Article

From References: 5 From Reviews: 0

MR948533 (89g:58203) 58G17 (35J10 35Q20) Ichinose, Wataru (J-EHIMS)

On L^2 well posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and the Maslov theory.

Duke Math. J. 56 (1988), no. 3, 549-588.

Let M be a C^{∞} complete Riemann manifold with a countable basis and without boundary. Denote by L^2 the Hilbert space of square-integrable functions on M. In the distribution sense consider the Cauchy problem for the "nonlinear Schrödinger equation" $[-i\partial_t - \frac{1}{2}\Delta + \mathbf{B} + C]u = f$, where Δ denotes the Laplace-Beltrami operator on M, C a given C^{∞} function on M, \mathbf{B} a given complexified C^{∞} vector field on M and $\mathbf{B}u$ the Lie derivative; the unknown function u and the given one fare continuous functions of $t \in [0, T]$ or $t \in [-T, 0]$ (T > 0) with values in L^2 ; the value of u at t = 0 is given. Denote by $\omega_{\mathbf{B}}$ the 1-form on M defined by \mathbf{B} . The following theorem is proved: If the Cauchy problem is well posed, then the following condition holds: $\sup_{\gamma \in \Gamma} |\int_{\gamma} \operatorname{Re} \omega_{\mathbf{B}}| < \infty$, where Γ is the family of all geodesics on M.

The proof deduces from the well-posedness of the problem an estimate of its solutions. Then, assuming the preceding condition not satisfied and using Maslov's construction of asymptotic solutions of the homogeneous problem (i.e. f = 0), the proof constructs nonhomogeneous problems with solutions contradicting that estimate.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1989, 2006