Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

2014/05/21

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

Stein

manifolds and contact structures

Legendrian knots

Floer

homology and Legendrian invariants

(1) Stein manifolds and contact structures

(2) Legendrian knots

(3) Floer homology and Legendrian invariants

Floer homology and invariants of Legendrian knots

Definition

A Stein manifold is a smooth, proper analytic subset of \mathbb{C}^{N}, with the induced complex structure.

Example
\mathbb{C}^{N} itself is trivially a Stein manifold.
Example
A smooth affine variety is a Stein manifold.

Any Stein n-manifold X admits an exhausting, strictly plurisubharmonic function ρ. Its closed sublevels are called Stein domains.
ρ is close to a Morse function with singular points of index $\leq n$, hence \exists handle decomposition of X with handles of index $\leq n$.

Example

When $X \subset \mathbb{C}^{n}$, the square of the radial function $\rho:\left(z_{1}, \ldots, z_{n}\right) \mapsto \sum\left|z_{j}\right|^{2}$ is exhausting and strictly plurisubharmonic.

Any regular level set is a contact manifold.

Definition

A contact manifold is a pair $\left(M^{2 n+1}, \xi\right)$, where:

- M is an oriented $2 n+1$-dimensional smooth manifold;
- $\xi=\operatorname{ker} \alpha$ is a hyperplane field, and α is a 1 -form that satisfies $\alpha \wedge d \alpha^{n}>0$.

When $M=f^{-1}(r)$ for a regular value r, ξ is given by $J(T M) \cap T M$.
Example
Consider $X=\mathbb{C}^{n}, f=\rho, r>0$: r is regular for ρ, and the corresponding contact manifold is the standard contact $2 n-1$-sphere, $\left(S^{2 n-1}, \xi_{\text {st }}\right)$.

Stein surfaces, (i.e. Stein manifolds of complex dimension 2 real dimension 4) admit a handle decomposition with handles of index 0,1 and 2 .

The 2-handles are attached along Legendrian knots.
Definition
A knot L in $\left(M^{3}, \xi\right)$ is Legendrian if $T L \subset \xi$.

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

Stein

manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants

1. Stein manifolds and contact structures

(2) Legendrian knots

(3) Floer homology and Legendrian invariants

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

Stein

manifolds and
contact

structures

Legendrian knots

Floer homology and Legendrian invariants
$L \subset S^{3}$ topological knot bounds a Seifert surface.

The Seifert genus of L is $g(L)=$ minimal genus of a Seifert surface.

Let $W=f^{-1}((-\infty, r])$, and suppose f has only one critical point in W, which has index 2 .

The attachment of a 4-dimensional 2-handle to B^{4} needs:

- A knot: the attaching circle L.
- An integer: the framing f.

Definition
The Thurston-Bennequin number of L is $t b(L)=f+1$.
The Thurston-Bennequin number of L measures the twisting of the contact structure ξ along L.

Let $W=f^{-1}((-\infty, r])$, and suppose f has only one critical point in W, which has index 2.
$H_{2}(W ; \mathbb{Z})=\mathbb{Z}$; orienting L gives a generator A.
Definition
The rotation number of L is $r(L)=\left\langle c_{1}(J), A\right\rangle$.
The rotation number measures the obstruction of extending the "tangent" trivialisation of $\xi \mid F$ to a global trivialisation.

Floer

Theorem (Bennequin inequality)
$t b(L)+|r(L)| \leq 2 g(L)-1$

Example

For the unknot, $g(\mathcal{O})=0$, so $\operatorname{tb}(\mathcal{O}) \leq-1$.
Note: there is no Stein structure on $S^{2} \times \mathbb{R}^{2}$ (even though there is a complex structure).

Theorem (Bennequin inequality)
$t b(L)+|r(L)| \leq 2 g(L)-1$

Example

For the unknot, $g(\mathcal{O})=0$, so $\operatorname{tb}(\mathcal{O}) \leq-1$.
Note: there is no Stein structure on $S^{2} \times \mathbb{R}^{2}$ (even though there is a complex structure).

There is no higher-dimensional analogue of Bennequin inequality in higher dimensions: no nontrivial obstructions for the existence of Stein structures (Eliashberg).

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

There is a more concrete approach to Legendrian knots. Removing a point from $\left(S^{3}, \xi_{\text {st }}\right)$ yields $\left(\mathbb{R}^{3}, \operatorname{ker}(d z-y d x)\right)$.

Source: Wikipedia

Floer

The front projections of a Legendrian unknot and of a right-handed Legendrian trefoil.

Floer homology and invariants of Legendrian knots

$$
\begin{aligned}
& t b(L)=w r(L)-c(L) / 2 \\
& r(L)=\left(c^{\downarrow}(L)-c^{\uparrow}(L)\right) / 2
\end{aligned}
$$

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

Stein

manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants

1) Stein manifolds and contact structures

(2) Legendrian knots

(3) Floer homology and Legendrian invariants

Juhász defined sutured Floer homology $\operatorname{SFH}(M, \Gamma)$, that is a finite-dimensional \mathbb{F}-vector space associated to a (balanced) sutured manifold (M, Γ).

Example

$L \subset S^{3}, N$ regular neighbourhood of L (i.e. a solid torus) and R_{+}neighbourhood of a curve on $\partial N .\left(S^{3} \backslash \operatorname{lnt}(N), \partial R_{+}\right)$is a sutured manifold.

Legendrian knots have standard neighbourhoods.
On $\nu(L)$ there are two parallel, oppositely oriented curves $\gamma_{L},-\gamma_{L}$. Each of this curves links $t b(L)$ times with L. We call S_{L}^{3} the sutured manifold $\left(S^{3} \backslash \operatorname{Int}(\nu(L)),\left\{\gamma_{L},-\gamma_{L}\right\}\right)$.

