Liste d'exercices 3

A. Continuité

Exercice 1

- 1. Les expressions de l'exercice 1, section B, liste 2 (limites de fonctions) définissent-elles des fonctions continues sur leur domaine de définition? Peuvent-elles se prolonger par continuité au point x_0 (lorsque x_0 est fini)?
- 2. Même question avec les expressions suivantes (on pourra utiliser 1.)
 - (a) $f(x) = \frac{1}{\arcsin x} \frac{1}{x}$ et $x_0 = 0$.
 - (b) $f(x) = \frac{\sqrt{1+\sin^2 x} \cos x}{\sin^2 x}$ et $x_0 = 0$ (remarquer que $\cos x = \sqrt{1-\sin^2 x}$ lorsque x est proche de x_0).

Exercice 2 Soit f la fonction définie sur \mathbb{R} par f(x) = x - E(x), où E(x) désigne la partie entière du réel x.

- 1. Représenter graphiquement puis étudier la continuité de la fonction f.
- 2. Déterminer, à l'aide du cours, une condition suffisante pour que l'image par f d'un intervalle $I \subset \mathbb{R}$ soit encore un intervalle. Cette condition est-elle nécessaire?
- 3. Déterminer tous les intervalles I tels que l'application induite sur I, $f_{|I}:I\to f(I)$, soit bijective. Dans quels cas est-elle continue? Expliciter alors l'application réciproque $(f_{|I})^{-1}: f(I) \to I$. Est-elle continue?
- 4. Pour quelles valeurs du réel a la fonction g(x) = (x E(x))(x E(x) a) est-elle continue? Précisez alors son graphe.

Exercice 3 Considérons la fonction f de \mathbb{R} dans \mathbb{R} définie par : $f(0) = 0, f(x) = x^{-1}$ si $x \in \mathbb{Q}^*$ et f(x) = x si $x \notin Q$. Montrer que f réalise une bijection de \mathbb{R} dans \mathbb{R} . Est-elle monotone? Déterminer son domaine de continuité.

Exercice 4 Soient f et g deux fonctions continues sur un intervalle I de \mathbb{R} .

- 1. Montrer que la fonction |f| (la valeur absolue de f) est continue sur I.
- 2. Exprimer la fonction Sup(f,g) en fonction de (f+g) et |f-g|. En déduire que la fonction Sup(f,g) est continue sur I.

Exercice 5 Soient f et g deux fonctions continues de \mathbb{R} dans \mathbb{R} .

- 1. Si f(x) = g(x) pour tout nombre rationnel $x \in \mathbb{Q}$, montrer que f = g, c'est-à-dire que f(x) = g(x) pour tout nombre réel $x \in \mathbb{R}$.
- 2. Si f(x+y) = f(x) + f(y) pour tout couple (x,y) de nombre réels (on dit alors que f est additive) et si q désigne l'homothétie de rapport f(1) (i.e. la multiplication par f(1)), montrer que f=q.
- 3. Si f est additive et aussi multiplicative, c'est à dire f(xy) = f(x)f(y) pour tout couple (x,y)de nombres réels, montrer que f est soit nulle soit la fonction identité (on pourra montrer que f est croissante).

4. Si $f(x) \neq 0$ et f(x+y) = f(x)f(y) pour tout couple (x,y) de nombres réels, montrer que f(1) > 0 (on pourra supposer le contraire et étudier la fonction induite par f sur l'intervalle [1,2]) et que $f(x) = f(1)^x := e^{x \ln f(1)}$ pour tout $x \in \mathbb{R}$.

Exercice 6

- 1. Soit $f:[a,b[\longrightarrow R \text{ une fonction continue.}]$
 - (a) On suppose que $\lim_{x\to b^-}f(x)=+\infty$ Montrer alors que , pour tout A>f(a) , on peut trouver $c\in [a,b[$ tel que f(c)=A .
 - (b) On suppose que $b=+\infty$ et que $\lim_{x\to+\infty}f(x)=1$. Montrer alors que , pour tout réel A strictement compris entre f(a) et 1, on peut trouver c>a tel que f(c)=A.
- 2. Démontrer que tout polynôme de degré impair admet au moins une racine réelle.

Exercice 7 Soit f une fonction réelle définie et strictement croissante sur [a,b], et telle que : f([a,b]) = [f(a),f(b)].

- 1. Soit x_0 un point de [a,b[. Montrer que $\lim_{x\to x_0^+} f(x) = \text{Inf}\{f(y) \ / \ x_0 < y < b\}$ puis que f est continue à droite en x_0 .
- 2. Montrer de la même manière que f est continue à gauche en $x_0 \in]a,b]$. En déduire que f est continue sur [a,b].

