Chap. 1 : Généralités sur les équations différentielles.

Exercice 1 a) Soit $I = \mathbb{R}$ et $\Omega = \mathbb{R}^+$. On considère l'équation différentielle (ED) définie sur $I \times \Omega$ par $x' = 2\sqrt{x}$.

Pour tout $(t_0, x_0) \in I \times \Omega$, rechercher la ou les solutions maximales de condition initiale (t_0, x_0) . Préciser quand il y a unicité.

- b) Même question pour l'équation différentielle définie sur $\mathbb{R} \times \mathbb{R}$ par $2x' = x^2 1$.
- c) Même question pour l'équation différentielle définie sur $\mathbb{R} \times \mathbb{R}$ par $x' = 3(x^2)^{1/3}$.

Chap. 2 : Equations différentielles linéaires à coefficients constants.

Exercice 2) On rappelle que si deux matrices A et B vérifient la relation $B = P^{-1}AP$ alors $e^B = P^{-1}e^AP$. Soit A une matrice réelle. Montrer que det $e^A = e^{\operatorname{trace}(A)}$. (On peut penser à la décomposition "D + N" de A, vue comme matrice à coefficients dans \mathbb{C}).

Exercice 3) 1) Dans chacun des cas ci-dessous, calculer l'exponentielle de la matrice A et donner un système fondamental de solutions de l'équation différentielle x' = Ax.

a)
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ d) $A = \begin{pmatrix} a & -1 \\ 1 & a \end{pmatrix}$
e) $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ f) $A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 1 & 1 - a^2 \\ -1 & 1 & 1 \end{pmatrix}$, où a est un paramètre réel.

2) Représenter le portrait de phase des solutions pour a, b, c, d.

Exercice 4) Donner un système fondamental de solutions de l'équation différentielle x' = Ax

où
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. En déduire e^{tA} .

Exercice 5) On considère l'équation différentielle (ED), x' = Ax, où $A \in M_n(\mathbb{R})$ est antisymétrique.

- a) Montrer que si n est impair, alors det A=0 et (ED) admet des solutions constantes autres que 0.
- b) Soient x et y deux solutions de (ED). Montrer que le produit scalaire $\langle x(t), y(t) \rangle$ est constant. En déduire que pour tout $x_0 \in \mathbb{R}^n$, l'orbite \mathcal{O}_{x_0} se trouve sur une sphère passant par x_0 .

Exercice o) Resoudre le système différentiel :

$$\begin{cases} x'' = 2x - 3y \\ y'' = x - 2y. \end{cases}$$

Exercice 7) Dans chacun des cas ci-dessous, calculer l'exponentielle de la matrice A et résoudre le système x' = Ax + B(t).

(a)
$$A = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$$
, $B(t) = \begin{pmatrix} 0 \\ e^{-t} \end{pmatrix}$,
(b) $A = \begin{pmatrix} 3 & 3 & -2 \\ 1 & 1 & 2 \\ 1 & 3 & 0 \end{pmatrix}$, $B(t) = \begin{pmatrix} e^t \\ 0 \\ e^t \end{pmatrix}$,
(c) $A = \begin{pmatrix} 2 & 0 & 0 \\ -4 & 1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$, $B(t) = \begin{pmatrix} \cos t \\ 0 \\ 0 \end{pmatrix}$.

Exercice 8) Résoudre sur $\mathbb{R}_+ \times \mathbb{R}$ l'équation linéaire du 3^{eme} ordre suivante:

(E.D)
$$y''' + y'' + y' + y = \cos t$$
.

Montrer que (E.D) admet une solution et une seule de la forme $At\cos t + Bt\sin t$.

Exercice 9) Soit A un endomorphisme de \mathbb{R}^n dont les valeurs propres (dans \mathbb{C}) sont différentes de $2ik\pi$ pour tout $k \in \mathbb{Z}$. Soit $B : \mathbb{R} \to \mathbb{R}^n$ une application continue périodique de période 1. On veut montrer que l'équation différentielle (E) : x' = Ax + B(t) admet une solution périodique de période 1 et une seule.