Honda-Kazez-Matić defined an invariant $E H(L)$ in $S F H\left(-S_{L}^{3}\right)$.

Example

For the unknot \mathcal{O} above, $\operatorname{SFH}\left(-S_{\mathcal{O}}^{3}\right)=\mathbb{F}_{(0)}$, and $E H(\mathcal{O})$ is the only nonzero element.
For the trefoil L above, $\operatorname{SFH}\left(-S_{L}^{3}\right)=\mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$, and $E H(L)$ is the nonzero element in degree 0 .

Ozsváth-Szabó and Rasmussen associate to every (topological) knot L in S^{3} a graded $\mathbb{F}[U]$-module $\operatorname{HFK}^{-}(L)$ (multiplication by U lowers grading by 1).

This module is called the knot Floer homology of L.

Example

For the unknot $\mathcal{O}, \operatorname{HFK}^{-}(\mathcal{O})=\mathbb{F}[U]_{(0)}$.
For the trefoil $T_{2,3}, \operatorname{HFK}^{-}\left(T_{2,3}\right)=\mathbb{F}[U]_{(-1)} \oplus \mathbb{F}_{(1)}$.
The knot Floer homology of L is always infinite-dimensional (as a vector space over \mathbb{F}).

When L is a Legendrian knot in $\left(S^{3}, \xi_{\text {st }}\right)$, there is a class $\mathcal{L}(L)$ in $H^{-} K^{-}(m(L))$ (Lisca-Ozsváth-Stipsicz-Szabó).

This is an effective invariant of Legendrian knots (there is also a combinatorial version).

Example

For \mathcal{O} the unknot above: $\operatorname{HFK}^{-}(m(\mathcal{O}))=\mathbb{F}[U]_{(0)}$, and $\mathcal{L}(L)=1$ (i.e. it generates the free part).
For L the trefoil above: $\operatorname{HFK}^{-}(m(L))=\mathbb{F}[U]_{(+1)} \oplus \mathbb{F}_{(-1)}$, and $\mathcal{L}(L)=1$.

There is a related invariant, $\widehat{\mathcal{L}}(L) \in \widehat{\operatorname{HFK}}(m(L))$. $\widehat{H F K}(m(L))$ is a finite-dimensional, graded \mathbb{F}-vector space.

Example

For the unknot $\mathcal{O}, \widehat{\operatorname{HFK}}(m(\mathcal{O}))=\mathbb{F}_{(0)}$ and $\widehat{\mathcal{L}}(\mathcal{O}) \neq 0$.
For the trefoil $L, \widehat{\operatorname{HFK}}(m(L))=\mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$ and $\widehat{\mathcal{L}}(L) \neq 0$ has degree 1 .

There is a related invariant, $\widehat{\mathcal{L}}(L) \in \widehat{\operatorname{HFK}}(m(L))$. $\widehat{H F K}(m(L))$ is a finite-dimensional, graded \mathbb{F}-vector space.

Example

For the unknot $\mathcal{O}, \widehat{\operatorname{HFK}}(m(\mathcal{O}))=\mathbb{F}_{(0)}$ and $\widehat{\mathcal{L}}(\mathcal{O}) \neq 0$.
For the trefoil $L, \widehat{\operatorname{HFK}}(m(L))=\mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$ and $\widehat{\mathcal{L}}(L) \neq 0$ has degree 1.

Theorem (Stipsicz-Vértesi)

There is a "natural" map $\operatorname{SFH}\left(-S_{L}^{3}\right) \rightarrow \widehat{\operatorname{HFK}}(m(L))$ that takes $E H(L)$ to $\widehat{\mathcal{L}}(L)$.

Floer homology and invariants of Legendrian knots

There are two operations on Legendrian knots, called positive and negative stabilisation.
At the diagram level, one just adds a zig-zag.

If $L^{ \pm}$is a \pmstabilisation of L, then $t b\left(L^{ \pm}\right)=t b(L)-1$ and $r\left(L^{ \pm}\right)=r(L) \mp 1$.

Stabilisations induce maps $\sigma_{ \pm}: S F H\left(-S_{L}^{3}\right) \rightarrow S F H\left(-S_{L^{ \pm}}^{3}\right)$, and there are an infinite family of groups $G_{n}=S F H\left(-S_{L^{(n)}}^{3}\right)$ together with maps $\sigma_{ \pm}: G_{n} \rightarrow G_{n+1}$.

Let $G(L)=\underset{\longrightarrow}{\lim }\left(G_{n}, \sigma_{-}\right)$.

Stabilisations induce maps $\sigma_{ \pm}: \operatorname{SFH}\left(-S_{L}^{3}\right) \rightarrow \operatorname{SFH}\left(-S_{L_{ \pm}}^{3}\right)$, and there are an infinite family of groups $G_{n}=\operatorname{SFH}\left(-S_{L^{(n)}}^{3}\right)$ together with maps $\sigma_{ \pm}: G_{n} \rightarrow G_{n+1}$.

Let $G(L)=\underset{\rightarrow}{\lim }\left(G_{n}, \sigma_{-}\right)$.
Theorem (G.)

- The group $G(L)$ has an action induced by the map σ_{+}.
- $\exists \Psi: G(L) \rightarrow H F K(m(L))$, linear $\mathbb{F}[U]$-isomorphism.
- $\Psi([E H(L)])=\mathcal{L}(L)$.
- $\mathcal{L}(L)$ and $\mathcal{L}(-L)$ together determine $E H(L)$.