Exercice 8 Soit k un réel de l'intervalle]0,1[et f une application de \mathbb{R} dans \mathbb{R} qui vérifie :

$$\forall x \in \mathbb{R} , \forall y \in \mathbb{R} \mid f(x) - f(y) \mid \leq k \mid x - y \mid$$
.

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par son premier terme $u_0\in\mathbb{R}$ et par la relation de récurrence: $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. En utilisant l'exercice 8, section A de la liste 2, montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel que l'on va noter l. Montrer que f(l)=l et que l est l'unique point fixe de f.
- 3. Montrer que ces résultats s'appliquent si f est dérivable sur \mathbb{R} et si f' vérifie : $\exists k \in]0,1[$ tel que $\forall x \in \mathbb{R}$, $|f'(x)| \leq k$.
- 4. Appliquer cette méthode avec la fonction f définie par $f(x) = \sqrt{x+2}$ et avec $u_0 = 0$ puis comparer avec l'exercice 6, section A de la liste 2.

B. Intégrales

Exercice 1 Soient a, b, c, d quatre réels tels que a < b < c < d et soit $f : [a, d] \longrightarrow \mathbb{R}$ continue sur [a, d]. Montrer la relation suivante:

$$\left(\int_{a}^{b} f(x)dx\right)\left(\int_{a}^{d} f(x)dx\right) + \left(\int_{a}^{c} f(x)dx\right)\left(\int_{d}^{b} f(x)dx\right) + \left(\int_{a}^{d} f(x)dx\right)\left(\int_{b}^{c} f(x)dx\right) = 0$$

(on pourra le montrer d'abord pour f = 1 en s'aidant d'un dessin)

Exercice 2

- 1. Soit h une fonction continue et positive sur [a,b] et telle que $\int_a^b h(t)dt=0$. Montrer que h=0.
- 2. Soit $f:[0,1] \longrightarrow [0,1]$ une fonction continue non nulle telle que $\int_0^1 f(t)dt = \int_0^1 f^2(t)dt$. Montrer que f=1, c'est-à-dire : $\forall t \in [0,1], f(t)=1$.
- 3. Soit f une fonction continue de [0,1] dans $\mathbb R$ telle que $\int_0^1 f(t)dt = \frac{1}{2}$. Montrer qu'il existe un réel x_0 de [0,1] tel que $f(x_0) = x_0$ (utiliser le théorème de Rolle).

Exercice 3 Inégalité de Cauchy-Schwarz

Soient f et g deux applications continues $[a,b] \longrightarrow \mathbb{R}$, a et b étant deux réels tels que a < b.

- 1. Montrer que $\forall \lambda \in \mathbb{R}, \int_a^b (f(t) + \lambda g(t))^2 dt \geq 0$.
- 2. En déduire que $\left(\int_a^b f(t)g(t)dt \right)^2 \leq \left(\int_a^b f^2(t)dt \right) \left(\int_a^b g^2(t)dt \right) \text{ et que }$ $\left(\int_a^b f(t)g(t)dt \right)^2 = \left(\int_a^b f^2(t)dt \right) \left(\int_a^b g^2(t)dt \right) \iff \exists \lambda \in \mathbb{R} \text{ tel que } f + \lambda g = 0 \ .$
- 3. On suppose que f ne s'annule pas sur [a,b]. Montrer que $(b-a)^2 \leq \left(\int_a^b f(x)dx\right)\left(\int_a^b \frac{dx}{f(x)}\right)$. Pour quelles fonctions y a-t-il égalité ?

Exercice 4

Soit
$$I_n$$
 l'intégrale $\int_0^n \frac{dx}{\sqrt{n^3+x^3}}$. Montrer que $\lim_{n\to+\infty} I_n=0$.

Exercice 5 Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue.

- 1. Montrer que si f(0) = 0 alors $\lim_{n \to +\infty} \int_0^1 f(t^n) dt = 0$.
- 2. Montrer que $\lim_{n\to+\infty}\int_0^1 nt^n f(t^n)dt = \int_0^1 f(t)dt$.

Exercice 6 Pour
$$n \in \mathbb{N}$$
 et $2p \in \mathbb{N}$, on pose $I_{n,p} = \int_0^1 x^n (1-x)^p dx$.

- 1. Calculer $I_{n,0}$ et $I_{0,\frac{1}{2}}$.
- 2. Etablir une relation de récurrence entre $I_{n,\frac{1}{2}}$ et $I_{n+1,\frac{1}{2}}$ et en déduire $I_{n,\frac{1}{2}}$.
- 3. Etablir une relation de récurrence entre $I_{n,p}$ et $I_{n+1,p-1}$ et en déduire $I_{n,p}$.
- 4. En déduire une expression simple de la somme $\sum_{k=0}^{p} (-1)^k C_p^k \frac{1}{n+k+1}$ lorsque $p \in \mathbb{N}$.

