AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 2 From Reviews: 0

MR905619 (88k:35164) 35Q10 (35B35 35D99) Secchi, Paolo (I-TRNT)

L^2 stability for weak solutions of the Navier-Stokes equations in ${f R}^3$.

Indiana Univ. Math. J. 36 (1987), no. 3, 685–691.

The following theorem is proved. Let $L^2(\mathbf{R}^3)$ be the space of the square integrable functions $\mathbf{R}^3 \to \mathbf{R}^3$ and $\|\cdot\|$ be its norm. Let $H = \{\varphi \in L^2(\mathbf{R}^3): \operatorname{div} \varphi = 0\}$. Let $H^p = H^p(\mathbf{R}^3)$ be the Sobolev space of order p. Consider the initial value problem for the nonstationary Navier-Stokes equations in the whole space \mathbf{R}^3 with a given external force $\in L^1(0, \infty; L^2) \cap L^2(0, \infty; L^2)$. Assume that for some initial velocity $v_0 \in H$ there exists a strong solution $v \in H^1(0, \infty; L^2) \cap L^2(0, \infty; H^2)$. Then for any initial velocity $u_0 \in H$ there exists a suitable weak solution $u \in L^\infty(0, \infty; H) \cap L^2(0, \infty; H^1)$ such that $||u(t) - v(t)|| \to 0$ as $t \to \infty$. For the construction of suitable weak solutions see a paper by H. Beirão da Veiga [J. Math. Pures Appl. (9) **64** (1985), no. 3, 321–334; MR0823407 (87h:35268)].

Reviewed by Jean Leray

© Copyright American Mathematical Society 1988, 2006