
Invariance principles for non-isotropic long memory random
fields

Frédéric Lavancier
LS-CREST, Paris

Laboratoire Paul Painlevé, UMR CNRS 8524

Bât. M2. Université des Sciences et Technologies de Lille

F-59655 Villeneuve d’Ascq Cedex, France

Abstract

We prove that when a random field with bounded spectral density satisfies a Donsker type
theorem, its dilated and properly normalised spectral field admits a weak limit. We apply
this result to establish the convergence of partial sums for random fields obtained by filtering
a white noise. In particular we prove the convergence of partial sums for strongly-dependent
fields whose memory does not satisfy the regularity conditions previously met in the literature.
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1 Introduction
A random field X = (Xn)n∈Zd is usually said to exhibit long memory, or strong dependence,
when its covariance function r(n), n ∈ Zd, is not absolutely summable :

∑
n∈Zd |r(n)| = ∞.

An alternative definition relates on spectral properties : a random field is said to be strongly
dependent if its spectral density is unbounded at certain frequencies. These two points of view
are closely related but not equivalent.

Dobrushin and Major (1979) deals with partial sums of subordinated Gaussian fields. They
assume that the Gaussian random field X = (Xn)n∈Zd admits a covariance function of the following
form

r(h) ∼
h→∞

|h|−αL(|h|) b

(
h

|h|

)
, 0 < α < d (1.1)

where L is a slowly varying function at infinity and b is a continuous function on the unit sphere of
Rd, |.| denotes the euclidean norm on Zd. They prove the convergence of the properly normalised
partial sums nkα/2−dL(n)−k/2

∑[nt1]
i1=0 . . .

∑[ntd]
id=0 H(Xi1,...,id

), where k is the Hermite rank of H.
Condition (1.1) is also assumed in Doukhan et al. (2002) where the authors focus on the

empirical process of a linear field having long memory. They prove that the properly normalised
empirical process weakly converges to a degenerated process.

Condition (1.1) is therefore the standard hypothesis met in the literature on long memory
random fields. It generalises the usual long memory hypothesis in dimension 1 : r(h) = h−αL(h)
where 0 < α < 1, h ∈ Z and L is a slowly varying function.

In this paper, we use a general spectral approach to investigate the asymptotic behaviour
of the partial sums of random fields. We obtain some convergence results for a large class of
random fields. In the case of weak dependence, our point of view is different from most of existing
works (for instance the paper of Breuer and Major (1983) which deals with subordinated Gaussian
processes), because these ones make assumptions on the covariance function structure whereas we
choose a spectral approach. In case of strong dependence, we focus on a wider class of fields
than in the standard setting (1.1). We are particularly interested in random fields which admit a
non-isotropic strong dependence, in the sense that they don’t satisfy the following definition.

Definition 1. A stationary random field exhibits isotropic long memory if it admits a spectral
density which is continuous everywhere except at 0 where

f(x) ∼ |x|α−d b

(
x

|x|

)
L

(
1
|x|

)
, 0 < α < d, (1.2)

where L is slowly varying at infinity and b is a continuous function on the unit sphere in Rd.

Conditions (1.1) and (1.2) are related by a result of Wainger (1965) who proved that if a random
field admits a covariance function of the form (1.1) and if its spectral density is continuous outside
0, then this random field exhibits isotropic long memory according to Definition 1.

One can easily construct non-isotropic long memory random fields. Given ξ, a white noise with
variance σ2 6= 0, let X be defined by

Xn1,n2 =
∑

(k1,k2)∈Z2

â(k1, k2)ξn1−k1,n2−k2 ,

where â is the Fourier transform of a function a ∈ L2([−π, π]2). The spectral density of X is
f(x, y) = σ2a2(x, y). Now, if a(x, y) = |x + θy|α, where θ ∈ R and −1/2 < α < 0, the field
X is strongly dependent since its spectral density is unbounded at the origin, and this strong
dependence is not isotropic. Moreover, Lemma 1 of Section 3 shows that the covariance function
associated with this spectral density does not satisfy condition (1.1).

We follow the scheme of Lang and Soulier (2000) which relies on a spectral convergence theorem.
In Section 2, we extend this convergence theorem to dimensions greater than 1. Let ξ be a d-
dimensional random field having a bounded spectral density. We suppose that an invariance
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principle holds for ξ. Then we prove that its properly dilated spectral field weakly converges
when the dilatation parameter tends to infinity. This theorem is directly applicable to obtain the
asymptotic law of partial sums of fields obtained by filtering a white noise. These applications
are presented in Sections 3 and 4. In Section 3, we obtain the limit in law of the partial sums of
random processes and 2-dimensional random fields built from a filter which is either continuous
and non-zero at x = 0, or equivalent at this point to an homogeneous function. In the first case
the process exhibits weak dependence or isotropic long memory in the sense of Definition 1 and
we merely find by a different method pre-existing results. In the second case there is non-isotropic
long memory and the results we obtain for the partial sums are new. In dimension 1 we slightly
extend the setting of Lang and Soulier (2000) as explained in Remark 2. In Section 4, we work
with d ≥ 3, situation in which it happens that the spectral theorem of Section 2 is less easily
applicable. We restrict ourselves to some classes of random fields. Firstly we consider random
fields for which the suitable normalisation of the partial sums is nd/2. They are built from filters
continuous and non zero at x = 0 and sufficiently smooth elsewhere. Secondly we present some
non central limit theorems for partial sums with a normalisation stronger than nd/2. Among them
we consider non-isotropic long memory random fields having spectral singularities all over a linear
subspace of Rd.

Section 5 contains the proof of Theorem 1 and the appendix recalls some properties of approx-
imations of unity.

2 The spectral convergence theorem
We show that when a random field satisfies a Donsker type theorem, the sequence of its re-
normalised spectral measure converges in a sense defined below.

Let ξ := (ξk)k∈Zd be a real stationary random field. We assume the following hypothesis about
it :

H 1. The stationary random field (ξk)k∈Zd is centered and has a spectral density fξ bounded by
M > 0. Moreover, the sequence Sξ

n of random functions defined on ]0,∞[d by :

Sξ
n(t1, . . . , td) = n−d/2

[nt1]−1∑
k1=0

. . .

[ntd]−1∑
kd=0

ξk1,...,kd
(2.1)

converges in the finite dimensional distributions sense to a field B.

The sequence ξk admits the spectral representation :

ξk =
∫

[−π, π]d
ei<k,x>dW (x), (2.2)

where the control measure of W has density fξ. For n ≥ 1, we consider the dilated spectral
measure Wn, the random measure on [−nπ; nπ]d defined by

Wn(A) = nd/2W (n−1A).

Theorem 1. Under H 1, there exists a linear application I from L2(Rd) into L2(Ω,A, P ) which
has the following properties :

(i) ∀Φ ∈ L2(Rd) E (I (Φ))2 ≤ (2π)dM ||Φ||22

(ii) I
(
x 7→

∏d
j=1

eitjxj−1
ixj

)
= B(t1, . . . , td)

(iii) If Φn is a sequence of functions converging in L2(Rd) to Φ, then
∫

Φn(x)dWn(x) converges
in law to I (Φ) .
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(iv) If ξ is a strong white noise, ∀Φ ∈ L2(Rd) I(Φ) =
∫

ΦdW0, where W0 is the Gaussian white
noise measure.

The proof of this theorem is relegated to Section 5.

Remark 1. From (i), we see that I is not necessarily an isometry so that I cannot be viewed
as a stochastic integral. The interpretation of I as a stochastic integral is allowed when ξ is a
strong white noise. In this case, B is the Brownian sheet and property (ii) corresponds to its
harmonisable representation :

B(t1, . . . , td) =
∫ d∏

j=1

eitjxj − 1
ixj

dW0(x1, . . . , xd).

Theorem 1 allows us to study the asymptotic of partial sums of random fields constructed by
filtering the noise ξ. We now explain the way we use this theorem. The partial sums of X are :

Sn(t1, . . . , td) = n−d/2

[nt1]−1∑
k1=0

. . .

