Article

Citations

From References: 1 From Reviews: 0

MR1120491 (92g:35041) 35D10 Nakai, Mitsuru [Nakai, Mitsuru¹] (J-NIT)

Continuity of solutions of Schrödinger equations.

Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 581–597.

Let *m* be the Lebesgue measure on \mathbb{R}^d , where $d \ge 2$. Let μ be a signed Radon measure on an open subset Ω of \mathbb{R}^d ; let $|\mu|$ be its total variation measure; let $|\mu|_s = |\mu| - (d|\mu|/dm)m$ be its *m*-singular part. Let N(x, y) be the Newtonian kernel on \mathbb{R}^d , that is, $-\log |x - y|$ for d =2 and $|x - y|^{2-d}$ for $d \ge 3$. The measure μ is said to be of Kato class if, for every y in Ω : $\lim_{r\downarrow 0} (\sup_{|x-y| \le r} \int_{|\xi-y| \le r} N(x, \xi) d|\mu|(\xi)) = 0.$

The time-independent Schrödinger equation under consideration is $(-\Delta + \mu)u = 0$. If the function u belongs to $L^1_{loc}(\Omega, |\mu| + m)$ and satisfies $-\int_{\Omega} u(\xi)\Delta\varphi(\xi) dm(\xi) + \int_{\Omega} u(\xi)\varphi(\xi) d\mu(\xi) = 0$ for every test function φ in $C_0^{\infty}(\Omega)$, then u is said to be a distributional solution on Ω of the above Schrödinger equation. Assume there are a subset X of Ω and a function \tilde{u} in $L^1_{loc}(\Omega, |\mu| + m)$, continuous at each point of X as a function on Ω , and such that $u = \tilde{u}$, $(|\mu| + m)$ -a.e. on Ω ; then u is said to be continuous on X. This paper gives an elementary proof to the following theorem: A distributional solution u on Ω is continuous on Ω if and only if u is continuous on Ω except for a subset of Ω of $|\mu|_s$ -measure zero. Corollary 1: A distributional solution u on Ω is continuous, then every distributional solution is continuous. Corollary 3: Any distributional solution on Ω which is continuous on Ω except for a discrete subset of Ω is continuous on the whole of Ω .

Reviewed by Jean Leray

© Copyright American Mathematical Society 1992, 2006