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Abstract We consider analytic and iterative reconstructions in the
single-photon emission computed tomography (SPECT).

. As analytic techniques we use Chang's approximate inversion
formula and Novikov's exact inversion formula for the
attenuated ray transform, on one hand, and Wiener-type filter
for data with strong Poisson noise, on other hand.

. As iterative techniques we consider the least square and
expectation maximization iterative reconstructions.

. Different comparisons are given.
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Single Photon Emission Computed Tomography (SPECT)

/
table

collimators

\
gamma camera

r discrete subset of the set
T of all oriented straight
lines in the space
containing the body.

¥ point of detector set I

X point of the space

f(x)  density of radioactive
isotopes

a(x)  photon attenuation coeff.

p(y)  projection data :
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number of photons coming ¢pecr

from the body along
oriented straight line

to the associated detector
during some fixed time.

The problem : find the
isotopes distribution f(x)
from the projection data
p(v) and some a priori
information concerning the
body (attenuation map

a(x)).



Attenuated ray transform
In some approximation the projection data p are modeled as
follows :

Vv €T, p(7) is a realization of a Poisson variate p(+y)
with the mean Mp(v) = g() = CPaf(y),
all p(7) are independent,

where P,f, the attenuated ray transform of f, is

Pof(1) = [ expl-Dalx. )]F(x)c
¥
4 is the direction of -, and Da the divergent beam
+00
Da(x,0) = / a(x + th)dt, x € R?, 9 € S,
0

C = (it, t detection time.

(3)

(The SPECT problem p — Cf has been restricted to each fixed 2D

plane intersecting the body)
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Notation
. T the set of all oriented straight lines in R?, T ~ R x S!
Ay ET, v=(s5,0)={xeR?: x=3s0++1t0, t c R}
. 0 = (61,02) € S gives the orientation of v
.0t = (—0,,01)
.a(x)>0, f(x)>0
. supp a and supp f are included in a disk Bg = {|x| < R}

. [ is a uniform n x n sampling of
Tr={v€T: yNBr#0}={(s,0) cRxS*: |s| <R}

The standard value for n is 128
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Problem 1. Find (as well as possible) Cf from p and a.

Our analytic approach to Problem 1. is based on the scheme
Cf « P;IWp,

where

. W is a space-variant Wiener-type filter of
[Guillement-Novikov 2008] (or some analytic method for
approximate finding the noiseless data g from p)

. P;1is a reconstruction based on some optimal combination

of Novikov exact inversion formula and Chang approximate
inversion formula.

The optimal combination is constructed via a Morozov-type
discrepancy principle (minimize ||P,Cf — Wpl|).
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Chang formula ([Chang 1978], [Novikov 2011])

Cf = Ch,g, where (4)
sty B
a W (x)
Pol(g)(x) = 4=/ 6"ViHgy(x0")do, (FBP)
Sl
W) = [ el Dax 0l

g = CP,f (see (1) and (2)), go(s) = g(s,0),
H, Hilbert transform, Hu(s) = Lp.v. u(t)

Da divergent beam (3).

Chang compensation formula (4) is approximate, sufficiently stable
for reconstruction from discrete and noisy data p.
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Novikov formula ([Novikov 2002])

Cf = N,g, where (5)
Nag(x) = & / 0V, K(x,0)do,
Sl
K(x,0) = exp[-Da(x,—0)]&(x6"),
&(s = exp [Ag(s) cos (By(s)) H(exp [Ag] cos (By) go)(s) +

H Hilbert transform, Da divergent beam,
Ag(s) = 3Poa(s,0), By(s) = HA(s), &u(s)=g(s,0),
g = CP,f.

Formula (5) is exact (for continuous case) but not very stable for
reconstruction from discrete and noisy data p.
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Wiener-type filter[Guillement-Novikov 2008]

Wiener classical result Let g, p, p on [ denote the 2D discrete

Fourier transforms of g, p, pon I (see (1)). Let W denote a

space-invariant linear filter on I that acts in the frequency domain

as

o) — W), jef,

W is real — valued, W(j) = W(—j),
where W is the window function of W.
Then the mean (W, g) = M|[Wp — gH%z(r) is minimal with
respect to W iff

V=n"18(0)=n"?> crg(7)

where n is the sampling number.
But formula (6) contains unknown g.
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Regularization of W* Let Si,..., S, a partition of [ such that
—54 = Sp,, . Let a filter W that acts in the frequency domain as

o) — WQut). jef,
W is real — valued, W(j) = W(—)),
W is constant on each S,

A

Then p(W, g) = M||Wp — g||f2(r) is minimal with respect to W
Wro() & grzedy, jef,

iff
U) YotV

W
2, §|S|Z:es lg(N?, a=1,...,n"
V=n"12(0) =23 cre(),

. |Sa| number of elements in S,
a(j) denotes « such that j € S,
Note : If Sy = {j} VJj € [, then W is reduced to W®Pt,
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Approximation