[ntd]−1∑
kd=0

Xk1,...,kd
, (2.3)

where
Xn1,...,nd

=
∑

â(k1, . . . , kd)ξn1−k1,...,nd−kd
, (2.4)

where â(k1, . . . , kd) are, up to (2π)d/2, the Fourier coefficients of the filter a ∈ L2([−π, π]d) and
verify

a(x) =
∑
k∈Zd

â(k1, . . . , kd)e−i<k,x>.

Filter a is directly linked to the spectral density of X by the relation :

fX(x) = fξ(x)a2(x),

if fξ is the spectral density of ξ. In particular, when ξ is a white noise with variance σ2, one has
fX(x) = σ2

(2π)d |a2(x)|.
Then, using the spectral representation (2.2) and the definition of Wn :

Sn(t) =
∫

[−nπ,nπ]d
a
(x

n

) d∏
j=1

Dn(xj , tj)dWn(x), (2.5)

where

Dn(xj , tj) =
eixj [tjn]/n − 1
n(eixj/n − 1)

1[0, nπ](xj). (2.6)

In order to investigate the convergence of partial sums Sn(t), t being fixed, with the help
of Theorem 1, one has only to study the L2(Rd) convergence of a(x/n)

∏d
j=1 Dn(xj , tj). The

convergence of Sn will then follow according to (iii) of Theorem 1.
In the following, we use the notation

D(xj , tj) =
eitjxj − 1

ixj
. (2.7)

We denote by fidi−→ the convergence of the finite dimensional distributions.
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3 Partial sums of random fields in dimension d ≤ 2

The following theorem gives the asymptotic behaviour of the partial sums of a 2-dimensional
random field constructed with a filter which is either continuous at the origin or equivalent at 0
to a homogeneous function. The notations are the same as in Section 2.

Theorem 2. Let (ξk)k∈Zd be a stationary random field satisfying H 1. Let (Xk)k∈Zd be the
random field defined by (2.4), constructed by filtering ξ through a and define Sn(t) by (2.3) for all
t ∈ ]0,∞[d.

(i) If the filter a ∈ L2([−π, π]d) is continuous at the origin with a(0) 6= 0, then, for d ≤ 2,

Sn(t)
fidi−→

n→∞
a(0)B(t), (3.1)

where B is the limit of the partial sums of ξ introduced in hypothesis H1.

(ii) If the function a ∈ L2([−π, π]d) is equivalent at 0 to a homogeneous function ã with degree
α ∈]− 1; 0[, i.e. ∀λ ã(λx) = |λ|α ã(x), then, for d ≤ 2,

nαSn(t)
fidi−→

n→∞
I

(
ã(x)

d∏
i=1

D(xi, ti)

)
, (3.2)

where I is the linear application defined in Theorem 1.

Remark 2. When d = 1, the setting is the same as in Lang and Soulier (2000) ; however, we
slightly extend the results of these authors since when they assume the filter to be continuous at
the origin and bounded elsewhere, we only need the continuity at the origin. Similarly, in (ii), the
filter does not need to be homogeneous on [−π, π] but only at x = 0.

Remark 3. Filtering a white noise through a filter satisfying the hypothesis in (i) can produce a
weakly dependent random field. It is the case for instance if a is continuous on [−π, π]d. It can also
produce long memory, for instance when a is unbounded at one ore several non-zero frequencies.
In this situation, the memory is long as far as the covariance function is not absolutely summable.
But, as expected, this memory, which involves only non-zero singularities of the spectral density,
does not modify the limit obtained under weak dependence.

Remark 4. The form of the limit process in (3.2) is not very explicit in the general setting but
remember that when ξ is a strong white noise, the limit process can be written as a stochastic
integral with respect to a Gaussian white noise measure (cf Remark 1).

Remark 5. Condition (ii) of Theorem 2 can be satisfied with isotropic or non-isotropic long-
memory. The long memory is non-isotropic for instance when the filter is a tensorial product of
homogeneous filters (this is a particular case of Theorem 5 below when d = 2). Non-isotropic strong
dependence also occurs when the filter is of the form a(x, y) = |x + θy|α, where −1/2 < α < 0
and θ ∈ R, θ 6= 0 ; indeed, the spectral density of the induced random field does not verify the
assumptions of Definition 1 since it is proportional to |x + θy|2α. Furthermore Lemma 1 below
shows that the covariance function of this random field has not the standard form (1.1).

Lemma 1. Let (Xi,j)(i,j)∈Z2 be a random field whose spectral density, defined on [−π, π]2, is
f(x, y) = |x+ θy|2α, where −1/2 < α < 0 and θ ∈ R. Then its covariance function does not verify
(1.1).

Proof of Lemma 1. One has

r(h, l) =
∫

[−π,π]2
|x + θy|2αei(hx+ly)dxdy.
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We restrict ourselves to the calculus of r(h, θh), for h such that θh ∈ Z, which suffices to conclude.

r(h, θh) =
∫

[−π,π]2
|x + θy|2αeih(x+θy)dxdy.

We make the change of variable u = x + θy and v = θy − x. Assume, without loss of generality,
that θ ≥ 1 ; then one obtains the following new integration domain I1 ∪ I2 ∪ I3 where :

I1 =


−(θ − 1)π < u < (θ − 1)π
−2π + u < v < 2π + u,

I2 =


−(θ + 1)π < u < −(θ − 1)π
−2θπ − u < v < 2π + u,

I3 =


(θ − 1)π < u < (θ + 1)π
−2π + u < v < 2θπ − u,

and where I1 = ∅ if θ = 1. Hence one has

r(h, θh)

=

Z (θ−1)π

−(θ−1)π

|u|2αeihudu +

Z −(θ−1)π

−(θ+1)π

(2u + 2(θ + 1)π)|u|2αeihudu +

Z (θ+1)π

−(θ−1)π

(2(θ + 1)π − 2u)|u|2αeihudu

= 2

Z (θ−1)π

0

u2α cos(hu)du + 4(θ + 1)π

Z (θ+1)π

(θ−1)π

|u|2α cos(hu)du − 4

Z (θ+1)π

(θ−1)π

u|u|2α cos(hu)du

=
1

h2α+1

 
2

Z (θ−1)πh

0

u2α cos(u)du + 4(θ + 1)π

Z (θ+1)πh

(θ−1)πh

|u|2α cos(u)du − 4

h

Z (θ+1)πh

(θ−1)πh

u|u|2α cos(u)du

!
.

The first integral converges to a non-zero limit and the two latest terms converge to 0. Hence

r(h, θh) ∼
h→∞

ch−2α−1, (3.3)

where c is a non-zero constant.
If the field X has a covariance function of the form (1.1), then, from (3.3), it would verify :

r(h, l) ∼
(h, l)→∞

|(h, l)|−2α−1L(|(h, l)|) b

(
(h, l)
|(h, l)|

)
.

One could then apply the partial sums convergence Theorem of Dobrushin and Major (1979)
which requires the normalisation nα−1/2L(n)−1/2. But Theorem 2 claims that the partial sums of
X converge in law with normalisation nα. Therefore, the covariance function of X is not of the
form (1.1) and X is a non isotropic long memory random field.

Proof of Theorem 2. We first prove (i) and we restrict ourselves to the proof of the convergence in
law of Sn(t), t being fixed. The convergence of the finite dimensional distributions follows easily.
In order to apply Theorem 1 and the scheme explained in Section 2, we have to prove :

lim
n→∞

∫
Rd

∣∣∣∣∣∣a
(x

n

) d∏
j=1

Dn(xj , tj)− a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx = 0. (3.4)

Let us split the integral (3.4) :

∫
Rd

∣∣∣∣∣∣a
(x

n

) d∏
j=1

Dn(xj , tj)− a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx

=
∫

[−nπ,nπ]d

∣∣∣∣∣∣a
(x

n

) d∏
j=1

Dn(xj , tj)− a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx+
∫
∪d

j=1{|xj |>nπ}

∣∣∣∣∣∣a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx.
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The latest integral converges to 0, t being fixed, since the function xj 7→ D(xj , tj) is continuous
on R and verifies |D(xj , tj)|2 < 2x−2

j , so is integrable on R. For the first integral :

∫
[−nπ,nπ]d

∣∣∣∣∣∣a
(x

n

) d∏
j=1

Dn(xj , tj)− a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx ≤

2
∫

[−nπ,nπ]d

∣∣∣a(x

n

)
− a(0)

∣∣∣2 d∏
j=1

|Dn(xj , tj)|2 dx+2
∫

[−nπ,nπ]d
a2(0)

∣∣∣∣∣∣
d∏

j=1

Dn(xj , tj)−
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx.

