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EAN LERAY was one of the major mathematicians of the twentieth
century, whose revolutionary ideas have transformed several areas
of mathematics. His collected works—actually a 

 

Selecta

 

 of his
work—consist of three thick volumes. That their editor, the French

mathematician and academician Paul Malliavin, should have had to
ask three distinguished mathematicians from three completely different
fields, Armand Borel, Peter Lax, and Guennadi Henkin, to write intro-
ductions for the three volumes, gives an indication of the fundamental
importance and breadth of Leray’s work.

Before making an attempt at describing his work, it is important to
give some indications of the intellectual context “l’entre-deux-guerres,”
the twenties and thirties, in France—in which Leray’s formative years
occurred, and of the dramatic circumstances that he endured during
World War II.

 

1

 

A Short Account of Leray’s Life and Career

 

Jean Leray was the son of two primary school teachers, the 

 

instituteurs

 

who symbolized the Republic against the Old Regime. His wife, Mar-
guerite Trumier, whom he married in 1931, was also the offspring of
two 

 

instituteurs.

 

 She became a mathematics teacher in high school. He
believed strongly in those values and in the system that had allowed a
boy with modest origins to receive the best possible education. The
Lerays had three children, Jean-Claude, an engineer, Françoise, a re-
search biologist, and Denis, a doctor.

Jean Leray was successful at the entrance exam of the Ecole nor-
male supérieure (ENS) in 1926, and became a student there in the class
of 1926.
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 World War I had left the French universities, and particularly
the University of Paris, in very bad shape. Contrary to what had hap-
pened in other countries, France sent its young men to first line combat
zone irrespective of their education. A consequence was that many of
the promising young scholars who would have become the junior pro-
fessors of the twenties were dead.
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 Among the faculty in mathematics
at the University of Paris, very few professors were still active,

 

4

 

 and if

 

J

 

1

 

To write this notice, I have made extensive use of the special issue of the 

 

Gazette des
mathématiciens

 

 “Jean Leray,” edited by Jean-Michel Kantor [K].

 

2

 

In France, the class year is the year of acceptance in the school; ENS is not a degree-
granting institution, but attached to the University of Paris, somewhat like a Harvard house,
or a Cambridge or Oxford college, but one that would have only the very best students. Its
curriculum covers roughly the last two years of college and a master’s degree.

 

3

 

Fifty percent of Ecole normale supérieure students of the classes 1911 to 1914 died
during the war (see [A]).

 

4

 

For an overview of this period, see [A].
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they were, they were mostly not working on the forefront of contem-
porary mathematics—with some exceptions like the great geometer
Elie Cartan.

The new generation of mathematicians that entered Ecole normale
in the twenties was outstanding; among them were André Weil, Jean
Dieudonné, Henri Cartan (Elie’s son), Claude Chevalley, and Jean
Leray. Weil and Leray, who were born the same year (1906) and both
passed away in 1998, were probably the most influential.

The main challenge in mathematics at the time appeared to be the
fulfillment of the program that the German mathematician David Hil-
bert had outlined. This led to the birth of Nicolas Bourbaki in the early
thirties, as a small group of French mathematicians chose to call them-
selves—a pseudonym to be used for the part of their work that they
would do collectively.

 

5

 

 Their goal was to renovate research and exposi-
tion of mathematics, notably by putting 

 

structures

 

 at the heart of their
approach, in continuation of the development of abstract algebra that
had occurred in Germany since the beginning of the century. These
young men were very much at odds with most of their professors, and
had very little mathematical respect for them. At the beginning of their
careers, they were the mavericks of French mathematics.

Leray chose a different path. Although he was asked to be part of
Bourbaki, and he played a role in the meetings that led to its creation,
he quickly drifted away. Whereas they were interested in pure mathe-
matics, mostly algebra and geometry, he got involved in analysis,

 

applied

 

 analysis at that. He chose as his advisor the mechanician Henri
Villat and worked on mathematical problems arising from fluid
dynamics—Villat’s specialty.
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He defended his thesis

 

7

 

 in 1933 and wrote several major and very
influential papers in this domain between 1933 and 1939. In one of
them, he defined the notion of a “weak” solution of a partial differen-
tial equation, and proved what is, still now, one of the very few results
on the existence of solutions of the Navier-Stokes equation. Another of
his celebrated results during that period was obtained in collaboration
with the Polish-Jewish mathematician Julius Schauder. It is a fixed
point theorem, essential for those applications in analysis that both
authors had in mind, but which drew its inspiration from algebraic
topology. He became a professor in the University of Nancy in 1938.

 

5

 

The founding members of Bourbaki were Cartan, Chevalley, Del Sarte, Dieudonné,
Ehresmann, de Possel, and Weil.

