°){ (resp. 92(1) g2 (m) g2 (1)

When A and p are distinct from +,,,._,, and 7,, . _,, these rela-
tions are precisely braid relations in Gy ,—1. If not, A and p do not
intersect in a single point. Thus, it remains to consider the cases
where A = v, .., Or Y, ,, and pu € G, is a curve disjoint
from A. For A = v, ,,, one has g»(I) = 1 and the relation (e)
is satisfied in Gg,_1. So, suppose that A = ~,, .. ,. Then, we
have g¢»(l) = (a/ ' a’)*. The curves in Gg, which are disjoint from
Aare 3,0,... ,ﬁg—h041,azg+n—2,72g+n—2,1 and (’}’z’,j)1§z’<j§2g+n—2- Let
us look at the different cases:

— By lemma 2, b’ = g5(b) and a| = g2(a,) = g2(a,,,,_,) commute
with (a! b'a!)* = g2(1).

—Foralli, 1<i<g—1, b = g(b,) commutes with (a’ b’ a’)* by
the braid relations in G 1.

— Forall 4, j such that 1 <i < j < 2g+n—2, one has gs(c, ;) = ¢,
if j # 2g+n—2, and gs(c,;) = ¢/, otherwise. In all cases, one has
that gs(c,;)92(l) = g2(1)g2(c,;) by the braid relations in G, ;.
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Now, let us look at the star relations. For 4, j,k#2g+n—2, (E, )
is sent by go to (E:Jk), the star relation in G, ,_; involving the same
curves. For all 4,7 such that 2 < i <j <29+n—2, (E_, .. ,) is
sent to (E] ). Next, for 2<j <2g+n—2, (E,,,,) issent to
(£],,). Finally, since g2(c,y 1, 5,) =1 and ga(c,551,-,) = (a'b'al)?,
the relation (F,,,,,, ,) issatisfied in G4, 1 via go by lemma 2. This
concludes the proof by remark 3.

O

Since the relations (1), (A) and (E; ;) are satisfied in Mg, (see
[3]), one has an homomorphism @, : G4, — M,, which associates
to each a € G, , the corresponding twist 7,. Since we view %,, as a
subsurface of X/, 1, we have ®,, 1 0go=fy0®,,. Thus, we get the
following commutative diagram:

11—+ kergs Ggn 92 Ggn1—1
hg’n ann ngn_l
fi f2
l——Zxm (Zg,n—lvp) - Mg > Mgp1 ——1

where hg, is induced by @, .
Proposition 7. hy, is an isomorphism for all g>1 and n>2.

In order to prove this proposition, we will first give a system of gen-
erators for ker go. Thus, we consider the following elements of ker gs:

:L'O = ala2g+n—27 :I;l = b(x0)7 x2 = a2 ($1)7 :I;S = bl (x2)7
for 2 S Z S g - 1’ x2i = 02’572,27: (x2’[71) and x2’[+1 = b’L (x2’[)’
and for 29 <k <29+n-3, z, =a,(z,).

Remark 6. If g=1, one has just to concider z,,z,,z,,...,z

n—1"

Lemma 8. For all (g,n) € N*xN*, ker go is normally generated by
d, and z,.

Proof. Let us denote by K the subgroup of G, normally generated
by d, and z,. Since g»(d,) =1 and gs(a,,,,_,) = g2(a,), one has
K C ker g,. In order to prove the equality, we shall prove that g
induces a monomorphism g, from G,,/K to Gg,_i.
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Define k: Gy 1 — Gyn/K by

k) = b
k@) = b for 1<i<g-—1
k(a)) = a, foralli, 1<i<2g+n-—3

k¢ ) = ¢, foralli#j, 1<i,j<29+n—3

Y

where, for z € G,,, T denote the class of z in G ,/K. Pasting a
pair of pants to 744,31 allows us to view X, , ;1 as a subsurface of
Ygn, and Gy 1 as a subset of G,,. Thus, k appears to be clearly a
morphism. Let us prove that ko go=1Id.

Denote by H the subgroup of G,,/K generated by {b bl, ..b

s Yg—1>
Ay 5Oy sy (Coj)icivicogin s)-  Since, by definition of go and £,

one has kogs(Z) = = for all Z € H, we just need to prove that
Gyn/K = H. We know that G,,/K is generated by {Z/z€G,,};
thus, the following computations allow us to conclude.

- a2g+n—2: a,.

- ¢ =d =1.

