MR973249 (90c:35162) 35Q10 (76D05)
Deuring, P.; von Wahl, W.; Weidemaier, P.
Das lineare Stokes-System in \mathbf{R}^{3}. I. Vorlesungen über das Innenraumproblem. (German) [The linear Stokes system in \mathbf{R}^{3}. I. Lectures on the interior problem]
Bayreuth. Math. Schr. No. 27 (1988), vi+252 pp.
This is the first of a series of monographs publishing von Wahl's lectures, whose motivation is his opinion that O. A. Ladyzhenskaya has only suggested the proofs of her assertions in her wellknown work The mathematical theory of viscous incompressible flow [Gordon \& Breach, New York, 1963; MR0155093 (27 \#5034b); second edition, 1969; MR0254401 (40 \#7610)]. In his excellent review of that second edition, R. Finn writes: "This volume exhibits the spirit of modern applied mathematics in one of its best and most fruitful forms"; he also makes many accurate critical remarks.
The general topic of these monographs is Navier-Stokes equations. The first monograph under review here deals with only the time independent linear Stokes equations: $-\nu \Delta u_{i}+\partial \pi / \partial x_{i}=$ $f_{i}, \sum_{i} \partial u_{i} / \partial x_{i}=0$ in A, where A is a domain of \mathbf{R}^{3} such that ∂A is smooth and either A or $\mathbf{R}^{3} \backslash A$ is bounded; $\nu=$ const; $i=1,2,3$; the functions f_{i} are given on A. The problem to be solved is the following: Determine u_{i} and π on \bar{A} when, on ∂A, the functions u_{i} are given, such that $\iint_{\partial A} u_{1} d x_{2} \wedge d x_{3}+u_{2} d x_{3} \wedge d x_{1}+u_{3} d x_{1} \wedge d x_{2}=0$. The following is carefully proved: under suitable assumptions this problem has a unique solution, differentiable in A, such that the u_{i} are continuous on \bar{A}; if A is bounded, then, under other assumptions, the second derivatives of u_{i} and the first derivatives of π belong to $L_{p}(A)$. Ladyzhenskaya's integral equation method is applied; it makes use of Oseen and Odqvist potentials, but those two names are not quoted. Many other mathematical techniques are used and clearly detailed or quoted. This monograph is said to be written for students-I would say for very studious students, able to master some 58 lemmata and 18 theorems.

Reviewed by Jean Leray
(c) Copyright American Mathematical Society 1990, 2006