 

6

 

In France as in some other countries, theoretical mechanics is an independent field,
covering some parts of applied mathematics. In the Académie des sciences, mathematics is
represented in two sections: the pure mathematicians are in “Géométrie,” the applied
mathematicians are in “Mécanique.”
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Doctorat ès sciences.
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When the war was declared in 1939, Leray, who was a reserve
army officer like almost all university graduates at the time, was called
to active duty and served as a lieutenant in an artillery unit. After
France’s military collapse in May–June of 1940 and the subsequent
infamous armistice that the French government signed on 17 June,
Leray became a prisoner of war on 24 June and was sent to a prisoner’s
camp in Austria (Oflag XVIIA) on 2 July. He remained there almost
five years, until the camp was liberated on 10 May 1945.

The prisoners in the camp were mostly educated men, career or
reserve officers, many of them still students. As in several other camps,
a “university” was created and Leray became its rector. Classes were
taught, exams were given, and degrees granted, with some degree of
recognition by French authorities of the time. As for research, to fight
the feeling that he might be losing the best productive years of his life,
Leray wanted to resume his work. But he was confronted with a
dilemma. If he continued working in fluid mechanics, he might be
forced to collaborate with the German war effort. Instead, he decided
to pursue some ideas in algebraic topology that he had foreseen during
his collaboration with Schauder.
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By 1942, he was able to submit to Henri Villat three short research
announcements for the 

 

Comptes rendus de l’Académie des Sciences

 

and a full exposition of his work for publication in 

 

Journal de mathé-
matiques pures et appliquées.

 

 The announcements came out in 1942,
the paper itself in 1945 (it was divided in three parts, with the subtitle
“Cours de topologie algébrique professé en captivité”).
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Leray was elected to become a professor in the University of Paris
in 1943 (a position he could of course not take before 1945), and a
corresponding member of the Académie des sciences in 1944.

 

10

 

 Oflag
XVIIA was liberated by Allied troops in May 1945. After he came
back to Paris, he continued his work in topology, elaborating on some
of his ideas. This led to another series of short research announcements
and longer papers, published between 1946 and 1950. In those papers,
two fundamental notions were introduced—that of a “sheaf” and that
of a “spectral sequence”—which allowed him to prove or reprove sev-
eral important results.

 

8

 

By history’s tragic irony, Julius Schauder, who had been hiding in Lwov, was arrested and
taken to a camp in 1943—a concentration camp, of course, where he died soon after.
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A course in algebraic topology taught in captivity.
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It is interesting to see how quickly Leray rose to a status of eminence in the academic
world, not only by becoming a professor in Paris at a comparatively early age, but also by
becoming a corresponding member at thirty-eight, and then a full member at forty-seven, of
the Académie des sciences. The Bourbaki members, including those enjoying a similar
scientific status as Leray, reached the status of “académicien” in the seventies.
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Unfortunately, the radical novelty of his work, and the poor quality
of the exposition, hindered its acceptance by the mathematical commu-
nity, in spite of the considerable attention it drew. In the United States,
“Most people . . . found Leray’s papers obscure.”

 

11

 

 In fact, the only
mathematicians who were able to understand Leray’s ideas were, para-
doxically, the Bourbaki members André Weil and Henri Cartan and
some young mathematicians or students close to Cartan, notably Jean-
Louis Koszul, Jean-Pierre Serre, and Armand Borel.

It is a mild understatement to say that Leray’s ideas, reworked
and refined by Cartan, Koszul, Serre, Borel, and others revolutionized
large parts of pure mathematics after World War II. In the process
of algebraization of mathematics, which is one of the main features of
twentieth-century mathematics, sheafs and spectral sequences were
the jewel in the crown.

Leray became a professor in the Collège de France in 1948, and a
member of the Académie des sciences in 1953. He was a member of the
Institute for Advanced Study in Princeton every fall semester from
1951 to 1961, belonged to twelve foreign academies, and received the
Feltrinelli and Wolf prizes and the Lomonosov medal.

In the early fifties, Leray switched fields, once again—not by obli-
gation this time. Starting from the study of wave propagation, he
became interested in complex analysis, proving among other things a
deep generalization of the Cauchy integral formula in 1959—the so-
called Cauchy-Leray formula.

Leray worked and even published until the end of his life. In the
later part of his life, he became interested in propagation problems
with singularities. In 1981, at the age of seventy-five, he published a
long book at MIT Press (

 

Lagrangian Analysis and Quantum Mechan-
ics

 

); in the early nineties he published a few papers, and he was work-
ing on a draft of a research announcement in 1997. The publication of
his collected works, which had been under consideration by Springer
for many years, had to wait until Leray was ready to say that his work
was ready to be collected. It was only in 1995 that he finally consented,
at the age of eighty-nine: he entrusted the task of coordinating the pub-
lication of his collected works to Professor Paul Malliavin. The three
volumes appeared in 1998, shortly before his death.

