Article

MR906154 (88m:35037) 35J10 Hsu, Pei [Hsu, Elton P.] (1-NY-X)

On the Poisson kernel for the Neumann problem of Schrödinger operators.

J. London Math. Soc. (2) **36** (1987), no. 2, 370–384.

Summary: "Let D be a bounded domain in \mathbb{R}^d $(d \ge 3)$ and let b(t, x, y) be the kernel of the Feynman-Kac semigroup associated with the reflecting Brownian motion $\{X_t: t \ge 0\}$ and potential V, namely

$$E^{x}\left[\exp\left(\int_{0}^{t} V(X_{s}) \, ds\right) f(X_{t})\right] = \int_{D} b(t, x, y) f(y) m(dy).$$

We assume that V is in the Kato class K_d [see M. Aizenman and B. Simon, Comm. Pure Appl. Math. **35** (1982), no. 2, 209–273; MR0644024 (84a:35062)]. The Poisson kernel studied in this paper is $N_V(x, y) = \int_0^\infty b(t, x, y) dt$. In general N_V may be infinite. We show that if $N_V(x, y)$ is finite for one pair of points then it is finite for all $x \neq y$ and there exist two constants c_1, c_2 (depending on D and V) such that $c_1 \leq ||x - y||^{d-2}N_V(x, y) \leq c_2$. This happens precisely when the spectrum of $H_V = \Delta/2 + V$ under the Neumann boundary condition lies in the negative halfaxis. This result is used to discuss the Neumann boundary value problem of H_V . We prove that for any boundary function $f \in L^{\alpha}(\partial D)$, $\alpha \geq 1$, the problem has a unique weak solution $u_f(x) = \frac{1}{2} \int_{\partial D} N_V(x, y) f(y) \sigma(dy) \in C(D)$ and its growth rate near the boundary can be estimated by $||f||_{\alpha,\partial D}$."

Reviewed by Jean Leray

© Copyright American Mathematical Society 1988, 2006

Citations

From References: 1 From Reviews: 0