AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 1

From Reviews: 0

MR1001236 (90g:35127) 35Q10 (76D99) Deuring, Paul; von Wahl, Wolf

Das lineare Stokes-System in ${\bf R}^3.$ II. Das Außenraumproblem. (German) [The linear Stokes system in ${\bf R}^3.$ II. The problem of the exterior domain]

Bayreuth. Math. Schr. No. 28 (1989), 1-109.

This work is the continuation of Part I [same journal No. 27 (1988); MR0973249 (90c:35162)]. The following results are carefully established. The problem $-\nu \cdot \Delta \overrightarrow{u} + \nabla \pi = \overrightarrow{f}$, div $\overrightarrow{u} = 0$ in $\mathbb{R}^3 \setminus \overline{\Omega}$, $\overrightarrow{u}|_{\partial\Omega} = \overrightarrow{a}$ has a unique solution. The data are: the constant ν , the bounded domain $\Omega \subset \mathbb{R}^3$ ($\partial\Omega$ being $C^{2,\gamma}$), $\overrightarrow{f} \in L_1(\mathbb{R}^3 \setminus \overline{\Omega})^3 \cap L_p(\mathbb{R}^3 \setminus \overline{\Omega})$ and $\overrightarrow{a} \in W^{2-1/p,p}(\partial\Omega)^3$, where $\frac{3}{2} ; the unknowns are <math>u$ and π ; $u \in L_s(\mathbb{R}^3 \setminus \overline{\Omega})^3$ if $3 < s < \infty$; π , the first and second derivatives of \overrightarrow{u} belong to L_p . The proof of that theorem uses potentials and an integral equation. Moreover, the Helmholtz decomposition and, having chosen a = 0 and p = 2, arguments of that proof lead to the definition of a "Stokes operator" and to its properties; that operator is selfadjoint, which will later be applied to the linear Navier-Stokes system.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1990, 2006