 

Leray’s Scientific Contributions

 

It is a daunting task to give even a glimpse of Leray’s mathematics, par-
ticularly in a short space. We will try to highlight three aspects.
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G. Whitehead, letter to John McCleary, 1997, in [J].
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Partial differential equations and fluid mechanics.

 

12

 

 As we have
seen above, Leray was a student of Henri Villat, a specialist in fluid
mechanics who was particularly interested in wakes—the mathemati-
cal study of fluid flows around a curved obstacle. Of course, the math-
ematical approach relies on studying a 

 

partial differential equation

 

,
i.e., an equation relating some partial (time and space) derivatives of
the solution, or a system of such equations. Physically, one expects that
once some boundary conditions are given, the equation should have

 

one, and only one

 

 solution (when you bake a cake, its temperature at
any point in the cake at time 

 

t

 

 should be completely determined by the
initial temperatures of the dough and the temperature of the oven).

Several questions immediately arise:

 

•

 

Can one prove mathematically this existence and uniqueness of
solutions (under appropriate conditions on the data)?

 

•

 

If indeed a solution exists, will it exist only for a short period of
time, or forever (concretely, the physical object might explode after
a certain amount of time)?

 

•

 

What exactly does one mean by a solution? Is it a smooth function
(and then how smooth)? If one simply looks at the flow of water in
a very tame river, or at the wake of a boat on that river, it becomes
obvious that the solutions ought to be very irregular (turbulent)—
even with some discontinuities. But then how can one speak of the
partial differential equation in the first place?

In his famous 1934 

 

Acta Mathematica

 

 paper “Sur le mouvement
d’un fluide visqueux emplissant l’espace,” Leray addresses these ques-
tions (and others) in a highly innovative way. Viscous incompressible
fluids are governed by the Navier-Stokes equations. He proves that reg-
ular solutions exist up to a time 

 

T

 

 and characterizes 

 

T.

 

 He introduces
the notion of a 

 

weak

 

 solution (and in order to do this he defines what
is now called a 

 

Sobolev space

 

), giving a precise meaning to an irregular
solution of the equation, and proves that there exist such weak solu-
tions. A “strong-weak” uniqueness theorem then shows that, when
there is a solution in the usual sense and a weak solution, the two
should coincide.

Some progress has been made on the problem since 1934. But, as
Chemin points out in [K], the paper has not lost its interest and cur-
rency today: progress has not been dramatic, much of the work that
has been done since follows his approach, and the basic open questions
that Leray mentions in his paper are still open. Also, the paper opens
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The few lines here give a very imprecise and somewhat misleading account of the results
in the paper. See J.-Y. Chemin’s article in [K] or the paper itself for precise statements.
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new ground leading to Sobolev’s work and the theory of distributions
of L. Schwartz. A masterpiece indeed!

In the thirties, Leray also studied the “Helmholtz conformal repre-
sentation problem”

 

13

 

 in the theory of cavitating wakes. Helmholtz had
studied the case of a flat obstacle; but curved obstacles remained in-
tractable. Leray’s idea was to “deform” the curved obstacle to a flat
one, and use the fact that one had solutions in the flat case.

Several equations in analysis are solved using a “fixed point theo-
rem”—one proves that solving the equation is actually equivalent to
finding a fixed point for some abstract transformation from the set of
all possible states of the physical system to itself. The problem here
consisted of proving the appropriate fixed point theorem, and keeping
track of what happens during the deformation procedure. The fixed
point theorem is of course the Leray-Schauder theorem, and the appli-
cation to the Helmholtz problem Leray’s own work.

 

Sheaves and spectral sequences.

 

14

 

 As we have seen, in Oflag XVIIA
Leray had to be a topologist rather than a mechanician. In making this
act of pure moral and intellectual will he could rely on two previous in-
stances when he had thought about topology: his work with Schauder
on the one hand, and an occasion when, still a student, he had been
asked by Elie Cartan to write up his course on differential forms on Lie
groups. His first task was to define a new cohomology theory.

Starting with Poincaré, attaching some algebraic objects to geomet-
rical/topological spaces had become one of the most powerful tools of
geometry/topology. For instance, the Poincaré group of a space de-
scribes the number of “holes” it contains. In cohomology theory one
associates vector spaces (or, more generally, modules) to spaces. The
simplest (but not simple) example is the de Rham cohomology of a
manifold, the cohomology of differential forms: for instance, the so-
called “first de Rham cohomology group” gives a precise description of
the fact that a vector field whose curl is 0 may or may not derive from
a potential. In his Oflag paper Leray extracted from the (concrete) ex-
ample of de Rham cohomology (well understood at the time) axioms
of what a cohomology theory ought to be, and then constructed such a
theory. Of course, actually 

 

computing

 

 the cohomology groups is an-
other matter!