From Lemma 5 of Section 5, the latest integral vanishes when n tends to infinity. Finally, for the
first integral, the change of variable x/n → x yields :∫

[−nπ,nπ]d

∣∣∣a(x

n

)
− a(0)

∣∣∣2 d∏
j=1

|Dn(xj , tj)|2 dx =
∫

[−π,π]d
|a(x)− a(0)|2

d∏
j=1

F̃[ntj ](xj)dx, (3.5)

with
F̃[ntj ](xj) = 2π

[ntj ]
n

F[ntj ](xj), (3.6)

where Fn is the Fejer kernel :

Fn(x) =

{
1

2πn
sin2(nx/2)
sin2(x/2))

if x 6= 0
n
2π if x = 0.

(3.7)

If d = 1, Theorem 7 of the appendix can be applied since F̃[nt1](x1) is, up to a constant, a strong
approximation of unity and because the function |a(x)− a(0)|2 is continuous at x = 0. Therefore,
according to (6.4), one obtains convergence (3.4). The same argument cannot be applied when
d ≥ 2 because the tensorial product

∏d
j=1 F̃[ntj ](xj) is only a weak approximation of unity (cf

Proposition 1 of the appendix). However, when d = 2, the result is still available as proved below.
We split the term (3.5) into :∫

[−π,π]2
|a(x)− a(0)|2

2∏
j=1

F̃[ntj ](xj)dx

=
∫
||x||≤δn

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx +
∫
||x||>δn

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx, (3.8)

where the sequence (δn)n>0 shall be chosen below and where ||(x1, x2)|| = max(|x1|, |x2|). From
the continuity of a(x) at x = 0, the first term tends to 0 as soon as δn → 0. Now,∫

||x||>δn

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx (3.9)

≤
∫
|x1|>δn

∫ π

−π

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx +
∫
|x2|>δn

∫ π

−π

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx.

Both terms are treated in the same way, for example for the first one :∫
|x1|>δn

∫ π

−π

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx

=
∫ π

−π

F̃[nt2](x2)

(∫
|x1|>δn

|a(x)− a(0)|2 F̃[nt1](x1)dx1

)
dx2.
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Proposition 2 of the appendix and Definition (3.6) of F̃ imply :

sup
|x1|>δn

F̃[nt1](x1) ≤
π2

nδ2
n

.

Hence, ∫
|x1|>δn

∫ π

−π

|a(x)− a(0)|2
2∏

j=1

F̃[ntj ](xj)dx ≤ π2

δ2
n

1
n

∫ π

−π

F̃[nt2](x2)b(x2)dx2,

where b(x2) =
∫
[−π,π]

|a(x)− a(0)|2dx1 is integrable on [−π, π].
One knows, from expression (3.6) of F̃ and Proposition 2 that

v2,n =
1
n

∫ π

−π

F̃[nt2](x2)b(x2)dx2 −→
n→∞

0.

Then it suffices to choose δ2
n = (v1,n ∨ v2,n)1/2 where v1,n is defined like v2,n but with respect to

t1. One actually has limn→∞ δn = 0 and, t1 and t2 being fixed, the convergence of each term of
(3.9) to 0 is achieved.

We now investigate the proof of (ii), restricted to the convergence in law, t being fixed. We
use Theorem 1 and prove the following convergence :

lim
n→∞

∫
Rd

∣∣∣∣∣nαa
(x

n

) d∏
i=1

Dn(xi, ti)− ã(x)
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx = 0. (3.10)

We first give some properties of ã

Lemma 2.

(i)
∫

[−π,π]d
ã2(x)dx < ∞, (ii)

∫
Rd

ã2(x)
d∏

i=1

(x−2
i ∧ 1)dx < ∞.

Proof of Lemma 2. In the case d = 1, the proof can be easily deduced from the case d = 2. Hence
we suppose d = 2. Since a(x) is equivalent to ã(x) when x goes to 0, it exists 0 < η < π such that
||x|| < η yields ã2(x)/a2(x) < 2. Thus,∫

||x||<η

ã2(x)dx =
∫
||x||<η

a2(x)
ã2(x)
a2(x)

dx ≤ 2
∫

[−π,π]d
a2(x)dx < ∞.

As ã is homogeneous, using polar coordinates leads to∫
||x||<η

ã2(x)dx =
∫ η

0

r2α+1dr

∫ 2π

0

ã2(cos θ, sin θ)dθ = η2α+2

∫ 2π

0

ã2(cos θ, sin θ)dθ.

Therefore, the latest integral is finite and∫
[−π,π]d

ã2(x)dx =
π2α+2

2α + 2

∫ 2π

0

ã2(cos θ, sin θ)dθ < ∞,

that is (i) of Lemma 2.
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For (ii),∫
Rd

ã2(x)
d∏

i=1

(x−2
i ∧ 1)dx

=
∫ ∞

0

∫ 2π

0

r2α+1ã2(cos θ, sin θ)
(
(r−2 cos−2 θ) ∧ 1

) (
(r−2 sin−2 θ) ∧ 1

)
dθdr

≤
∫ 1

0

r2α+1dr

∫ 2π

0

ã2(cos θ, sin θ)dθ

+
∫ ∞

1

∫ 2π

0

r2α+1ã2(cos θ, sin θ)
(
(r−2 cos−2 θ) ∧ 1

) (
(r−2 sin−2 θ) ∧ 1

)
dθdr

The first integral on {r ≤ 1} is finite. For the latest one, on {r > 1}, consider, without loss of
generality, the integral with respect to θ on [0, π]. We split [0, π] in two parts : on {|θ−π/2| < π/4},
sin−2 θ < 2 and on {|θ − π/2| > π/4}, cos−2 θ < 2, therefore∫ ∞

1

∫ 2π

0

r2α+1|ã|2(cos θ, sin θ)
(
(r−2 cos−2 θ) ∧ 1

) (
(r−2 sin−2 θ) ∧ 1

)
dθ

≤ c

∫ ∞

1

r2α−1dr

∫ 2π

0

|ã|2(cos θ, sin θ)dθ < ∞.

Consequently, (ii) of Lemma 2 is proved.

We return to the proof of (3.10).

∫
Rd

∣∣∣∣∣nαa
(x

n

) d∏
i=1

Dn(xi, ti)− ã(x)
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx ≤

2
∫

[−nπ,nπ]d

∣∣∣nαa
(x

n

)
− ã(x)

∣∣∣2 d∏
i=1

|Dn(xi, ti)|2dx + 2
∫

Rd

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx.

(3.11)

The following lemma treats the convergence of the first integral in (3.11).

Lemma 3.

lim
n→∞

∫
[−nπ,nπ]d

∣∣∣nαa
(x

n

)
− ã(x)

∣∣∣2 d∏
i=1

|Dn(xi, ti)|2dx = 0

Proof of Lemma 3. After a change of variables and thanks to the homogeneity of ã, we have :∫
[−nπ,nπ]d

∣∣∣nαa
(x

n

)
− ã(x)

∣∣∣2 d∏
i=1

|Dn(xi, ti)|2dx = n2α

∫
[−π,π]d

|a(x)− ã(x)|2
d∏

j=1

F̃[ntj ](xj)dx,

where F̃[ntj ] is defined in (3.6). Let α < β < 0. We split the latest integral in the following way :

n2α

∫
[−π,π]d

|a(x)− ã(x)|2
d∏

j=1

F̃[ntj ](xj)dx (3.12)

= n2α

∫
||x||≤nβ

|a(x)− ã(x)|2
d∏

j=1

F̃[ntj ](xj)dx + n2α

∫
||x||>nβ

|a(x)− ã(x)|2
d∏

j=1

F̃[ntj ](xj)dx.

