Article

MR603126 (82d:34061) 34D15 (41A60) Gingold, H.

A new basis for singularly perturbed problems: a representation theorem.

Adv. in Appl. Math. 1 (1980), no. 1, 67–107.

The author provides the following contribution to singular perturbation theory: Let $y(t, u) = \sum_{\nu} y_{\nu}(t)u^{\nu}$ be a holomorphic function of u ($u \in \mathbf{C}$, |u| < 1) continuously depending on t ($0 \le t \le 1$); assume $y_{\nu}(t) = O(\nu^{\alpha})$ with $\alpha < \frac{1}{2}$; assume $y(t, \cos \theta)$ to be an integrable function of θ on $0 \le \theta \le \pi$; assume y(t, u) to be continuous on $-1 < u \le 1$; then an expansion of y(t, u) on $-1 < u \le 1$ is given in terms of Čebyšev polynomials; its coefficients are continuous functions of t; using the Cesàro summation process it converges even for u = 1.

The case $0 \le t < \infty$ and the behaviour for $t \to \infty$ are also studied. This applies for example to the continuous function $y(t,\varepsilon)$ of t $(0 \le t < \infty)$ and ε $(\varepsilon \ge 0)$ defined for $\varepsilon > 0$ by the Cauchy problem: $\varepsilon y'_t + y = 0$, $y(0,\varepsilon) = 0$; that is, $y = \exp(-t\varepsilon^{-1})$. The half-plane Re $\varepsilon > 0$ has to be mapped by $\varepsilon = (1-u)/(1+u)$ into the disc |u| < 1.

{Reviewer's remarks: A slight error appears on p. 79: The derivative of $\ln(1 + \theta x)$ is not $(1 + \theta x)^{-1}$ but $\theta(1 + \theta x)^{-1}$; therefore f(i, k) does not converge to 0 but to $-\frac{1}{2}$. Lemma 1.3.4 results from a classical theorem: On a compact set a decreasing sequence of numerical continuous functions uniformly converges when it converges to 0 at each point. But this lemma is not proved by p. 81, which would have proved this theorem without the essential assumption that the sequence is decreasing.}

Reviewed by Jean Leray

© Copyright American Mathematical Society 1982, 2006