M

result The window

7):‘7’;(])—‘/‘) if Zp,a(j) — Vp >0
~V, <0

) = p,a())

0 if *
= & s, PO,

p,a(j)

Vo =n='p(0) = n2 32 cr P(),

is a very efficient approximation to W", under the condition that

Filters
Astmp
.Ald

Asym

sym
h,k

So = squares centered at 0 in [
(7) is fulfilled. H

space-variant version of A% uses space-invariant
considerations in /1 x / neighborhood of each detector
v € I'. In our numerical examples h = L = 8.

|Saj)| is great enough in comparison with || (7)

{} (ﬁsmthﬁ%d
{(z=(z21,2) €T, zs = j1}. (7) is fulfilled.
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Optimized analytic reconstruction (OAR)
Cf = Cfa = Na, Wp)a + Cha(Wp — (Wp)a) (8)

where

. N, and Ch, are the inversion operators of formulas (5)
and (4),

. W is a space-variant Wiener-type filter of
[Guillement-Novikov 2008],

. (Wp)a and a, are the low-frequency parts of Wp and a,
obtained via some standard 2D space-invariant filtering
dependent on «,

.« is an optimization parameter choosed to minimize the
discrepancy ||P.Cfo — Wpl|12(r)-

The ansatz Cf,, of (8) is motivated by the facts that Np of the
exact formula is sufficiently stable on sufficiently low frequency
part of p and a, whereas Ch,p of the Chang approximate formula
is sufficiently stable on reasonably high frequency part of p and a.
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Gradient

Find f wich minimizes ||Paf — p||>, with p the projection data. In
discrete model, this corresponds to
Find X = {f(x;)} that minimizes ® = 1/2||AX — Y3
. A the matrix corresponding to P,
.Y the vector formed by the projections p(7)}.
It is a quadratic least square problem which can be treated by the
gradient method, the conjugate gradient... In addition, to avoid
adjustment of the noise, one can add a term for regularization like
alf.f, (N = —Laplacian) or filter the data.
The gradient iterations are
* dolI?
X'=X—pdy, do=Vé=A(AX—Y), p= gl
AX and A*Z are computed as
- AX(s,0) = [ e PO X (s 4 t0)dt
CA*Z(x) = [e PalxO)7z (xeL,e)de
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Expectation Maximization (EM)

EM is a parameter adjustment method by maximum likelihood
principle. Introduced by [Shepp-Vardi 1982] in emission
tomography PET, the algorithm is designed to compute the
maximum of the probability L(p|f) so that the emission map f
generates the projections p. For that, one consider a discrete model
for which f(x) and p() are Poisson distributions. EM iterations
for the maximum are simple and give good results in SPECT.
OSEM (Ordered Subsets EM) [Hudson-Larkin 1994] accelerates
the EM iterations by limiting back-projection computation on
"ordered” subsets of projections.

EM iterations Start with fy = 1. Iteratively

. compute p, = P,f, and compare to supplied projections p by

— P
- Gn =

. update f estimation by
far1(x) = fo(x) [ e PO g, (x0+, e)dem
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Numerical example 1

Attenuation map a, (128 x 128) Emission activity f, (128 x 128)

Emission profile
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Noiseless and noisy projections

Projections ||p — gll2/llgll2 = 30%

Spectrum |p|
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Space-variant Wiener filter A7y and O.A. reconstruction

Projections ||p — gl|2/|lgll2 = 11% Spectrum

OAR: |Ir — noll2/llroll2 = 36% Profile
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Iterative reconstructions (60 It)

Iu".-ﬁ-.-"‘ :‘, é"". KL
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Gradient : ||[r — ro|l2/|lroll2 = 43% Profile

Em: |Ir —noll2/llroll2 = 42% Profile
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Numerical example 2

Attenuation map a, (128 x 128)

Emission activity f, (128 x 128)

o
|

Emission profile
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Noiseless and noisy projections

Projections g (128 x 128)

Projections ||p — gll2/llgll2 = 30%

Spectrum |g|
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Projections ||p — gl|2/]lgll2 = 10% Spectrum

H Numerical
| | examples
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OAR: |Ir — noll2/lIroll2 = 22% Profile




Iterative reconstructions (60 it)
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Gradient : ||[r — ro|l2/|lroll2 = 24% Profile
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Em: [Ir —roll2/lIroll2 = 52% Profile
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