9



Since β > α and from Lemma 2, the convergence to 0 of the second integral is proved exactly as
the one of integral (3.9). For the first one, we use the fact that a(x) is equivalent to ã(x) at x = 0.
Let us fix ε > 0, then there exists n0 such that for all n > n0, ||x|| ≤ nβ yields

|a(x)− ã(x)| ≤ ε|ã(x)|.

Thus, for all n > n0,

n2α

∫
||x||≤nβ

|a(x)− ã(x)|2
d∏

j=1

F̃[ntj ](xj)dx ≤ εn2α

∫
||x||≤nβ

ã2(x)
d∏

j=1

F̃[ntj ](xj)dx

≤ cε

∫
||x||≤nβ+1

ã2(x)
d∏

j=1

sin2
(

[ntj ]
n

xj

2

)
x2

j

( xj

2n )2

sin2( xj

2n )
dx

≤ cε

∫
Rd

ã2(x)
d∏

j=1

(1 ∧ t2jx
2
j )

x2
j

dx,

where c is a non-zero constant changing from line to line. The last integral is finite from (ii) of
Lemma 2 and the convergence to O of (3.12) is proved.

Let us return to the proof of (ii) of Theorem 2. From (3.11) and Lemma 3, it remains to
prove :

lim
n→∞

∫
Rd

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx = 0.

Let us split this integral as follows :∫
Rd

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx

=
∫

[−nπ,nπ]d
ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx +
∫
∪i{|xi|>nπ}

ã2(x)
d∏

i=1

|D(xj , tj)|2dx.

The second integral converges to 0. For the first one, the change of variable x/n → x yields :

∫
[−nπ,nπ]d

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx

= n2α+d

∫
[−π,π]d

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

dx.

From Lemma 5 of Section 5, one has

sup
x∈[−π,π]d

∣∣∣∣∣
d∏

i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

= O(n−2). (3.13)

Since
∫
[−π,π]d

ã2(x)dx < ∞, we obtain

∫
[−nπ,nπ]d

ã2(x)

∣∣∣∣∣
d∏

i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx = O(n2α+d−2).

Since d ≤ 2 and α < 0, this term converges to 0.
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4 Partial sums of random fields in dimension d ≥ 3

As explained in Section 2, as far as our basic tool, for proving Theorem 2, is the spectral con-
vergence Theorem 1, we need to establish the L2-convergence of a(x/n)

∏d
j=1 Dn(xj , tj). The

following example proves that this method does not allow us to extend result (3.1), without fur-
ther hypothesis, to dimensions d ≥ 3. The following filter actually satisfies the hypothesis of (i)
in Theorem 2 but the L2-convergence of a(x/n)

∏d
j=1 Dn(xj , tj) does not occur. Let filter a be

defined on [−π, π]3 by :

a(x, y, z) = 1 if |x| ≤ c or if yz = 0
= |y|−α|z|−α + 1 elsewhere,

where 1/4 < α < 1/2 and 0 < c < π. One can prove that this filter is continuous at 0 with
a(0) = 1 and that a(x/n)

∏3
j=1 Dn(xj , tj) has no finite limit in L2([−π, π]3).

Hereafter, we present two kind of results in dimension d ≥ 3. The first ones relate to random
fields constructed with a filter supposed to be continuous and non-zero at x = 0. Since this
condition is not sufficient to obtain convergence results (as explained above), we suppose that
this filter either is bounded or belongs to a particular class of functions allowing unboundedness.
The second ones relate to random fields which lead to a non central limit theorem. They are
constructed with a filter not necessary continuous at x = 0. It is actually supposed either to be
a tensorial product or to be homogeneous. In this latter case, the spectral density of the random
field can be unbounded all over a linear subspace of Rd yielding non-isotropic long memory.

4.1 Random fields constructed by a filter continuous at frequency 0
We first suppose that the filter leading to the field X is continuous and non-zero at x = 0 and
that it is bounded. Then the partial sums Sn of X converge to the limit of the partial sums of ξ,
in particular to the Brownian sheet if ξ is a strong white noise.

Theorem 3. Let (ξk)k∈Zd be a stationary random field satisfying H1.
Let a ∈ L2[−π, π]d be bounded on [−π, π]d and such that a is continuous at 0 and a(0) 6= 0.
Let (Xk)k∈Zd be the random field defined by (2.4), constructed by filtering ξ through a and

define Sn(t) by (2.3) for t ∈ ]0,∞[d, thus

Sn(t)
fidi−→

n→∞
a(0)B(t),

where B is the limit of the partial sums of ξ introduced in hypothesis H1.

Proof. We prove the convergence in law, t being fixed, the convergence of the finite dimensional
distributions follows then easily. We only have to prove that :

lim
n→∞

∫
Rd

∣∣∣∣∣∣a
(x

n

) d∏
j=1

Dn(xj , tj)− a(0)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx = 0. (4.1)

We split the above integral as in the proof of Theorem 2 and use the same argument, leading
to the study of the integral ∫

[−π,π]d
|a(x)− a(0)|2

d∏
j=1

F̃[ntj ](xj)dx.

For any fixed tj > 0, F̃[ntj ](xj) is, up to a constant, a strong approximation of unity. From
Proposition 1 of the appendix,

∏d
j=1 F̃[ntj ](xj) is a weak approximation of unity. Since the function

|a(x)− a(0)|2 is continuous at x = 0 and is bounded on [−π, π]d, Theorem 7 and (6.3) lead to

lim
n→0

∫
[−π,π]d

|a(x)− a(0)|2
d∏

j=1

F̃[ntj ](xj)dx = 0.

11



Now, we restrict ourselves to a particular class of random fields, constructed with a filter
continuous at x = 0 but non necessarily bounded.

Theorem 4. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let (Xk)k∈Zd be the random
field defined by (2.4).

Suppose that the filter a ∈ L2([−π, π]d) is of the following form :

a(x1, . . . , xd) = g

(
d∑

i=1

λixi

)
,

where the λi’s are real constants and g is a function defined on a compact set of R, square integrable
and continuous at x = 0 with g(0) 6= 0.

Define the partial sums Sn(t) by (2.3) for all t ∈ ]0,∞[d. Then

Sn(t)
fidi−→

n→∞
g(0)B(t),

where B is the limit of the partial sums of ξ introduced in hypothesis H1.

Proof. We have to prove convergence (3.4). We follow the same argument as in the proof of
Theorem 2, leading to the study of :

∫
[−π,π]d

|a(x)− a(0)|2
d∏

j=1

F̃[ntj ](xj)dx =
∫

[−π,π]d

∣∣∣∣∣g
(

d∑
i=1

λixi

)
− g(0)

∣∣∣∣∣
2 d∏

j=1

F̃[ntj ](xj)dx.

We suppose, without loss of generality, that λ1 6= 0 and we make the change of variable u =
x1 +

∑d
i=2

λi

λ1
xi, while the others variables remain unchanged. Hence,

∫
[−π,π]d

|a(x)− a(0)|2
d∏

j=1

F̃[ntj ](xj)dx

≤
∫

[−τ,τ ]

|g(λ1u)− g(0)|2
∫

[−π,π]d−1
F̃[nt1]

(
u−

d∑
i=2

λi

λ1
xi

)
d∏

j=2

F̃[ntj ](xj)dx2 . . . dxd

 du,

where [−τ, τ ] is a compact set which contains the integration domain of u. Define

Kn(u) =
∫

[−π,π]d−1
F̃[nt1]

(
u−

d∑
i=2

λi

λ1
xi

)
d∏

j=2

F̃[ntj ](xj)dx2 . . . dxd,

one has then to prove that as n →∞,∫
[−τ,τ ]

|g(λ1u)− g(0)|2Kn(u)du −→ 0. (4.2)

In the particular case when for every i, λi = ti = 1, Kn is, up to a multiplicative constant, the
(d− 1)th convolution product of the Fejer kernel Fn with itself. According to Proposition 1 of the
appendix, Kn is therefore, up to a constant, a strong approximation of unity on [−τ, τ ].