- a) Donner une expression générale des solutions de (E) à l'aide de la méthode de la variation de la constante.
- b) Montrer que dire qu'une solution est 1-périodique équivaut à l'égalité (*) :

$$(e^A - I) \left(x_0 + \int_0^t e^{-uA} B(u) du \right) = -e^A \int_t^{t+1} e^{-uA} B(u) du.$$

c) Montrer que (*) équivaut au système :

$$(e^{A} - I)x_{0} = -e^{A} \int_{0}^{1} e^{-uA} B(u) du,$$

$$(e^{A} - I) (e^{-tA} B(t)) = -e^{A} (e^{-A(t+1)} B(t+1) - e^{-At} B(t)).$$

d) Conclure.

Chap. 3: Equations différentielles linéaires non autonomes.

Exercice 1) Pour chacune des équations différentielles suivantes, déterminer la dimension de l'espace des solutions définies sur \mathbb{R} .

- (a) tx' + 2x = 0,
- (b) $(t^2-1)x'-2tx=0$,
- (c) $x' \sin^3 t 2x \cos t = 0$.

Exercice 2) 1) Soit I un intervalle de \mathbb{R} et $B:I\to \operatorname{End}(\mathbb{R}^n)$ une fonction continûment dérivable sur I. Montrer que si B'(t)B(t) = B(t)B'(t), alors $(e^{B(t)})' = B'(t)e^{B(t)} = e^{B(t)}B'(t)$. 2) Soit l'équation différentielle linéaire (E. D.) $\dot{x} = A(t)x$ où $A: I \to \operatorname{End}(\mathbb{R}^n)$ est une fonction continue sur I. Montrer que si $\forall t \in I, \forall s \in I, [A(t), A(s)] := A(t) A(s) - A(s) A(t) =$ 0, alors la solution de (E. D.) de condition initiale (t_0, x_0) est

$$x(t) = e^{\int_{t_0}^t A(s) ds} \cdot x_0.$$

3) Application: Soit $A: I \to \operatorname{End}(\mathbb{R}^n)$, tel que pour tout t de I, A(t) = f(t)U + g(t)V, où f(t) et g(t) sont deux fonctions à valeurs réelles, continues sur I, et U, V sont deux endomorphismes constants de $\operatorname{End}(\mathbb{R}^n)$ qui commutent. Montrer que, dans ce cas particulier, la résolvante $R_{t_0}^t$ de l'équation différentielle $\dot{x} = A(t)\,x$ s'écrit:

$$R_{t_0}^t = \exp\left(\left(\int_{t_0}^t f(s)\,ds\right)U\right)\exp\left(\left(\int_{t_0}^t g(s)\,ds\right)V\right).$$
 Calculer la résolvante de l'équation différentielle $\dot{x} = A(t)\,x$ dans les deux cas suivants:

$$A(t) = \begin{pmatrix} a(t) & -b(t) \\ b(t) & a(t) \end{pmatrix}, \text{ où } a \text{ et } b \text{ deux fonctions continues sur un intervalle } I \text{ de } \mathbb{R}, \text{ et } A(t) = \begin{pmatrix} 1 & 0 & \cos^2 t \\ 0 & 1 & \cos^2 t \\ 0 & 0 & \sin^2 t \end{pmatrix}.$$

$$A(t) = \begin{pmatrix} 1 & 0 & \cos^2 t \\ 0 & 1 & \cos^2 t \\ 0 & 0 & \sin^2 t \end{pmatrix}$$

Exercice 3) 1) On considère pour $t \in]0, +\infty[$, le système (E) x' = A(t)x + B(t) avec $A(t) = \begin{pmatrix} 0 & 1 \\ -\frac{2}{t^2} & \frac{2}{t} \end{pmatrix}, B(t) = \begin{pmatrix} 0 \\ \frac{1}{t} \end{pmatrix}.$

- a) Soit (E_0) le système homogène associé à (E). Montrer que $u_1(t)=(t,1)$ est solution de (E_0) .
- b) Soit v = (0, 1). Déterminer des fonctions réelles c_1 et c_2 pour que $u_2(t) = c_1(t)u_1(t) + c_2(t)v$ soit solution de (E_0) .
- c) En déduire l'ensemble des solutions de (E_0) .
- d) Trouver une solution particulière de (E) et en déduire l'ensemble des solutions de (E).
- 2) Résoudre pour $t \in]0, +\infty[$, l'équation différentielle $t^2y'' 2ty' + 2y = t$.

Exercice 4) Soit (f,g) une base de solutions de l'équation différentielle homogène :

$$x''(t) + p(t)x'(t) + q(t)x(t) = 0,$$

où p et q sont des fonctions continues sur un intervalle [a, b] de \mathbb{R} .

a) Prouver que les zéros de f sont isolés.

le wronskien de f et g défini par W = fg' - f'g.)

