AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 0 From Reviews: 0

MR817771 (87c:35110) 35L70 (47H15 58E05) Capozzi, A. (I-BARI); Salvatore, A. (I-SISSA)

On the equation $Lu = \nabla V(u)$. (Italian. English summary)

Differential problems and the theory of critical points (Bari, 1984), 41–63, Coll. Atti Congr., Pitagora, Bologna, 1984.

The topic is the following problem. Let E be a real Hilbert space. Let $L: E \to E$ be a continuous selfadjoint operator, for which 0 is an isolated eigenvalue of finite multiplicity. Let $A: E \to E$ be a compact operator such that A(0) = 0, $A = \nabla \psi$, where $\psi \in C^1(E, \mathbf{R})$ and $\psi(0) = 0$. Find $u \in E$ such that Lu = A(u) and $u \neq 0$. In other words: Find the nontrivial critical points of the functional $f \in C^1(E, \mathbf{R})$ defined by $f(u) = \frac{1}{2}(Lu, u)_E - \psi(u)$.

A useful review of printed or preprinted papers is made. Special attention is given to two cases satisfying neither the Palais-Smale nor the Cherami condition: the case of "strong resonance"; the case of "bounded potential", for which an unpublished approach is described. It is detailed when the problem is the following nonlinear wave problem: $u_{tt} - u_{xx} = f(x, t, u)$ and u(x, t) =u(x, t + T) for all $t \in \mathbf{R}$ and $x \in [0, \pi]$, $u(0, t) = u(\pi, t) = 0$ for all $t \in \mathbf{R}$, T/π is rational, fis T-periodic in $t, f \in C^1([0, \pi] \times \mathbf{R} \times \mathbf{R}, \mathbf{R})$. Under some other very specific assumptions the existence of solutions is established.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1987, 2006