Then Theorem 7 concludes the proof, since |g(λ1u) − g(0)|2 is summable and continuous at
u = 0.

In the general case when some λi’s (or some ti’s) are not equal to 1, it is easy to prove that
the above result still holds.
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4.2 Random fields with a spectral density unbounded at 0
We first suppose that the filter leading to the field X is a tensorial product. This situation is in
fact very similar to the dimension 1. In the following theorem, the tensorial product is built from
1-dimensional filters corresponding either to (i) or to (ii) of Theorem 2.

Theorem 5. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let (Xk)k∈Zd be the random
field defined by (2.4), where the filter a has the form :

a(x1, . . . , xd) =
d∏

j=1

aj(xj), (4.3)

expression in which :

• either aj ∈ L2([−π, π]) is continuous at 0 with aj(0) 6= 0

• or aj ∈ L2([−π, π]) is equivalent at 0 to ãj where ãj is homogeneous of degree αj ∈ ]− 1, 0[.

Define the partial sums Sn(t) by (2.3) for all t ∈ ]0,∞[d. Denoting J the set of indexes j
such that aj is homogeneous of degree αj and denoting I the others indexes, one has the following
convergence in law :

n(
P

j∈J αj)Sn(t)
fidi−→

n→∞

∏
j∈I

aj(0)

 I

∏
j∈J

ãj(xj)
d∏

j=1

D(xj , tj)

 ,

where I is the linear application defined in Theorem 1.

Remark 6. If ξ is a strong white noise, one can write I as a stochastic integral (cf Remark 1 above).
In this case, and when for all j, ãj(x) = |x|−αj with 0 < αj < 1/2, the limit is the fractional
Brownian sheet :

n(
Pd

j=1 αj)Sn(t)
fidi−→

n→∞

∫
Rd

d∏
j=1

eitjxj − 1
ixj |xj |αj

dW0(x),

where W0 is defined in Remark 1.

Proof of Theorem 5. The convergence of the finite dimensional distributions follows from the con-
vergence in law, t being fixed. In order to apply Theorem 1, we have to prove :

lim
n→∞

∫
Rd

∣∣∣∣∣∣n(
P

j∈J αj)
d∏

j=1

aj

(xj

n

)
Dn(xj , tj)−

∏
j∈I

aj(0)
∏
j∈J

ãj(xj)
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx = 0.

This result is not difficult to obtain by inference, using the decomposition :

AB − CD = (A− C)(B −D) + (A− C)D + (B −D)C.

Theorem 6 below relates to non-isotropic long memory fields whose spectral density is singular
all over a linear subspace of Rd.

Theorem 6. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let (Xk)k∈Zd be the random
field defined by (2.4).

Define the partial sums Sn(t) by (2.3) for all t ∈ ]0,∞[d.
Suppose that a has the following form :

a(x) =

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
α

,
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where −1/2 < α < 0 and the λi’s are real constants. Then,
- If d ≤ 3,

nαSn(t)
fidi−→

n→∞
I

(
a(x)

d∏
i=1

D(xi, ti)

)
, (4.4)

where I is the linear application defined in Theorem 1.
- If d ≥ 4 and − 1

d−2 < 2α < 0 then convergence (4.4) holds.

Proof. We have to prove :

lim
n→∞

∫
Rd

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx = 0.

We split this integral in the following way :∫
Rd

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx

=
∫

[−nπ,nπ]d

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx +
∫
∪i{|xi|>nπ}

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α d∏

i=1

|D(xj , tj)|2dx.

The second integral tends to 0 ; for the first one, the change of variable x/n → x yields :

∫
[−nπ,nπ]d

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(xi, ti)−
d∏

i=1

D(xi, ti)

∣∣∣∣∣
2

dx

= n2α+d

∫
[−π,π]d

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

dx. (4.5)

We now define the following set :

An =

x ∈ [−π, π]d ;

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α

≥ nγ where γ < 1− 2α

 .

Denoting An the complementary set of An in [−π, π]d, we split (4.5) according to An and An.
Lemma 5 of Section 5 claims that∫

[−nπ,nπ]d

∣∣∣∣∣∣
∏
j

Dn(xj , tj)−
∏
j

D(xj , tj)

∣∣∣∣∣∣
2

dx = O(n−1),

hence ∫
[−π,π]d

∣∣∣∣∣∣
∏
j

Dn(nxj , tj)−
∏
j

D(nxj , tj)

∣∣∣∣∣∣
2

dx = O(n−d−1). (4.6)

Thus :

n2α+d

∫
An

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

dx

≤ n2α+d+γ

∫
[−π,π]d

∣∣∣∣∣
d∏

i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

dx = O(n2α−1+γ).
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Since γ < 1− 2α, this term tends to 0 when n →∞.
It remains to study integral (4.5) on An. From (3.13)

n2α+d

∫
An

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α ∣∣∣∣∣

d∏
i=1

Dn(nxi, ti)−
d∏

i=1

D(nxi, ti)

∣∣∣∣∣
2

dx ≤ O(n2α+d−2)
∫
An

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α

dx.

(4.7)

After a change of variables,

∫
An

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α

dx =
∫ n

γ
2α

−n
γ
2α

|u|2αdu

∫
[−π,π]d−1

dx2 . . . dxd = c n
γ
2α (2α+1),

where c is a positive constant. In order to obtain the convergence to zero of the right hand side
of (4.7), we need

∫
An

∣∣∣∣∣
d∑

i=1

λixi

∣∣∣∣∣
2α

dx = o(n2−d−2α),

which is satisfied if
γ

2α
(2α + 1)− 2 + d + 2α < 0. (4.8)

If d = 3,
γ

2α
(2α + 1) + 2α + 1 < 0 ⇔ γ > −2α

and (4.4) is proved by choosing γ in ]− 2α; 1− 2α[.
When d ≥ 4, condition (4.8) is fulfilled if

γ > −2α
d + 2α− 2

2α + 1
,

which is possible as soon as − 1
d−2 < 2α < 0, according to the initial condition on γ.

5 Proof of Theorem 1
Let’s start with a first lemma stating the measurability of the field B in H1.

Lemma 4. Under H1, the field B is measurable and separable.

The proof of Lemma 4 is relegated to the section 5.1.
We follow the scheme of Lang and Soulier (2000) whose proof deals with dimension 1. Let us

define Bn on Rd by :

Bn(t1, . . . , td) =
∫

[−nπ, nπ]d

d∏
j=1

eitjxj − 1
ixj

dWn(x1, . . . , xd). (5.1)

The integral is well defined since the integrand, being the Fourier transform of 1[0,t1]×···×[0,td]

in L2(Rd), is square integrable.
The spirit of the proof consists in defining the stochastic integral with respect to Bn in L2(Rd).

Then we write it in a form easily adaptable, via convergence arguments, to the random field B.
This finally permits to define I.
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The density of Wn is fn(x) = f(n−1x) (x ∈ [−nπ, nπ]d) where f is the spectral measure of ξ.
As f is uniformly bounded by M , so is fn. Given tj ∈ R and xj ∈ R, one has, with the help of
Definition (2.7) of D

E(Bn(t1, . . . , td)2) =
∫

[−nπ, nπ]d

d∏
j=1

|D(xj , tj)|2fn(x)dx

≤ M
d∏

j=1

∫ ∞

−∞
|D(xj , tj)|2dxj

≤ M
d∏

j=1

4|tj |
∫ ∞

0

1− cos u

u2
du ≤ c

d∏
j=1

|tj |, (5.2)

where c is a positive constant which may change in the sequel.
We first prove the convergence of the finite dimensional distributions of Bn to those of B. One

can rewrite Sξ
n of (2.1) in the following form :

Sξ
n(t) = n−d/2

[nt]−1∑
k=0

∫
[−π, π]d

ei<k; x>dW (x)

= n−d

[nt]−1∑
k=0

∫
[−nπ, nπ]d

ei<k; x/n> dWn(x)

=
∫

[−nπ, nπ]d

d∏
j=1

n−1

[ntj ]−1∑
kj=0

eikjxj/n

 dWn(x)

=
∫

[−nπ, nπ]d

d∏
j=1

Dn(xj , tj) dWn(x),

with Dn defined by (2.6).
Hence,

E
(
Bn(t1, . . . , td)− Sξ

n(t1, . . . , td)
)2
=
∫

[−nπ, nπ]d

∣∣∣∣∣∣
d∏

j=1

D(xj , tj)−
d∏

j=1

Dn(xj , tj)

∣∣∣∣∣∣
2

fn(x)dx. (5.3)

The sequence of functions fn is uniformly bounded by M , thus, by Lemma 5 below, we obtain
the convergence of (5.3) to zero. This convergence, joined with hypothesis H 1, yields the finite
dimensional distributions convergence of Bn to B.