Chap. 4: Equations différentielles non linéaires.

Exercice 5) On considère l'équation différentielle de Riccati $x' = x^2 + t^2$ dans \mathbb{R} et (t_0, x_0) appartenant à \mathbb{R}^2 .

- a) Montrer que par (t_0, x_0) il passe une unique solution maximale de cette équation. On note ϕ cette solution et [a, b] son domaine de définition avec $-\infty \le a < t_0 < b \le +\infty$.
- b) i) Montrer que, si b est infini, la fonction $g(t) = t + \frac{1}{\phi(t)}$ est définie pour t suffisamment grand. En déduire que b est fini.
- ii) Établir, de la même manière, que a est fini.
- iii) En déduire l'allure de la représentation graphique de ϕ .
- c) On suppose que $t_0 = 0$. Quel lien y a-t-il entre la solution maximale de l'équation différentielle qui passe par le point $(0, -x_0)$ et celle qui passe par le point $(0, x_0)$? Que se passe-t-il lorsque $x_0 = 0$?

Exercice 6) Soient

$$U: \begin{array}{cccc} \mathbb{R}^n & \to & \mathbb{R} \\ (q_1, q_2, \dots, q_n) & \mapsto & U(q_1, q_2, \dots, q_n) \end{array} \text{ et } q: \begin{array}{cccc} \mathbb{R} & \to & \mathbb{R}^n \\ t & \mapsto & q(t) = (q_1(t), q_2(t), \dots, q_n(t)) \end{array}$$

On suppose que $U \in C^2(\mathbb{R}^n)$. On considère l'équation de Newton pour une particule de masse m:

$$m\frac{d^2q(t)}{dt^2} = -\nabla U(q(t)),$$

où le gradient ∇ d'une fonction $f \in C^1(\mathbb{R}^n, \mathbb{R})$ est défini par

$$\nabla f = \left(\frac{\partial f}{\partial q_1}, \dots, \frac{\partial f}{\partial q_n}\right).$$

 $F(t) = -\nabla U(q(t))$ est la force qui dérive du potentiel U. A l'instant t, q(t) et $\frac{dq(t)}{dt}$ sont respectivement la position et la vitesse de la particule. On pose $p(t) = m\frac{dq(t)}{dt}$, et on fixe (t_0, p_0, q_0) (condition initiale).

- a) Démontrer que le théorème de Cauchy s'applique.
- b) Soit (I, (p(t), q(t))) la solution maximale du problème de Cauchy de condition initiale (t_0, p_0, q_0) . Montrer que l'on a l'intégrale première de l'énergie:

$$\forall t \in I, \ \frac{1}{2m} \|p(t)\|^2 + U(q(t)) = H_0,$$

où H_0 est une constante.

- c) On suppose que $U \ge 0$. Montrer que $||p(t)|| \le \sqrt{2mH_0}$, et que pour tout $t \in I$, $||q(t)|| \le ||q(t_0)|| + |t t_0| \sqrt{\frac{2}{m}H_0}$.
- d) Soit $\beta \in \overline{\mathbb{R}}$ la borne supérieure de I. Montrer que si $\beta < +\infty$, (p(t), q(t)) reste uniformément bornée lorsque $t \to \beta$. En déduire la valeur de β .

Chap. 5 : Applications différentiables.

Exercice 1) Étudier la continuité et la différentiabilité des fonctions f définies sur \mathbb{R}^2 par (a)

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Dans le cas (b), on pourra chercher à calculer les dérivées partielles, puis montrer que f n'est pas différentiable.

Exercice 2) a) Soit $\varphi : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto ||x||^2 = \langle x, x \rangle$, et $\psi : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto ||x||$. Étudier la différentiabilité, et déterminer la différentielle première en tout point où elle existe de ces deux fonctions.

b) Soit $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$, $x \mapsto \frac{x}{\|x\|^2}$. Montrer que f est différentiable et que sa différentielle première en tout point est une similitude.