3

Exercice 7 Intégrales de Wallis

Pour $n \ge 0$ on pose $I_n = \int_0^{\frac{\pi}{2}} (\sin x)^n dx$.

- 1) Pour $n \geq 2$, montrer que $nI_n = (n-1)I_{n-2}$. 2) En déduire I_{2p} et I_{2p+1} , pour $p \in N$.

- 3) Montrer que, pour $n\geq 1$, $I_{n-1}\geq I_n>0$ et que $1\leq \frac{I_n}{I_{n+1}}\leq \frac{I_{n-1}}{I_{n+1}}\leq 1+\frac{1}{n}.$ 4) En déduire la convergence et la limite de la suite : $u_p=\left(\frac{1.3.5.\cdots.(2p-1)}{2.4.6.\cdots(2p)}\right)^2(2p+1)$.
- 5)Montrer que $\forall p \geq 0 \; , \; I_{2p+1}^2 \leq \frac{\pi}{2(2p+1)} \; .$
- 6) En déduire que $\lim_{n\to+\infty} I_n = 0$.

Exercice 8 Soit a et b deux réels tels que a < b, et f une application de [a, b] dans R, dérivable sur [a,b] et telle que la fonction dérivée f' soit continue sur [a,b].

Pour $n \in N$, on pose $I_n = \int_a^b f(x) \sin(nx) dx$ et $J_n = \int_a^b f(x) \cos(nx) dx$. Montrer que $\lim_{n \to +\infty} I_n = \lim_{n \to +\infty} J_n = 0$.

Exercice 9 Soient a et b deux réels tels que a < b, et soient f et g deux fonctions réelles continues définies sur l'intervalle [a,b]. On suppose que la fonction g garde un signe constant $\operatorname{sur}\left[a,b\right]$.

A l'aide de la fonction $F(x)=f(x)\int_{a}^{b}g(t)dt$, montrer qu'il existe un réel c de [a,b] tel que :

$$\int_{a}^{b} f(t)g(t)dt = f(c) \int_{a}^{b} g(t)dt$$

Exercice 10 Soit f la fonction définie sur $]1, +\infty[$ par $f(x) = \int_{x}^{x^{2}} \frac{dt}{\ln t}$.

Montrer par un changement de variable que $f(x)=\int_{\ln x}^{2\ln x}\frac{e^v}{v}dv$, puis en déduire $\lim_{x\to 1^+}f(x)$ à l'aide de la formule de la moyenne.

Exercice extrait de l'examen de Juin 1997

- 1. En écrivant que, pour tout x>0, $ln(x)=\int_{1}^{x}\frac{1}{t}dt$, montrer que, pour tout $q\in\mathbb{N}^{*}$, on a $\forall x > 1, \ ln(x) \le \frac{1}{2q} (x^{\frac{1}{2q}} - 1)$, en déduire que $\lim_{x \to +\infty} \frac{1}{x^{\frac{1}{q}}} ln(x) = 0$.
- 2. Soit $n, m \in \mathbb{N}, n \geq 1$, on définit la fonction $f_{n,m}$ sur $\mathbb{R}_+ = [0, +\infty[$, par $f_{n,m}(0) = 0$ et si x > 0, $f_{n,m}(x) = x^n (\ln(x))^m$. Montrer que $f_{n,m}$ est continue sur \mathbb{R}_+ .
- 3. On considère l'intégrale $I(n,m) = (-1)^m \int_0^1 f_{n,m}(x) dx$. Montrer que, si $n \ge 1$, alors I(n,m) = $\frac{m}{n+1}I(n,m-1)$. En déduire I(n,m) en fonction de n et m.
- 4. (a) Si $m \in \mathbb{N}^*$, montrer l'existence de la limite $J(m) := \lim_{a \to 0_+} (-1)^m \int_a^1 (ln(x))^m dx$.
 - (b) En intégrant par parties sur [a, 1] et en faisant tendre a vers 0, montrer que, si m > 0, J(m) = mJ(m-1). En déduire la valeur de J(m) en fonction de m.

4

5. Retrouver le résultat du 4) en faisant le changement de variable t = ln(x) et en intégrant par parties.

Exercice extrait de l'examen de Mai 1997 Soit $q \in \mathbb{Q}_+^*$. On considère la suite $(u_n)_{n \geq 1}$ définie par $u_n = \int_0^1 \frac{1}{\sqrt{1+\frac{x^2}{n^q}}} dx$.

- 1. Montrer que $\lim_{n\to+\infty}u_n=1$ (on pourra encadrer la fonction à intégrer).
- 2. Calculer la dérivée de $\ln(x+\sqrt{1+x^2})$. En déduire la valeur de u_n en fonction de n .