Lemma 5. We have the following rates of convergence :

sup
x∈[−nπ,nπ]d

∣∣∣∣∣∣
d∏

j=1

Dn(xj , tj)−
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

≤ O(n−2) (5.4)

∫
[−nπ, nπ]d

∣∣∣∣∣∣
d∏

j=1

Dn(xj , tj)−
d∏

j=1

D(xj , tj)

∣∣∣∣∣∣
2

dx ≤ O(n−1) (5.5)
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Proof of Lemma 5. For any fixed t and for |x| < nπ :

|Dn(x, t)−D(x, t)| =
∣∣∣∣ eix[tn]/n − 1
n(eix/n − 1)

− eitx − 1
ix

∣∣∣∣
≤
∣∣∣∣(eix[tn]/n − 1)

(
1

n(eix/n − 1)
− 1

ix

)∣∣∣∣+ ∣∣∣∣eix[tn]/n − eitx

ix

∣∣∣∣
≤ 2

∣∣∣∣ 1
n(eix/n − 1)

− 1
ix

∣∣∣∣+ ∣∣∣∣eix[tn]/n − eitx

ix

∣∣∣∣ .
On one hand we have :∣∣∣∣ 1

n(ei x
n − 1)

− 1
ix

∣∣∣∣2 =
|ix− n(ei x

n − 1)|2

4n2x2 sin2( x
2n )

=
(x− n sin( x

n ))2 + n2 sin4( x
2n )

4n2x2 sin2( x
2n )

=
sin2( x

2n )
x2

+
( x

n − sin( x
n ))2

4x2 sin2( x
2n )

.

The first summand is not greater than 1/(4n2) and the second one is an even function of u = x/n
which belongs to [−π, π] ; furthermore,

(u− sin(u))2

4n2u2 sin2(u
2 )

≤ 1
n2

1 ∧ u4

4 sin2(u
2 )

≤ c
1
n2

∀u ∈ [0, π],

where 1 ∧ u4 = min(1, u4). Hence, ∣∣∣∣ 1
n(ei x

n − 1)
− 1

ix

∣∣∣∣2 ≤ c
1
n2

. (5.6)

On the other hand, ∣∣∣∣∣eix
[tn]

n − eitx

ix

∣∣∣∣∣
2

=

∣∣∣eix( [tn]
n −t) − 1

∣∣∣2
x2

=
4
x2

sin2

(
x

2

(
[tn]
n

− t

))
≤
∣∣∣∣ [tn]

n
− t

∣∣∣∣2 = O

(
1
n2

)
. (5.7)

Hence,

sup
x∈[−nπ,nπ]

|Dn(x, t)−D(x, t)|2 ≤ O

(
1
n2

)
. (5.8)

Moreover, (fn) is uniformly bounded, so∫ nπ

−nπ

|Dn(t, x)−D(t, x)|2fn(x)dx ≤ O

(
1
n2

)∫ nπ

−nπ

fn(x)dx ≤ O

(
1
n

)
−→

n→∞
0. (5.9)

Inequalities (5.8) and (5.9) prove Lemma 5 for d = 1. Now when d = 2

sup
x∈[−nπ,nπ]2

|Dn(x1, t1)Dn(x2, t2)−D(x1, t1)D(x2, t2)|2

≤ 3 sup
x∈[−nπ,nπ]2

|Dn(x1, t1)−D(x1, t1)|2 sup
x∈[−nπ,nπ]2

|Dn(x2, t2)−D(x2, t2)|2

+ 3 sup
x∈[−nπ,nπ]2

|Dn(x1, t1)−D(x1, t1)|2 sup
x∈[−nπ,nπ]2

|D(x2, t2)|2

+ 3 sup
x∈[−nπ,nπ]2

|Dn(x2, t2)−D(x2, t2)|2 sup
x∈[−nπ,nπ]2

|D(x1, t1)|2.
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For fixed t, D(., t) is bounded, from (5.8) we obtain the first inequality of Lemma 5. It is easy
to extend this proof to d > 2.

The proof of (5.5) is similar, changing the sup norm for the L1-norm.

Let us return to the proof of Theorem 1. For every Φ in L2(Rd), we denote by Φ̂ its Fourier
transform defined in such a way that the transformation Φ 7→ Φ̂ is an isometry. Let us consider
the linear mapping from L2(Rd) into L2(Ω) which transforms Φ into (2π)d/2

∫
Φ̂dWn.

Applying this mapping to the function 1[0,t1]×···×[0,td], we obtain (5.1). It remains to interpret
Bn(t1, . . . , td) as

∫
1[0,t1]×···×[0,td]dBn(t) and to extend this stochastic integral to Φ ∈ L2(Rd).

This leads to ∫
Rd

Φ(t)dBn(t) = (2π)d/2

∫
[−nπ, nπ]d

Φ̂(x)dWn(x). (5.10)

We now investigate the convergence in law of this integral.
Suppose firstly that Φ is compactly supported and differentiable. We can then rewrite Φ̂ : we

transform
Φ̂(x1, . . . , xd) = (2π)−d/2

∫
Rd

Φ(t1, . . . , td)eit1x1 . . . eitdxddt1 . . . dtd

by d successive integrations by parts. The first step is the following :

Φ̂(x) =(2π)−d

∫
Rd−1

[
Φ(t)

ei(t1x1+···+tdxd)

ix1

]
t1∈R

dt2 . . . dtd

− (2π)−d

∫
Rd

∂Φ(t)
∂t1

(
ei(t1x1+···+tdxd)

ix1
+ (−1)d−(d−1) e

i(t2x2+···+tdxd)

ix1

)
dt,

the first term vanishes since Φ vanishes outside a compact, yielding

Φ̂(x) = −(2π)−d

∫
Rd

∂Φ(t)
∂t1

(
ei(t1x1+···+tdxd)

ix1
− ei(t2x2+···+tdxd)

ix1

)
dt

= −(2π)−d

∫
Rd

∂Φ(t)
∂t1

eit1x1 − 1
ix1

ei(t2x2+···+tdxd)dt.

The next integration by parts gives :

Φ̂(x) = (2π)−d

∫
Rd

∂Φ(t)
∂t1∂t2

(
ei(t1x1+···+tdxd)

ix1ix2
− ei(t2x2+···+tdxd)

ix1ix2

+
ei(t3x3+···+tdxd)

ix1ix2
− eit1x1ei(t3x3+···+tdxd)

ix1ix2

)
dt

= (2π)−d

∫
Rd

∂Φ(t)
∂t1∂t2

eit1x1 − 1
ix1

eit2x2 − 1
ix2

ei(t3x3+···+tdxd)dt.

After d similar steps, we obtain

Φ̂(x1, . . . , xd) = (−1)d(2π)−d/2

∫
Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

d∏
j=1

eitjxj − 1
ixj

dt1 . . . dtd.

According to the stochastic Fubini Theorem, which can be proved in our multidimensional
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setting similarly as in Lemma 3 of Lang and Soulier (2000), one can rewrite integral (5.10) :∫
Rd

Φ(t)dBn(t) = (2π)d/2

∫
[−nπ, nπ]d

Φ̂(x)dWn(x)

= (2π)d/2

∫
[−nπ, nπ]d

(−1)d(2π)−d/2

∫
Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

d∏
j=1

eitjxj − 1
ixj

dt

 dWn(x)

= (−1)d

∫
Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

∫
[−nπ, nπ]d

d∏
j=1

eitjxj − 1
ixj

dWn(x)

 dt

= (−1)d

∫
Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

Bn(t1, . . . , td)dt1 . . . dtd. (5.11)

Finally, we need a lemma which generalises a theorem of Grinblatt (1976).