Exercice 3) a) Soit $A \in L(\mathbb{R}^n, \mathbb{R}^p)$, soit $b \in \mathbb{R}^p$ et soit f l'application affine $\mathbb{R}^n \to \mathbb{R}^p$ définie par $f(x) = A \cdot x + b$. Montrer que f est différentiable sur \mathbb{R}^n et que pour tout $a \in \mathbb{R}^n$, Df(a) = A.

b) Soit $B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ une application bilinéaire. Montrer que B est différentiable sur $\mathbb{R}^n \times \mathbb{R}^n$ et que pour tout $(a,b) \in \mathbb{R}^n \times \mathbb{R}^n$ et pour tout

 $(h,k) \in \mathbb{R}^n \times \mathbb{R}^n$, $DB((a,b)) : (h,k) \mapsto B(h,b) + B(a,k)$.

c) Montrer que toute application multilinéaire $\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_p \to \mathbb{R}$, est différentiable et

déterminer sa différentielle en tout point.

Exercice 4) Soit $E = \mathcal{M}_n(\mathbb{R})$. On considère l'application $f : E \to E$, (que l'on peut considérer comme une fonction de $\mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$), définie par $A \mapsto A^2$. Montrer que f est différentiable et de classe \mathcal{C}^1 (et même de classe \mathcal{C}^{∞}) et calculer sa différentielle en tout point.

Exercice 5) Soit $E = \mathcal{M}_n(\mathbb{R})$. On considère l'application $f : E \to \mathbb{R}$, (que l'on peut considérer comme une fonction de $\mathbb{R}^{n^2} \to \mathbb{R}$), définie par $A \mapsto \det(A)$.

- a) Montrer que f est différentiable et de classe \mathcal{C}^1 (et même de classe \mathcal{C}^{∞}).
- b) Soit $H \in E$. On considère la fonction $\gamma : \mathbb{R} \to \mathbb{R}$, définie par $\gamma(t) = f(I + tH)$. Montrer que γ est dérivable, puis calculer $\dot{\gamma}(0)$ afin d'établir l'égalité $Df(I)(H) = \operatorname{trace}(H)$.
- c) Déduire de ce qui précède que l'on a, pour tout couple (M, H) de $E \times E$, Df(M)(H) = trace(tcom(M)H), où com(M) désigne la comatrice de M. (On peut commencer par prouver le résultat pour M inversible, puis en déduire le résultat pour M non inversible).

prouver que l'on a $\det(e^A) = e^{\operatorname{trace}(A)}$.

Exercice 6) a) Soit I un intervalle ouvert de \mathbb{R} , a un point de I et f une fonction continue $I \to \mathbb{R}$. On suppose que f est dérivable en tout point de $I \setminus \{a\}$ et que f'(x) a une limite finie ℓ quand x tend vers a. Montrer que f est dérivable en a et que $f'(a) = \ell$.

b) Soit U un ouvert de \mathbb{R}^n , a un point de U et f une fonction continue $U \to \mathbb{R}^p$. On suppose que f est différentiable sur $U \setminus \{a\}$ et que Df(x) admet une limite A dans $L(\mathbb{R}^n, \mathbb{R}^p)$. Montrer que f est différentiable en a et que Df(a) = A. (On pourra considérer la fonction $g(x) = f(x) - f(a) - A \cdot (x - a)$).

Exercice 7) Soit U un ouvert connexe de \mathbb{R}^n et $f: U \to \mathbb{R}^p$ une application différentiable dont la différentielle $Df: U \to L(\mathbb{R}^n, \mathbb{R}^p)$ est constante : il existe $A \in L(\mathbb{R}^n, \mathbb{R}^p)$ telle que pour tout $x \in U$, Df(x) = A. En considérant la fonction $g: U \to \mathbb{R}^p$, $x \mapsto f(x) - A \cdot x$, montrer que f est une application affine.

Exercice 8) a) Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}$ une application différentiable. Montrer que si $a \in U$ est un maximum ou un minimum relatif, alors Df(a) = 0.

b) Soit U un ouvert borné (non vide) de \mathbb{R}^n . Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue sur \overline{U} , différentiable sur U, et telle que f(x) = 0 pour tout $x \in \overline{U} \setminus U$. Montrer qu'il existe $a \in U$ tel que Df(a) = 0. (Indication : se rappeler qu'une fonction continue sur un compact est bornée et atteint ses bornes).

Ce résultat généralise un théorème bien connu : lequel?

Chap. 6: Théorème d'inversion locale.

Exercice 1) (a) Soit f l'application de \mathbb{R}^2 dans lui même définie par f(x,y) = (x+y,xy). Au voisinage de quels points de \mathbb{R}^2 f est-elle un \mathcal{C}^1 -difféomorphisme local ?

