Article

From References: 12 From Reviews: 2

MR968313 (89m:35182) 35Q10 (35B65 76D05) Miyakawa, Tetsuro (J-HROSE); Sohr, Hermann (D-PDRB)

On energy inequality, smoothness and large time behavior in L^2 for weak solutions of the Navier-Stokes equations in exterior domains.

Math. Z. 199 (1988), no. 4, 455-478.

Let Ω be an exterior domain in \mathbb{R}^n (n = 3, 4) with smooth $\partial\Omega$. On $\Omega \times [0, \infty)$ consider the Navier-Stokes problem: $u_t - \Delta u + u \cdot \nabla u + \nabla p = f$ and $\nabla u = 0$ in $\Omega \times (0, \infty)$, u = 0 on $\partial\Omega \times (0, \infty)$, u(x, 0) = a(x), with u and p unknown, a and f given. Introduce the energy inequality

$$\|u(t)\|_{2}^{2} + 2\int_{(s,t)} \|\nabla u\|_{2}^{2} d\tau \le \|u(s)\|_{2}^{2} + 2\int_{(s,t)} (f,u) d\tau$$

for s = 0, a.e. s > 0, and all $t \ge s$. Denote by X_2 the L^2 -closure of the set of the smooth solenoidals vector fields with compact support in Ω . Theorem 1: Let n = 3 or 4 and suppose that $f \in L^2(0, T; X_2)$ for all T > 0; then there is a weak solution of the Navier-Stokes problem satisfying the energy inequality. If in addition $f \in L^1(0, \infty; X_2)$, then any weak solution satisfying that inequality is such that $\lim_{t\to\infty} ||u(t)||_2 = 0$; if moreover f is smooth enough and $f \in L^2(0, \infty; X_2)$, then there is a $T_0 > 0$ depending only on a, f, Ω such that u is a classical solution in the interval (T_0, ∞) .

Assume now n = 3 and w to be a stationary solution of Finn's type; Theorem 2 similarly gives solutions u such that $\lim_{t\to\infty} ||u(t) - w(t)||_2 = 0.$

Reviewed by Jean Leray

© Copyright American Mathematical Society 1989, 2006