29+n—2,1

— By the star relation (F ), one has

1,1,2g4n—2

51,2g+n—2 = (dvl dvl a2g+n—2 b)_3 52g+n—2,1 = (dvl d: dvl b)_3

— For 2<i<2g+n—3, one has by the lantern relation (L

29+n—2,1,i ) :

a2g+n72 c2g+n72,1 cl,i a’z = C2g+n72,i a’l X al X

where X =ba,, , ,a,b. This relation implies the following one
by (T):

29g+n—2,i i a X _X a 2g+n—2 029+n—2,1
XE Xz d

|
oo
:—‘ J—‘

_Cl,i'

which yields ¢,

294+n—2,1

— In the same Way, using the lantern relation (L ), one proves

that ¢ ¢,, for 2<i<2g+n —3.

i,29+n— 2

i,2g+n—2,1

O

Lemma 9. For all (g,n) € N* x N* kergs is generated by

dn:cwrn%1 and x,,. .. s Togin 3

Proof. By lemma 8, ker g» is normally generated by d, and z,. Fur-
thermore, by the braid relations, d, is central in Gg,. Thus, denoting
by K the subgroup generated by d_,z,,...,z we have to prove

2g+n—37
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that gz,g '€ K for all g€G,,. To do this, it is enough to show that
K is a normal subgroup of G ,,.

By proposition 1, G, is generated by H,, = {a,,b,a,.b,,...,
by 1y Coar e 3 Cogtng-2sCrosGogy v 5Oy oy dyy. .. yd,_ }. Since, by the
braid relations, d,,...,d,_, are central in G, we have to prove that
y(z,) and g(z,) are elements of K for all k, 0 <k <2g+n— 3, and

all ye& where & =H,,\{d,,...,d, .}
x Case 1: k=0.
- b(z,) = z,.

— We prove, using relations (T), that b(z,) = z, T, z,:

0 "I;l '/'UO = al a2g+n—2 bg/2g+n—

= a,ba,,, , bba, ba
b b

= ba,bba
= b(g,)-

29+n—2

— For ye&\{b}, one has y(z,)=y(z,) ==, by the braid relations.

x Case 2: k=1.
—a,(z,) = a,ba, Tyins ba, = ba,ba,, _,ba;
= bal a’2g+n—2 ba’2g+n—2 a_l = '/L‘l ',L‘_O’
a,(z,) = a ba, Ty ba, = ba,ba,  _,ba,
= bal a29+n—2 ba29+n—2 a’l = ',El xO *
T Oy ('rL‘l) = Qygtn ba’l g2g+n72 bg2g+n72
= a2g+n—2 bal ba2g+n—2 b_
= a’2g+n—2 al bal a'2g+n—2 b = :L'_O',El )

a’29+n—2 (xl) = a2g+n—2 bal a29+n—2 b£1/29+n—2

=a ba, ba b

29g4+n—2 2g4+n—2
a,ba,a

= a2g+n—2 29g+n—2 b = xO '7;1 °

— One has b(z,) =7, , and by the braid relations, b(z,)=x, T, 7, :

"EI "E_Oxl = ba’l a29+n:2 ba—l_a2g+n—2 b al C_]'2g+n—2 b
= ba,,, ,ba bba, , ,ba b
= bba bba, bb
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— For i €{2,29,29 +1,...,29 +n — 3}, we have a,(z,) =2, and
a_l(xl):xl :I;_lxlz

T, 7,5, = br,ba,bT,ba bx,b

= bz, ba T, a,ba z,b by (T)

= ba,z,bT, bz, a, b by case 1
= ba,z,T 7, a'_zg

= ba,bz,ba b by case 1
= a;ba,z, a_zgaq. by (T)

= a,(z,) by case 1.

— Each y€{b,...,b,_,,Cpyr - sCoy_4oy 2, Crp} cOmmutes with z,

by the braid relations, so y(z,)=y(z,)=x, .

x Case 3: ke€{2,2g,...,29+n—3}.

— By the braid relations and the preceeding cases, we have:
a’l(xk) =a, a,(z,) = a4, T, Ty0, =T

a_l(xk) = a, a_1(x1) =0, T,

k1

a2g+n—2(xk) = a, a/29+n—2(x1) =0, T,T, 0 =T,T,,

Aoy in_2 (wk) =a, a2g+n72(w1) =0, TyT, 0 =Ty T, .
— It follows from the braid relations and the case 2 that

b(z,) = ba, b(a,) = a, ba,(z,) = a, b(z,) = @

kD
and we get also b(z,) =1, .

— For k # 2, one has b,(z,) =b,(z,) =z, by the braid relations.

