AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Article

Citations

From References: 71 From Reviews: 2

MR1096602 (92c:35047) 35J65 (35B25 35C20) Han, Zheng-Chao (1-STF)

Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. (French summary)

Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159–174.

The author establishes results related to a Brézis-Peletier conjecture about the blowing up of solutions [H. Brézis and L. A. Peletier, in *Partial differential equations and the calculus of variations, Vol. I*, 149–192, Birkhäuser Boston, Boston, MA, 1989; MR1034005 (91a:35030)]. Let Ω be a smooth bounded domain in \mathbb{R}^N with $N \geq 3$. Denote by p = (N+2)/(N-2) the critical exponent; let u_{ε} be a subcritical solution; i.e. let $\varepsilon > 0$, $-\Delta u_{\varepsilon} = N(N-2)u_{\varepsilon}^{p-\varepsilon}$ in Ω , $u_{\varepsilon} > 0$ in Ω , $u_{\varepsilon} = 0$ on $\partial\Omega$. The existence of u_{ε} is well known. Assume that $\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u_{\varepsilon}|^2 / ||u_{\varepsilon}||_{L^{p+1-\varepsilon}(\Omega)}^2 = S_N$, where $S_N = \pi N(N-2)[\Gamma(N/2)/\Gamma(N)]$ is the best Sobolev constant in \mathbb{R}^N . After passing to a subsequence, when $\varepsilon \to 0$, there exists $x_0 \in \Omega$ such that $\lim u_{\varepsilon} = 0$ in $C^1(\Omega \setminus \{x_0\})$ and

$$\lim |\nabla u_{\varepsilon}|^2 = N(N-2)[S_N/N(N-2)]^{N/2}\delta_{x_0}$$

in the sense of distributions; δ is the Dirac distribution; x_0 is a critical point of an explicitly given function; $\lim \varepsilon ||u_{\varepsilon}||^2_{L^{\infty}(\Omega)}$ and $\lim \varepsilon^{-1/2} u_{\varepsilon}$ are also explicitly given functions.

A similar result is established when u_{ε} is a solution of the problem $-\Delta u_{\varepsilon} = N(N-2)u_{\varepsilon}^p + \varepsilon u_{\varepsilon}$ in Ω , $u_{\varepsilon} > 0$ in Ω , $u_{\varepsilon} = 0$ on $\partial\Omega$.

Reviewed by Jean Leray

© Copyright American Mathematical Society 1992, 2006