Lemma 6. Let (Yn(t))n∈N and Y (t) be measurable processes defined for t in a compact set K
of Rd. Assume that sequence (Yn(t))n∈N converges to Y (t) in the finite dimensional distributions
sense. If E|Yn(t)| is uniformly bounded with respect to n ∈ N and to t ∈ K, and if as n → ∞,
E|Yn(t)| → E|Y (t)| for all t ∈ K, then, for all continuous map H on L1(K), H(Yn) converges in
law to H(Y ).

The proof of this lemma follows the same lines as in Grinblatt (1976) and we omit it. More
details can be found in Lavancier (2003a).

From (5.2), E(B2
n(t)) is bounded with respect to n and t, hence so is E|Bn(t)| and moreover

the sequence Bn is uniformly integrable. This, and the fact that Bn(t) converges in law to B(t)
imply that E|Bn(t)| converges to E|B(t)|. By Lemma 4, B is measurable hence we can apply
Lemma 6, with Yn = Bn and K a compact set of Rd, to the map H defined by:

H(g) =
∫

Rd

∂Φ(t1, . . . , td)
∂t1 . . . ∂td

g(t1, . . . , td)dt1 . . . dtd,

with Φ differentiable and defined on a compact set. This map is actually continuous on L1(Rd).
So, if Φ is differentiable and compactly supported, H(Bn) converges in law to H(B). Hence, by

(5.11),
∫

ΦdBn converges in law to (−1)d
∫

Rd

∂Φ(t)
∂t1...∂td

B(t)dt. Let’s denote IB the linear application :

IB(Φ) = (−1)d

∫
Rd

∂Φ(t)
∂t1 . . . ∂td

B(t)dt.

Now, the set of all differentiable applications defined on a compact set is dense in L2(Rd) and the
linear application IB(Φ) is bounded since

E (IB(Φ))2 = E

(∫
Rd

(−1)d ∂Φ(t)
∂t1 . . . ∂td

B(t)dt

)2

≤ lim E

(∫
Rd

∂Φ(t)
∂t1 . . . ∂td

Bn(t)dt

)2

= lim E

(
(2π)d/2

∫
[−nπ, nπ]d

Φ̂dWn

)2

≤ (2π)dM ||Φ̂||22 = (2π)dM ||Φ||22. (5.12)

Therefore, by Hahn Banach’s Theorem, IB can be extended to L2(Rd) and (5.12) is still valid
for all Φ in L2(Rd):

E (IB(Φ))2 ≤ (2π)dM ||Φ||22. (5.13)

We now define the application I of Theorem 1 by :

I(Ψ) = IB(Ψ̌), ∀Ψ ∈ L2(Rd)
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where Ψ̌ is the inverse Fourier transform of Ψ.
We have

E (I(Ψ))2 = E
(
IB(Φ̌)

)2 ≤ (2π)dM ||Ψ̌||22 = (2π)dM ||Ψ||22,

which is (i) of Theorem 1.
Let us prove (iii). Let Ψ be a function of L2(Rd), and a sequence Ψk converging to Φ in

L2(Rd). Suppose that for every k, Ψ̂k is compactly supported and differentiable. Then,

(i)
∫

ΨkdWn converges in law to I(Ψk), from Lemma 6

(ii) E (I(Ψk)− I(Ψ))2 ≤ M ||Ψk −Ψ||22 −→ 0 when k →∞

(iii) E(
∫

ΨkdWn −
∫

ΨdWn)2 ≤ M ||Ψk −Ψ||22, yielding

lim
k→∞

limn→∞E(
∫

ΨkdWn −
∫

ΨdWn)2 = 0.

Hence, the hypotheses of Theorem 4.2 of Billingsley (1968) are satisfied taking Xk,n =
∫

ΨkdWn,
Xk = I(Ψk), X = I(Ψ) and Yn =

∫
ΨdWn. Consequently

∫
ΨdWn converges in law to I(Ψ).

If we finally consider a sequence of functions Ψn which converges to Ψ in L2(Rd), we directly
obtain that

∫
ΨndWn converges in law to I(Ψ).

In particular, taking Ψ̌ = 1[0,t1]×···×[0,td] :

I

 d∏
j=1

eitjxj − 1
ixj

 = lim
n→∞

∫ d∏
j=1

eitjxj − 1
ixj

dWn(x) = lim
n→∞

Bn(t) = B(t),

which is (ii) of Theorem 1.
Let us conclude with the proof of (iv) where ξ is supposed to be a strong white noise. In this

case, B(t) is the Brownian sheet with covariance σ(s, t) =
∏d

j=1 tj ∧ sj . Then the norm of the
application I is not greater than 1 from (i) of the theorem; moreover, the value 1 is achieved by
the particular function considered in (ii). Hence I is an isometry. Let the measure W0 be defined
for all set A by W0(A) = I(1A). It is obviously an orthogonal measure since I preserves the scalar
product. Furthermore

0 ≤ E (W0(A)) ≤ lim inf
n→∞

E (Wn(A)) = 0.

Therefore we can write I as a stochastic integral with respect to W0 :

∀Φ ∈ L2(Rd) I(Φ) =
∫

ΦdW0.

Notice that in this simple situation, (ii) of the theorem gives the harmonisable representation of
the Brownian sheet and W0 is the Gaussian white noise measure.

5.1 Proof of Lemma 4
It is known (see e.g. Gikhman and Skorokhod (1965)) that if the field (B(t))t∈Rd is stochastically
continuous almost everywhere, i.e. for almost every t ∈ Rd, ε > 0,

lim
s→t

P (|B(s)−B(t)| > ε) = 0, (5.14)

then there exists a measurable and separable version of B(t).
From hypothesis H 1, the joint distribution of (Sξ

n(s), Sξ
n(t)) converges to the distribution of

(B(s), B(t)). Then, as A =
{
(x, y) ∈ R2 : |y − x| > ε

}
is an open set, we have

P (|B(s)−B(t)| > ε) ≤ lim inf
n→∞

P
(∣∣Sξ

n(s)− Sξ
n(t)

∣∣ > ε
)
. (5.15)
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Let us assess E(Sξ
n(s)− Sξ

n(t))2.

E(Sξ
n(s)− Sξ

n(t))2 = E

n−d/2

[ns1]∑
k1=0

. . .

[nsd]∑
kd=0

ξk − n−d/2

[nt1]∑
k1=0

. . .

[ntd]∑
kd=0

ξk

2

.

We split the domains of summation in the following way
d∏

j=1

{
0, . . . , [nsj ]

}
=

d∏
j=1

{
0, . . . , [ntj ] ∧ [nsj ]

}
∪
{

[ntj ] ∧ [nsj ] + 1, . . . , [nsj ]
}

,

where
{

[nsj ] + 1, [nsj ]
}

= ∅. Developping this latest expression yields

d∏
j=1

{
0, . . . , [nsj ]

}
=

d−1⋃
l=1

⋃
Cl

d

∏
j∈Cl

d

{
0, . . . , [ntj ] ∧ [nsj ]

} ∏
j∈Cl

d

{
[ntj ] ∧ [nsj ] + 1, . . . , [nsj ]

}
⋃ d∏

j=1

{
[ntj ] ∧ [nsj ] + 1, . . . , [nsj ]

}⋃ d∏
j=1

{
0, . . . , [ntj ] ∧ [nsj ]

}
where Cl

d covers all the l-uple in {1, . . . , d} and where Cl
d is the complementary set of Cl

d in
{1, . . . , d}.

Now, we are able to write Sξ
n(s) − Sξ

n(t) thanks to this decomposition : the terms associated
to the latest union above will vanish. In the following sums, we agree that, if l = 0, then the sum
takes place only on j′ ∈ C

0

d = {1, . . . , d}.