Leray’s cohomology was an important step for him, but other
attempts by other mathematicians, around the same time, had a more
lasting influence. Where Leray broke completely new ground was in
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See J. Serrin’s article in [K] for details.
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See Borel’s foreword in the volume 1 of [L], Houzel and Miller’s papers in [K],
McLeary’s paper in [J].
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the 1946 papers (although there are some indications that he had this
development in mind in the 1942–45 papers). It consisted in attaching
a cohomology theory to any map from a space 

 

E

 

 to another 

 

E

 

9

 

.

 

 This
posed some deep problems, which he solved by defining two com-
pletely new concepts:

 

•

 

the notion of a sheaf (

 

faisceau

 

), which permits the consideration of
the cohomology of variable subspaces of 

 

E

 

;

 

•

 

the notion of a 

 

spectral sequence

 

, which allows one to keep track
of the cohomology for well-chosen subspaces and use the knowl-
edge to compute the cohomology of 

 

E.

 

 

It took another few years for the theory to mature, stabilize its presen-
tation, show its amazing power, and be fully accepted. For instance,
the account by S. Eilenberg of the 1946 papers in the 

 

Mathematical
Reviews

 

 was neutral, speaking of “interesting new methods.” By the
early fifties, the work of Cartan, Borel, and Serre had made it clear
how powerful indeed these notions were, and not only in the context
of topology for which they had been defined, but in many areas of
mathematics. Contrary to Leray, Serre, who received the Fields medal
in 1954, was—and is—a remarkable expositor. This was a significant
factor in the acceptance of the new methods—manifested since the late
fifties by the wide use of an ugly neologism: the English “sheafify,” the
French “faisceautiser.”

 

Hyperbolic equations and complex analysis.

 

15

 

 One of the first
major applications of sheaf theory and spectral sequences was in com-
plex analysis—the celebrated theorems A and B of Henri Cartan. But
Leray, when he came back to analysis after ten years of topology,
became interested in complex analysis in its own right. His motivation
was again in partial differential equations, and more specifically hyper-
bolic partial differential equations (for instance wave propagation).

He wrote a series of papers “Problème de Cauchy I, II, . . . , VI”
(actually number V was never published) where he studied these hyper-
bolic PDE, obtaining some deep results in the first papers, in particular
an expression of the elementary solution of the corresponding Cauchy
problem (one corresponding to a delta function input) as an integral.
But since the integral (a kind of Laplace transform) was over a com-
plex projective space, it became clear that he would need a calculus of
residues that was not available in 

 

n

 

 variables complex analysis—just as
computations in the classical theory of (one-dimensional) Laplace
transform rely on the Cauchy integral formula and the Cauchy calculus
of residues.
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See Henkin’s introduction in vol. 3 of [L].
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This led him in 1956 to prove the so-called “Cauchy-Fantappiè-
Leray formula,” which seems to be the ultimate generalization of
Cauchy’s integral formula for holomorphic functions. Then in 1959, in
“Problème de Cauchy III,” he proved his residue formula.

Again, Leray’s work in this direction had a tremendous influence in
analysis and in complex analysis. Let us quote Guennadi Henkin (in
[L], volume 3): “Without exaggeration one can say that during the
fifties-sixties the ideas of Leray twice radically changed the direction of
the development of contemporary complex analysis. The Leray sheaf
theory was the main tool for the great breakthrough in complex analy-
sis in the early fifties. . . . In the sixties, thanks to the highly general
Cauchy-Leray formula, the constructive methods of residue theory and
of integral representations occupied once again a first rank position.”

If World War II had not happened, Leray would perhaps be re-
membered “only” for his contributions in analysis and complex analy-
sis. And Peter Lax would be fully justified in explaining ([L], vol. 2):
“Like Poincaré, Leray chose to work mostly on problems that came
from physics. In marked contrast, the founding members of the Bour-
baki movement, most of them Leray’s contemporaries, sought inspiration
not in nature but in mathematics itself. That Leray remained faithful to
nature had a profound effect on postwar French mathematics. . . . He
was the intellectual guide of the present distinguished French school of
applied mathematics. More than that, he provided that balance be-
tween the concrete and the abstract that is so essential for the health of
mathematics.”

But there was the “other” Leray, the one who, in the Oflag, con-
strained himself to be a pure mathematician. That this Leray should
have had such an influence on the “Bourbaki” type of mathematics is
perhaps one of the most exhilarating paradoxes in the history of con-
temporary mathematics.

 

Elected 1959

 

Martin Andler

 

Professor of Mathematics
Université de Versailles-Saint-Quentin
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