AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 4 From Reviews: 0

MR1106122 (92b:35121) 35Q30 (35B40 76D05) Amick, Charles J. (1-CHI)

On the asymptotic form of Navier-Stokes flow past a body in the plane.

J. Differential Equations **91** (1991), *no. 1*, 149–167.

Let $\Omega = \mathbb{C}^2 \setminus K$, where K is a compact set with smooth boundary; let w_{∞} be a nonzero constant vector. Consider on Ω the solutions w of the stationary Navier-Stokes equations such that w = 0 on $\partial\Omega$ and $w \to w_{\infty}$ at infinity, whose Dirichlet norms are finite. The asymptotic behavior of those solutions is known if their decay is $|w(x, y) - w_{\infty}| = O(r^{-1/4-\varepsilon})$ for $r^2 = x^2 + y^2 \to \infty$. The main theorem asserts that those solutions have the faster decay $|w(x, y) - w_{\infty}| = O(r^{-1/2+\varepsilon})$; hence by quoted results the faster decay $|w(x, y) - w_{\infty}| = O(r^{-1/2})$. That main theorem follows from ingenious estimates of the decay of the vorticity ω , of its product $\varphi \cdot \omega$ by the Stokes stream function φ and from preliminary estimates of the decay of $w(x, y) - w_{\infty}$. The references are about the Navier-Stokes flows in the plane and also in the space.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1992, 2006