(b) Répondre à la question analogue concernant l'application g de \mathbb{R}^3 dans lui-même définie par g(x,y,z)=(x+y+z,xy+yz+zx,xyz).

Exercice 2) Soit f une application linéaire $\mathbb{R}^n \to \mathbb{R}^n$. A quelle condition f est-elle ouverte (i.e. l'image de tout ouvert est un ouvert)?

Exercice 3) (a) Montrer que l'application $\Psi: (r, \theta) \in \mathbb{R}^2 \mapsto (x = r \cos \theta, y = r \sin \theta)$ est un \mathcal{C}^2 - difféomorphisme de $U =]0, +\infty[\times] - \pi, \pi[\operatorname{sur} \mathbb{R}^2 \setminus \{(x, 0) \in \mathbb{R}^2, x \leq 0\}.$

(b) Soit $f: \mathbb{R}^2 \to \mathbb{R}$, une fonction de classe C^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $g(r,\theta) = f(r\cos\theta, r\sin\theta)$. Vérifier que pour tout $(r,\theta) \in \mathbb{R}^* \times \mathbb{R}$:

$$\Delta f(r\cos\theta,r\sin\theta) = \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{1}{r}\frac{\partial g}{\partial r}(r,\theta) + \frac{1}{r^2}\frac{\partial^2 g}{\partial \theta^2}(r,\theta),$$

où
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
.

Exercice 4) Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que :

$$\exists K \in]0,1[, \forall t \in \mathbb{R}, |f'(t)| \le K < 1.$$

On définit alors $g: \mathbb{R}^2 \to \mathbb{R}^2$ par g(x,y) = (x + f(y), y + f(x)).

- (a) Montrer que q est un C^1 -difféomorphisme local.
- (b) Montrer que q est injective.
- (c) i) Montrer que : $\forall (x,y) \in \mathbb{R}^2$, $|x+f(y)-f(0)|+|y+f(x)-f(0)| \geq (1-K)(|x|+|y|)$. En déduire que si g(A) est borné alors A est borné.
- ii) Montrer que l'image de q est fermée.
- (d) Montrer que g est un C^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .

Exercice 5) Soit S l'espace vectoriel des matrices (n, n) symétriques réelles, et U l'ensemble des matrices symétriques réelles définies positives.

- (a) Prouver que U est ouvert dans S.
- (b) Prouver que pour tout $A \in U$, il existe un unique $B \in U$ tel que $A = B^2$. On note $B = \sqrt{A}$.
- (c) Prouver que $\phi: U \to U$, $\phi(A) = \sqrt{A}$, est différentiable. (Indication : on pourra considérer l'application réciproque de ϕ et lui appliquer le théorème d'inversion locale).

Chap. 7: Théorème des fonctions implicites.

Exercice 6) On considère la fonction f de \mathbb{R}^2 dans \mathbb{R} définie par $f(x,y) = x^5 + y^3 - 3x^2y - 1$ et on appelle Γ la courbe de \mathbb{R}^2 d'équation f(x,y) = 0.

Demontrer qu'il existe un voisinage $I \times J$ de (0,1) dans \mathbb{R} et une application φ de I dans J de classe C^1 tels que l'on ait :

$$((x,y) \in I \times J, f(x,y) = 0) \Leftrightarrow (x \in I, y = \varphi(x)).$$

On admet que φ est de classe C^2 . Donnez le développement limité à l'ordre 2 de φ en 0 et en déduire l'allure de la courbe Γ au voisinage du point (0,1).

Exercice 7) Démontrez qu'il existe un voisinage $I_1 \times I_2 \times I_3 \times I_4$ de (1,1,1,1) dans \mathbb{R}^4 et une application $\varphi = (\varphi_1, \varphi_2)$ de classe C^1 de $I_3 \times I_4$ dans $I_1 \times I_2$ tels que les solutions (x, y, u, v) dans $I_1 \times I_2 \times I_3 \times I_4$ du système

$$\begin{cases} x^2 + xu - v^2 - yv = 0\\ xuv + xyv = 2 \end{cases}$$

soient de la forme $(x = \varphi_1(u, v), y = \varphi_2(u, v), u, v)$. Donner la matrice jacobienne de φ au point (1, 1).