When k=2, we get b,(z,)=z, and b,(z,)=2,7, , :
R RA N NAN NS

a2 xl bl a2 bl x__lbl a'_2 1 '/Lll a'_2 by (T)

= a,bz, 7,7, b @, by case 2

= a,b a,x, a,b a, by case 2
b, a,b, z, b, @,b, by (T)

= b,(x,) by case 2.

—Each ye{b,,...,b,_,,C4s-- 1Coy_sng_2sCr,} cOmmutes with x,

for k=2,2g,...,29 +n — 3 by the braid relations. Therefore, we
get y(z,)=y(z,) ==, .
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— Let 1€{2,2¢,...,29 +n — 3}. Suppose first that i >k. Then, if
m, =7, (a,), we have

a’z(xk) =aq;aq,T,a,0, =0a,T, M Q0aq.

By the braid relations, one has
mk = ba—la'2g+n—2 E(Gk) = ba—1a29+n—2 a’k (b) = b a’2g+n—2 ak b(al)

and the lantern relation (L, _,, ) says that

a2g+n—2 62g+n—2,1 Cl,k ak = C2g+n 2,k a Y al Y
where Y =ba, ., _,a, b Thus, we get
mk = Y(al) = al 629+n—2,k a2g+n—2 C2g+n—2,1 Cl,k ak; I

which implies by the braid relations m a,=a,m, since 7>k. From
this, one obtains

aw(xk) =a;Z,a,M 0 =0,2,0,%,0, T, Q) =T, T, .
In particular, we have z, =z, 7, a, z, @, and so
ai (xk) - ai xl xz a/v, xk al ai
= a,r,0,0,%,0,%
i i1 e Tk
= I,T,T,T, 7T, by case 2
= T, T;T,

Conclusion: { al(xk) =L, X, T, al(xk) =z, 7z, it i >k,
a, T, T, T

x Case 4: k=3.
— By the braid relations and the preceeding cases, we have:

al(xB) = bl al(x2) = bl x2 x_OE: x3x_0’

1( )_ba( ):blxz%az%%a
Aoy im— 2( ) Aogpn— 2(%):6135_0%E:33_0333a
Aoy im— 2( ) 29+n72(x2) =b, z, $2E:x0 Ly -

— The relations (7) and the case 3 prove that

b(xs) = bb1($2) = bl($2) =Ty = 5($3)7

and

a,(;) = a, b, 0,(z,) = b, 0, b,(z,) = b, a,(z,) = 7, =T, ().
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— One has b, (z,)==,. On the other hand, we get

‘IL‘3 $4 :L‘S =

bl

(

z,) = b x,b 7, b 1,b by case3
= I T,

& 8

-

=

I
SN o o o
i
o0
M
N
S 8
8
=

|
i
M
S
-~
o
8]
=
o

i
N

S
—~
8
w

On the other hand, we have c, ,(z,)=u=,.

— The braid relations assure that y(z,) = y(z,) = =

yed{b,,...

— For each i€{2g,..

and

— Finally, we shall prove that c ,(z,)=,7, %, T, d, .

b

C

1 Yg—17 74,60 " * " 7c2g74,2972}'

az(xS) = bl az(x2) = bl xzx_leE = IZ ‘/I"_lxl%

a;

1

(x3) = bl a_z(x2) = bl xl x_v,x2E: xl xz "1;3 °

n

The lantern relation (L,,,,_,,,) says

3

.,2g +n — 3}, one has by the case 3

a29+n—2 C2g+n—2,1 Cl,2 a2 = C2g+n—2,2 7al X al = C?g+n—2,2 al 'X al
where X =ba,a,, ., ,b, that is to say (d,=c,,,,_,,):
a2g+n—2 Cl,2 a_l = C2g+n—2,2 @ayal X (*)
and
c2g+n72,2 m = X a_lX a'_la2 dn a2g+n72 (**)'
Then, one can compute
x_B(Cl,Z) = bl a, ba29+n—2 a_150'_2__1(c1,2)
= bl a, ba’2g+n72 Ci zb_a'_2(b1) _ by (T)
= b1 a, bc2g+n—2,2 a_2_n£al X ba_z(b1) by (*)
= bl a2 b C2g+n_—2,2 G/_Q_Cin X al b a29+n—2 (bl)
b1 Cogtn—2,2 902 bg( bl) _ by (T)
= bl &g+n—2,2 ba2 b ba—2a2g+n—2 b(bl)
= bl bl (c2g+n72,2) by (T)
= ¢

294n—2,2 °

19

for all

X
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Thus, we get

Ci2 ($3) = CpT3Cp,
= I, x_SCI,Z Ty i
= T3Cy4n_22Cia
= I Xa—lX_1a2 a2g_+n—2 dn _ by (**)
= "L.S ba’? a2g+n—2 _lba_2a2g+n—2 b£1'2 :L._Odn
= Ty bazgi-nd a, a_lbal a_2a2g+n—2 ba2 ',E_Odn
= z,b7,ba,bx,ba,T,d, by (T)
= 2,7,G,7,0,T,d,
= 7,7,2,%,2,7,d, by case 2
= ©,7,1,7,d,

Cio (.’L‘3) =CCT3C, d Loy Ty Cyy = Ty d Loy T, .

x Case b: ke€{4,5,...,29 — 1}.