Sξ
n(s)−Sξ

n(t) =
1

nd/2

d−1∑
l=0

∑
Cl

d

∑
j∈Cl

d

j′∈Cl
d

[ntj ]∧[nsj ]∑
kj=0

[nsj′ ]∑
kj′=[ntj′ ]∧[nsj′ ]+1

ξk −
[ntj ]∧[nsj ]∑

kj=0

[ntj′ ]∑
kj′=[ntj′ ]∧[nsj′ ]+1

ξk

 .

From the convexity of x 7→ x2,

E
(
Sξ

n(s)− Sξ
n(t)

)2 ≤ 2(2d − 1)
d−1∑
l=0

∑
Cl

d

E

n−d/2
∑
j∈Cl

d

j′∈Cl
d

[ntj ]∧[nsj ]∑
kj=0

[nsj′ ]∑
kj′=[ntj′ ]∧[nsj′ ]+1

ξk


2

+ 2(2d − 1)
d−1∑
l=0

∑
Cl

d

E

n−d/2
∑
j∈Cl

d

j′∈Cl
d

[ntj ]∧[nsj ]∑
kj=0

[ntj′ ]∑
kj′=[ntj′ ]∧[nsj′ ]+1

ξk


2

.

The stationarity of ξ yields

E
(
Sξ

n(s)− Sξ
n(t)

)2 ≤ 2(2d − 1)
d−1∑
l=0

∑
Cl

d

E

n−d/2
∑
j∈Cl

d

j′∈Cl
d

[ntj ]∧[nsj ]∑
kj=0

[nsj′ ]−[ntj′ ]∧[nsj′ ]−1∑
kj′=0

ξk


2

+ 2(2d − 1)
d−1∑
l=0

∑
Cl

d

E

n−d/2
∑
j∈Cl

d

j′∈Cl
d

[ntj ]∧[nsj ]∑
kj=0

[ntj′ ]−[ntj′ ]∧[nsj′ ]−1∑
kj′=0

ξk


2

.
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From this point, let us note that for all p1, . . . , pd belonging to {0, . . . , n}

E

(
n−d/2

p1∑
k1=0

. . .

pd∑
kd=0

ξk

)2

= n−d

p1∑
k1,k′1=0

. . .

pd∑
kd,k′d=0

∫
[−π,π]d

fξ(λ)ei<k′−k,λ>dλ

≤ Mn−d

p1∑
k1,k′1=0

. . .

pd∑
kd,k′d=0

∫
[−π,π]d

ei<k′−k,λ>dλ

≤ M
d∏

j=1

pj + 1
n

.

Therefore,

E
(
Sξ

n(s)− Sξ
n(t)

)2 ≤c
d−1∑
l=0

∑
Cl

d

∏
j∈Cl

d

[ntj ] ∧ [nsj ] + 1
n


∏

j∈Cl
d

[nsj ]− [ntj ] ∧ [nsj ]
n


+ c

d−1∑
l=1

∑
Cl

d

∏
j∈Cl

d

[ntj ] ∧ [nsj ] + 1
n


∏

j∈Cl
d

[ntj ]− [ntj ] ∧ [nsj ]
n

 ,

where c is a positive constant. Finally

E
(
Sξ

n(s)− Sξ
n(t)

)2 ≤
c

d−1∑
l=0

∑
Cl

d

∏
j∈Cl

d

(tj ∧ sj + n−1)

∏
j∈Cl

d

(
sj − tj ∧ sj + n−1

)
+
∏

j∈Cl
d

(
tj − tj ∧ sj + n−1

) .

The last inequality proves that

lim
s→t

lim inf
n→∞

E
(
Sξ

n(s)− Sξ
n(t)

)2
= 0 (5.16)

because Cl
d is never empty when l ≤ d− 1.

Thanks to (5.16), applying the Tchebychev inequality in (5.15) leads to (5.14).

6 Appendix : properties of approximations of unity
In this Section, we summarise some properties of the approximations of unity needed in the proofs
of the above Sections. Some of them are known or obvious, others are particular to the use we make
of them and have not been found in the literature. This is in particular the case with properties of
the tensorial product and the convolution product of approximations of unity. These ones depend
on the nature of the approximations of unity that we consider. Indeed, we will distinguish two
classes : the first one is the approximations of unity in a weak sense (that is the common sense of
an approximation of unity), the other one is the approximations of unity in a strong sense. We
apply these results to the Fejer kernel which is a strong approximation of unity ; we finally resume
some specific properties of this kernel, which are useful in some of our proofs. According to the
final point of view, we focus our study on approximations of unity defined on [−π, π]d.

Definition 2. We say that a function Kn : [−π, π]d → R is a weak approximation of unity if
∀n, Kn ≥ 0,

∫
[−π,π]d

Kn(x)dx = 1 and if

∀δ > 0, lim
n→∞

∫
||x||>δ

Kn(x)dx = 0. (6.1)

22



We say that a function Kn : [−π, π]d → R is a strong approximation of unity if ∀n, Kn ≥ 0,∫
[−π,π]d

Kn(x)dx = 1 and if
∀δ > 0, lim

n→∞
sup
||x||>δ

Kn(x)dx = 0. (6.2)

A strong approximation of unity is obviously a weak one. These functions are mainly used for
the well known following property :

Theorem 7. Let Kn be a weak approximation of unity on [−π, π]d, then for any bounded function
g ∈ L1([−π, π]d), continuous at 0,

lim
n→∞

∫
[−π,π]d

g(x)Kn(x)dx = g(0). (6.3)

Let Kn be a strong approximation of unity on [−π, π]d, then for any function g ∈ L1([−π, π]d),
continuous at 0,

lim
n→∞

∫
[−π,π]d

g(x)Kn(x)dx = g(0). (6.4)

After a tensorial product or a convolution product, the quality of approximation of unity is
preserved in the following way :

Proposition 1. Let K
(1)
n , . . . ,K

(d)
n be approximations of unity on [−π, π].

If the K
(i)
n ’s are weak approximations of unity, then

1. K
(1)
n ∗ · · · ∗K

(d)
n (x) is still a weak approximation of unity on [−π, π].

2. Pn(x1, . . . , xd) =
∏d

i=1 K
(i)
n (xi) is a weak approximation of unity on [−π, π]d.

If the K
(i)
n ’s are strong approximations of unity, then

1. K
(1)
n ∗ · · · ∗K

(d)
n (x) is still a strong approximation of unity on [−π, π].

2. Pn(x1, . . . , xd) =
∏d

i=1 K
(i)
n (xi) is no more a strong approximation of unity on [−π, π]d, but

only a weak one.

Proof. The proof is straightforward, see Lavancier (2003b) for more details. Just notice that the
tensorial product of two strong approximations of unity is not necessarily a strong approximation
of unity. Indeed, consider for instance the Fejer kernel Fn defined in (6.5) below. It is a strong
approximation of unity, but one has Fn(0)Fn(π) = 0 if n is even and Fn(0)Fn(π) = 1

4π2 if n is
odd. Property (6.2) is therefore not verified by the tensorial product (x, y) 7→ Fn(x)Fn(y).

We now focus more particularly on the Fejer kernel, defined on [−π, π] by

Fn(x) =

{
1

2πn
sin2(nx/2)
sin2(x/2))

if x 6= 0
n
2π if x = 0.

(6.5)

We summarise some of its properties, useful in the preceding Sections.

Proposition 2. Let Fn be the Fejer kernel defined on [−π, π] by (6.5), then

1. Fn is a strong approximation of unity from [−π, π] into R

2. ∀δ > 0 sup|x|>δ Fn(x) ≤ π
2nδ2

3. ∀δ > 0
∫
|x|>δ

Fn(x)dx ≥ 1
2πn

(
π − δ + sin(nδ)

n

)
4. ∀g ∈ L1([−π, π]),

∫ π

−π
g(x)Fn(x)dx = o(n) when n →∞

5. Let α > −1, then
∫ π

−π
|x|αFn(x)dx ∼ cn−α when n →∞, where c is a positive constant.

Proof. The four first points can be easily checked. 5. is proved in Lemma 9 of Viano et al.
(1995).
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