Exercice 8) Démontrez que, pour λ réel suffisamment proche de 0, l'équation $x^5 + \lambda x - 1 = 0$ admet une unique solution réelle x_{λ} et que l'application $\varphi : \lambda \to x_{\lambda}$ ainsi définie au voisinage de 0 est de classe C^1 . On admet que cette application est de classe C^2 . Donnez-en le développement limité à l'ordre 2 en 0.

Exercice 9) On considère l'ensemble Ω des points (p,q) de \mathbb{R}^2 tels que $4p^3 + 27q^2 > 0$ et, pour chaque (p,q) appartenant à Ω , l'équation (E)

$$x^3 + px + q = 0$$

d'inconnue x réelle.

- (a) Établir que, si (p,q) appartient à Ω , l'équation (E) admet une unique solution.
- (b) On considère alors la fonction φ de Ω dans $\mathbb R$ qui au couple (p,q) associe la solution de
- (E). Montrer que φ est de classe C^1 dans Ω .

On admet que φ est de classe C^2 . Donner le développement limité de cette application à l'ordre 2 en (0,-1).

Chap. 8: Courbes et surfaces dans \mathbb{R}^3 .

Exercice 1) Pour λ réel, on considère l'ensemble

$$S_{\lambda} = \{(x, y, z) \in \mathbb{R}^3 ; x^2 - y^2 - z^2 = \lambda \}.$$

- a) Montrer que si $\lambda \neq 0$, S_{λ} est une surface régulière de \mathbb{R}^3 . Dessiner S_{λ} . Donner l'équation du plan tangent affine en un point de S_{λ} .
- b) Dessiner S_0 . Montrer que $S_0 \setminus \{(0,0,0)\}$ est une surface régulière de \mathbb{R}^3 . Montrer qu'en revanche S_0 n'est pas une surface régulière de \mathbb{R}^3 . Indication : si c'était le cas, montrer que l'ensemble des vecteurs-vitesse au temps 0 des courbes \mathcal{C}^1 tracées sur S_0 et passant par (0,0,0) au temps 0, contiendrait 3 vecteurs linéairement indépendants, (considérer les chemins $\gamma_i : \mathbb{R} \to \mathbb{R}^3$, i = 1, 2, 3, $\gamma_1(t) = (t, t, 0)$, $\gamma_2(t) = (t, 0, t)$, $\gamma_3(t) = (\sqrt{2}t, t, t)$).

Exercice 2) Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x,y,z) = (f_1(x,y,z), f_2(x,y,z))$, avec

$$\begin{cases} f_1(x, y, z) = x^2 + y^2 + z^2 - 1 \\ f_2(x, y, z) = x^2 + y^2 - x \end{cases}$$

Soit $C = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0_{\mathbb{R}^2} \}.$

- a) Dessiner C.
- b) Montrer qu'en dehors du point (1,0,0), C est une courbe régulière de \mathbb{R}^3 .
- c) En considérant les deux chemins $\gamma_i : \mathbb{R} \to \mathbb{R}^3$, i = 1, 2 $\gamma_1(t) = (\cos^2 t, \cos t \sin t, \sin t)$, $\gamma_2(t) = (\cos^2 t, -\cos t \sin t, \sin t)$, montrer qu' "à cause du point (1, 0, 0)", C n'est pas une courbe régulière de \mathbb{R}^3 .

Chap. 9 : Applications C^k et extrema.

Exercice 3) Soit $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$, $x \mapsto \frac{x}{\|x\|^2}$.

- a) Dire brièvement pourquoi f est de classe \mathcal{C}^2 .
- b) Pour tout $x ext{ de } \mathbb{R}^n \setminus \{0\}$, déterminer Df(x) et $D^2f(x)$.

Exercice 4) Soit E l'espace vectoriel des matrices réelles $n \times n$. On considère l'application $f: E \to \mathbb{R}$ définie par

$$f(A) = \operatorname{trace}({}^{t}A A).$$

- a) Dire brièvement pourquoi f est de classe C^2 .
- b) Pour tout $A \in E$, déterminer Df(A) et $D^2f(A)$.

Exercice 5) Soit $f: \mathbb{R}^n \to \mathbb{R}$, une fonction de classe \mathcal{C}^2 vérifiant f(0) = 0 et Df(0) = 0. En appliquant la formule de Taylor avec reste intégral, prouver qu'il existe des fonctions

continues $J_{ij}: \mathbb{R}^n \to \mathbb{R}$ tenes que

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, \quad f(x) = \sum_{i,j=1}^n f_{ij}(x) x_i x_j.$$

Exercice 6) Pour tout λ réel, on considère la fonction $f_{\lambda}: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f_{\lambda}(x,y) = x^3 + xy + \lambda y^2 + y^3$$
.

