AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

MR657974 (83m:35118) 35P25 (58F05 58G15 81C05) Chazarain, J.

Sur le comportement semi-classique de l'amplitude de diffusion d'un hamiltonien quantique. (French) [On the semiclassical behavior of the scattering amplitude of a quantum Hamiltonian]

Goulaouic-Meyer-Schwartz Seminar, 1980–1981, *Exp. No. V*, 8 *pp., École Polytech., Palaiseau*, 1981.

Let $-h^2\Delta + V(x)$ be an operator in \mathbb{R}^n , where h is a small parameter; the potential V is C^{∞} and zero outside the ball B: |x| < R, and is not assumed to be radial. The author uses semiclassical approximation to study the scattering of the plane wave $\exp(ih^{-1}kx \cdot \omega)$, where $\omega \in S^{n-1}$. Let Pbe the tangent plane at $-R\omega$ to the sphere $\partial B: |x| = R$, and let x(t, y), $\xi(t, y)$ be the trajectory, defined by the Cauchy data $x(0, y) = y \in P$, $\xi(0, y) = k\omega$, of the field of the Hamiltonian $|\xi|^2 + V(x)$. For all $y \in P$, this trajectory is assumed to exit from B for sufficiently large t. For the Hamiltonian $|\xi|^2 + V(x) - k$, the radii leaving B are the elements of a Lagrangian manifold Λ_0 . Theorem: The scattering amplitude in the direction $\theta \in S^{n-1}$ is an oscillating Maslov function of degree 0 with respect to the Lagrangian manifold Λ_0 . The introduction of a caustic allows the author to make this result explicit.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1983, 2006

Citations

From References: 0 From Reviews: 0