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Abstract

Recently, Giraitis et al. (2003, [10]) proposed the V/S statistic for testing long memory
in random sequences. We generalize this statistic to the setting of random fields. The null
hypothesis is concerned with short memory random fields while the alternative contains a
very large family of long memory random fields. Contrary to most of the previous works
dealing with long-range dependence, no assumption is made about the isotropy of the strong
dependence. Some simulations are presented in order to assess the power of the test according
to the kind of long memory in presence.
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1 Introduction

A stationary random field X = (Xn)n∈Zd is usually said to exhibit long memory when its covariance
function r(n), n ∈ Z

d, is not absolutely summable:
∑

n∈Zd |r(n)| = ∞. An alternative definition
relates on spectral properties: A random field is said to exhibit long memory if its spectral density
is unbounded. These two points of view are closely related but not equivalent. In this paper, the
concepts of “strong dependence” and “long-range dependence” are the same as “long memory”.

Most of the previous studies on long memory random fields (see [6], [7], [18]) assume that
the strong dependence occurs with the same intensity in all directions. Indeed, these works are
concerned with isotropic long memory according to the following definition.

Definition 1. A stationary random field exhibits isotropic long memory if it admits a spectral
density which is continuous everywhere except at 0 where

f(x) ∼ ||x||α−d b

(
x

||x||

)
L

(
1

||x||

)
, 0 < α < d,

where ||.|| denotes the Euclidean norm, where L is slowly varying at infinity and b is a continuous
function on the unit sphere in R

d.

However, it is easy to construct non-isotropic long memory random fields. In [14], such fields
arise from particular filterings of a white noise, from the aggregation of weakly dependent random
fields, or from systems of statistical mechanics in phase transition.

Our aim is to construct a procedure for discriminating between weak dependent random fields
and strong dependent ones, regardless of the isotropy.

In dimension d = 1, several tests for long memory are available. They are mostly based on an
estimation of the variations of the partial sums process of X . For all these tests, the alternative
hypothesis consists in parametric families of long memory processes, typically FARIMA time series.
Lo (1991, [17]) first developed a test based on the R/S statistic, which estimates the range of the
partial sums process of X . The KPSS test was initially developed by Kwiatkovski et al. (1992,
[12]) for testing stationarity (under weak dependence assumptions) against the presence of a trend
or a unit root. A variant of the KPSS test, based on an estimation of the second order moments
of the partial sums of X , was proposed by Lee and Schmidt (1996, [16]) in order to test long
memory. From the same idea, Giraitis et al. (2003, [10]) introduced the V/S statistic, based on
an estimation of the variance of the partial sums of X . It appears that this test is more powerful
than the R/S test and than the KPSS test for detecting strong dependence.

Note that the behavior of the partial sums of X is not the unique way to test long memory in
dimension d = 1. Goodness-of-fit tests for long range dependent time series have been developed
(cf. [1], [9] and [4]). To the best of our knowledge, in dimension d > 1, there exists no generic
model able to exhibit different situations such as isotropic or non-isotropic long memory. A
goodness-of-fit approach seems therefore too restrictive in our framework.

In this paper, we generalize the V/S test to the setting of random fields. Since this test is based
on the partial sums of X , we summarize in Section 2 what is known about their limiting behavior
under short memory and long memory. This will allow us to specify our testing hypothesis. Section
3 proves the consistency of the test through asymptotic results. Some simulations are presented in
Section 4 when d = 2. They reveal that the power of the test is strongly related to the anisotropy
of the long memory.

2 Test hypotheses

Let X be a second order stationary real random field. We want to test the null hypothesis: X is
weakly dependent against the alternative assumption: X exhibits long memory. The V/S test that
we extend in this paper does not rely exactly on these testing hypotheses. It rather focuses on the
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behavior of the partial sums process, defined for all t ∈ [0, 1]d by

∑

k∈An(t)

Xk,

with An(t) = Z
d ∩∏d

i=1[1, ⌊(n − 1)ti⌋ + 1], where ⌊x⌋ denotes the integral value of x and n is a
positive integer. Indeed, there is a close relation between the dependency of X and the asymptotic
behavior of its partial sums.

When X is a centered and weakly dependent random field, i.e. when its covariance function
is absolutely summable, it is well known that if σ2 :=

∑
h∈Zd r(h) 6= 0, a functional central limit

theorem generally holds:
1

σnd/2

∑

k∈An(t)

Xk
D([0,1]d)−→ B(t). (2.1)

Here, B denotes the Brownian Sheet, i.e. the centered Gaussian process such that E(B(t)B(s)) =∏d
i=1 ti ∧ si. The convergence takes place in D([0, 1]d), the Skorokhod space of cadlag functions

defined on [0, 1]d (see [2] for instance). This result has been proved by different authors according
to the kind of weak dependence of X , among others: Wichura (1969, [20]) when X is an i.i.d
process, Dedecker (2001, [5]) under a weak projective assumption.