Montrer que (0,0) est un point critique de f et discuter la nature de ce point critique suivant les valeurs du paramètre λ .

Exercice 7) Pour tout λ réel, on considère la fonction $f_{\lambda}: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f_{\lambda}(x,y) = x^3 + y^3 - 3\lambda xy.$$

Etudier les extrema de f_{λ} suivant les valeurs du paramètre λ .

Exercice 8) Soient a, b, c des réels tels que 0 < c < b < a et soit

$$S = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}.$$

- a) Montrer que S est une surface régulière de \mathbb{R}^3 .
- b) Soit f la fonction $\mathbb{R}^3 \to \mathbb{R}$, $(x, y, z) \mapsto x^2 + y^2 + z^2$.
- i) Montrer que la restriction de f à S est bornée inférieurement et que la borne inférieure est atteinte en au moins un point de S. Justifier qu'un tel point est un point critique de $f_{|S}$.
- ii) Déterminer les points critiques de $f_{|S|}$.
- iii) En déduire la distance de S à l'origine.

Exercice 9) Soit f la fonction $\mathbb{R}^3 \to \mathbb{R}$, $(x, y, z) \mapsto x^2 y^2 z^2$.

Soit $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, x > 0, y > 0, z > 0\}.$

- a) Montrer que S est une surface régulière de \mathbb{R}^3 .
- b) Montrer que la restriction de f à $\overline{S} = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^2 + z^2 = 1, x \geq 0, y \geq 0, z \geq 0\}$, est bornée supérieurement et que la borne supérieure est atteinte en un point qui est nécessairement dans S. Justifier qu'en un tel point est un point critique de $f_{|S|}$.
- c) Déterminer les points critiques de $f_{|S|}$.
- d) En déduire le maximum de la restriction de f à S.
- e) En déduire l'inégalité arithmético-géométrique : pour tout triplet (a,b,c) de réels strictement positifs, on a :

$$(a^2 b^2 c^2)^{1/3} \le \frac{1}{3} (a^2 + b^2 + c^2).$$

$$f(x,y) = x \sin y, \quad (x,y) \in \mathbb{R}^2.$$

- 1.a Déterminer les points critiques de f.
- 1.b Calculer la matrice hessienne de f.
- 1.c La fonction f admet-elle des minima ou des maxima locaux?
- 1.d En traçant quelques courbes représentatives, représenter l'allure des ensembles de niveau de f. Ces ensembles sont-ils des courbes régulières ?
- 2. On considère le champ de vecteurs V sur \mathbb{R}^2 défini par

$$V(x,y) = (\sin y, x \cos y), \quad (x,y) \in \mathbb{R}^2.$$

- **2**.a Résoudre l'équation différentielle $(\dot{x},\dot{y})=V(x,y)$ avec conditions initiales $(x_0,y_0)=(-\pi/2,\pi/2)$.
- **2**.b Soit $t \in]a,b[\to (x(t),y(t))$ une solution de l'équation différentielle

$$(\dot{x}, \dot{y}) = V(x, y).$$

Montrer qu'il existe une constante C telle que

$$|x(t)| \le C + |t|, \quad |y(t)| \le C(1+t^2), \quad t \in]a, b[.$$

En déduire que le champ de vecteurs V est complet.

2.c Montrer que l'ensemble des points d'équilibre de V est égal à

$$\{m_k = (0, k\pi), k \in \mathbb{Z}\}.$$

- $\mathbf{2}$.d Calculer la différentielle de l'application V.
- **2**.e Étudier le linéarisé de V au point d'équilibre $m_1 = (0, \pi)$.
- **2**.f Sur une même figure, tracer les points d'équilibre, les isoclines horizontales et verticales, ainsi que quelques orbites du champ V. On rappelle que, V étant un champ sur U donné par $V(m)=(X(m),Y(m)), m\in U$, la courbe $\mathcal{C}\subset U$ est une isocline du champ V pour la pente μ si on a $Y(m)=\mu X(m)$ pour $m\in\mathcal{C}$.
- **2**.g Quel est le lien entre le champ de vecteurs V et la fonction f? Discuter les rapports entre les figures des questions 1.d et 2.f