AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 0 From Reviews: 0

MR898529 (88g:35161) 35Q10 (35D10) Tanaka, Akio (J-KYOT)

Régularité par rapport au temps des solutions faibles de l'équation de Navier-Stokes. (French) [Regularity with respect to time for weak solutions of the Navier-Stokes equations] *J. Math. Kyoto Univ.* **27** (1987), *no.* 2, 217–241.

Let Ω of \mathbf{R}^3 whose boundary be a domain Г is compact C^3 . and of Define V $= \{v \}$ $\in H^1_0(\Omega)$: $\operatorname{div} v$ $0\}.$ Assume class = $L^{2}(0,T;V) \cap L^{\infty}(0,T;H)$ $\in L^s(0,T;L^r(\Omega))$ that: u \in and ufor such that $3 < r \leq \infty, 2 < s \leq \infty, 3/r + 2/s < 1;$ some (r,s)either $\in L^{\alpha}(0,T;H^{-\beta}(\Omega))$ some (α, β) f for such that $0 \leq \beta < 1$, $\alpha >$ $2/(1-\beta)$, or $f \in C^{\gamma}([0,T]; H^{-1}(\Omega))$ for some γ such that $0 < \gamma \leq 1$. Then $u: (0,T] \to C^{\gamma}([0,T]; H^{-1}(\Omega))$ V is strongly continuous: $u \in C^0((0, T]; V)$.

The increase in the regularity of f increases the regularity of u. In particular: Assume also \mathcal{O} to be an open neighborhood of (0, T) in \mathbb{C} and f to have an analytic continuation $\mathcal{O} \to H^{-1}(\Omega)$; then u has an analytic continuation $\mathcal{O}' \to V$ to some neighborhood \mathcal{O}' of (0, T) in \mathcal{O} .

Finally the following assumption is added: $f: \Omega_0 \times \mathcal{O} \to \mathbb{C}^3$ is holomorphic where Ω_0 is some open subset of Ω .

The proof uses a semigroup generated by a selfadjoint, strictly positive definite operator.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1988, 2006