AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 1 From Reviews: 3

MR812282 (87b:35107) 35L70 Beals, Michael (1-RTG)

Propagation of smoothness for nonlinear second-order strictly hyperbolic differential equations.

Pseudodifferential operators and applications (Notre Dame, Ind., 1984), 21–44, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985.

Let $u \in H^s(\mathbb{O})$, $\mathbb{O} \subset \mathbb{R}^n$, s > n/2, be the solution of a semilinear or quasilinear strictly hyperbolic equation with given singular support on an initial hypersurface or in the past. The singular support of u in the future can be larger than that of the solutions to the corresponding linear problem. These "anomalous singularities" that develop have been shown to arise in two ways: if singularitybearing characteristics for the linear problem cross, then nonlinear singularities can propagate along all forward characteristics issuing from the crossing point (Rauch-Reed, Lascar, Beals); and, for n > 2, if $\Gamma = \{x(s)\}$ is a characteristic that is the projection of two null bicharacteristics $\Gamma_{\pm} = \{x(s), \pm \xi(s)\}$, and if the corresponding linear solution has wave front set containing $\Gamma_+ \cup$ Γ_- , then nonlinear singularities can "self-spread" from Γ along all possible characteristics (Beals). Singularities of strength approximately 2s - n/2 appear in a solution to a nonlinear equation of order greater than two.

For second-order equations anomalous singularities of order 2s - n/2 do not appear; they are at worst of order roughly 3s - n: this paper provides complete proofs for the general semilinear equations $p_2(x, D)u = f(x, u)$ and $p_2(x, D)u = f(x, u, Du)$, with f smooth, and an outline of the proof in the quasilinear case. The idea behind the proof bears certain similarities to the arguments used in the study of conormal (Bony, Melrose-Ritter) or stratified (Rauch-Reed) solutions. An algebraic property of $p_2(x, \xi)$ allows estimates on $e_{2k}(D)(f(u))$ for certain microlocally elliptic operators e_{2k} in terms of estimates on $(p_2(x, D))^k u$ in the case of singularities due to selfspreading. Since $(p_2(x, D))^k u \in H^{s-k}(\mathbb{O})$ if $p_2(x, D)u = f(u)$ and k < s - n/2, it follows that an extra s - n/2 derivatives are estimated where e_{2k} is elliptic. A geometric property of the characteristic set of p_2 then shows that, for both self-spread singularities and those due to characteristic crossings, extra derivatives in characteristic directions of order s - n/2 are controlled, allowing the conclusion.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1987, 2006