In order to simplify the notation, let us denote

€; = b1 y €4 = Chyy €5 = bz vy €0 T Chu_ungay Cyg T bg—l )

so that, for 1€{3,...,29 — 1}, z,=e¢(z,_,).

— Then, one has by the braid relations and the case 4:

a’l(xk) =€, € "'64(11(1'3) =€ e Ty T €, €

I
8

Likewise, we get

a_l(xk) = xk '/I’IO 7 a2g+n—2(xk) = x_Oxk bl a2g+n—2 (',L'k) = 'T"O '/I’lk, bl

and b(z,) = B(x,) = 7, = a,(z,) = @(s,).
— For i € {3,4,...,29g — 1}, i < k, one obtains, using the braid
relations, e, (z,)=7¢€(z,) =z,

e(z,) =€, -ee e ez, =e¢

=€k---€3($2) =Ty -

€1 €6,€4 76y ($2)

For i>k +1, e, commutes with e, ,..., e, and z,, thus we also
have

e(z,) =e(x) =2, (i>k+1) (%)

— One has e, (z,) =,.,. Let us prove by induction on k that
€ (®,) =2,7,_ x, . We have seen in case 4 that this equaliy is
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satisfied at the rank k& = 3. Suppose it is true at the rank k—1,
4<k < 2g— 2. Then, we get:

. T, T, = €. T, €, € €T, €

kE k41 Tk ek xk—l ek k4+1 "k T k— kE Tk+1 Tk -1 7k
= 676 xk—l ek+1 6k ek-‘rl xk 1 ek-‘,-l ek ek+1 by (T)
= ek 6k:+1 xk—l ek ',L.k—l 6k‘ xk 1 6l<:+1 e by (*)
= Gl T Ty Ty 610 G
= e,€,.,6 T, ¢¢€ € byinductive hypothesis
= €1 € Chi1 Tyoy Cpy €4 €yy DY (T)
= 6T 66, by (%)
= € (xk)

— This last relation implies =z, =z, _, e, Z,_, e, z,_, . Thus, we get
6k(xk) :6k xk—l ek ‘/le 16 x lek :xk xk—l 'Z'k
On the other hand, one has €, (z,)=xz,_, .

— For i€ {2g,...,2g9+ n — 3}, we have, by the braid relations and
the cases 2, 3 and 4:

a’z(xk) = 6k"'64ai(x3) =€,

and likewise, we get @ (z,)=1z, T, z, .

— Finally, since c,,(z,)=2,7, z, T, d,, it follows from the braid re-
lations and the preceeding cases that c ,(r,) =z,7%, 7, Z,d,. In
the same way, we get ¢, (z,) =12, d, z, T, z,.

o

Proof of proposition 7. If 7 :Z x m(2,,_1,p) = m(Zgn-1,D)
denotes the projection, the loops mohy,(z,), ... ,mohg (2, ,_,) form
a basis of the free group m (3, ,-1,p). Thus, F, the subgroup of ker g,
generated by z,,...,z, ., isfree of rank 2g+n—2 and the restriction
of mohy, to this subgroup is an isomorphism.
Now, for every element x of ker g, there are, by lemma 9, an integer
k and an element f of F such that z=d* f (d, is central in ker g ).
Then, one has hy,(z) =(k,m o hyp(z)) and therefore, hy, is one to
one. But hgy,, is also onto. This concludes the proof.

O
Proof of theorem 1. In section 2, we proved that ®,; is an iso-
morphism. Thus, by the five-lemma, proposition 7 and an inductive
argument, ®,, is an isomorphism for all » > 1. In order to conclude
the proof, it remains to look at the case n=0.

Consider once more the commutative diagram
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1 — ker gs > Gg,l 92 > Gg’() -1
hga ~ | g D0
f2
1 —— ker fg > Mg,l > Mg,() —1

Wajnryb proved in [12] that ker f» is normally generated by 75, and

1

TorTay, ;- LHUS, since ker go is normally generated by d, and a, @,

(lemma 8), we conclude that h,; is still an isomorphism. So, we get
that ®,( is an isomorphism.
O
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