On the other hand, when X is long-range dependent, (2.1) is generally false. More precisely,
when the spectral density of X exhibits at least one singularity located at zero, then, under some
structural hypotheses on X , it has been proved that

1

nγ

∑

k∈An(t)

Xk
D([0,1]d)−→ Y (t), (2.2)

where γ > d/2 and Y is a random field different from the Brownian Sheet (not even necessarily
Gaussian). This result is shown in [6] for functionals of Gaussian fields, extended in [18] to
functionals of linear fields, when the long memory is isotropic according to Definition 1. In the
case of linear fields which exhibit anisotropic long memory, (2.2) is proved in [15].

Let us now precise the testing hypotheses.

H0: Short memory hypothesis. The second order random field X is stationary, with a
covariance function r, such that SM1, SM2 and SM3 below are satisfied.

SM1 ∑

j∈Zd

|r(j)| < ∞ and σ2 :=
∑

j∈Zd

r(j) > 0. (2.3)

SM2
1

σnd/2

∑

k∈An(t)

(Xk − E(X0))
D([0,1]d)−→ B(t),

where B is the Brownian Sheet.

SM3

sup
i∈Zd

∑

(j,k)∈Z2d

|c4(i, j, k)| < ∞,

where c4 represents the fourth order cumulants of X : Denoting X̃i = Xi−E(Xi), c4(i, j, k) =
E[X̃0X̃iX̃jX̃k] − r(i)r(k − j) − r(j)r(k − i) − r(k)r(j − i).

H1: Long memory hypothesis. The second order random field X is stationary and satisfies
LM1 and LM2 below.
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LM1
1

nγL(n)

∑

k∈An(t)

(Xk − E(X0))
D([0,1]d)−→ Y (t), (2.4)

with γ > d/2, where L is a slowly varying function at infinity and Y is some measurable and
non-degenerated random field.

LM2

V ar


 ∑

k∈An(1)

Xk


 = O(n2γL2(n)). (2.5)

Remark 1. The null hypothesis H0 deals with short memory as suggested by assumption SM1.
Assumption SM2 claims that a functional central limit theorem holds, as expected in the short
memory setting. However, SM1 does not imply SM2. For instance, some counter-examples are
available in Theorems 7 and 8 in [11]. Finally, SM3 is needed for technical reasons.

As explained above, (2.4) holds for a large family of long memory fields and it can be reasonably
chosen as the alternative hypothesis. However, when the strong dependence involves non zero
spectral singularities, then (2.1) may remain true (cf. [15], Theorem 2 and Theorem 4). Then,
there is no chance for this particular situation of long memory to be detected by the test. Notice
that the same restriction exists in dimension 1 in all the long memory testing procedures based
on the behavior of the partial sums. Assumption LM2 is convenient for technical reasons and
appears to be a weak restriction to LM1.

3 The testing procedure

3.1 Test statistic

We generalize the V/S statistic to d > 1. Let us first introduce some notations. For all positive
integer n, let An ≡ An(1). We denote, for all positive integer j,

S∗
n,j =

∑

i∈Aj

(
Xi − Xn

)
, (3.1)

where Xn = n−d
∑

j∈An
Xj . Let q be an integer in [1, n]. An estimator of σ2, defined by (2.3), is

ŝ2
n =

∑

j∈Bq−1

ωq,j r̂(j), (3.2)

with Bq = {−q, . . . , q}d. Here ωq,j =
∏d

i=1(1 − |ji|
q ) are some weights leading to the positivity of

ŝ2
n (see for instance [3] p360) and r̂ is the empirical covariance function:

r̂(j) =
1

nd

n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(
Xk1,...,kd

− Xn

) (
Xk1+|j1|,...,kd+|jd| − Xn

)
.

The statistic V/S is defined by

Mn = n−d
V̂ ar

(
S∗

n,j , j ∈ An

)

ŝ2
n

,

where V̂ ar
(
S∗

n,j , j ∈ An

)
= n−d

∑
j∈An

(
S∗

n,j − S∗
n

)2
and S∗

n = n−d
∑

j∈An
S∗

n,j . One can rewrite
Mn as

Mn =
n−2d

ŝ2
n



∑

j∈An

S∗
n,j

2 − n−d


∑

j∈An

S∗
n,j




2

 . (3.3)
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3.2 Consistency of the test

In what follows, the integer q involved in Definition 3.2 is actually a function qn depending on n.
The following proposition establishes the consistency of the test when the sequence qn is properly
chosen.

Proposition 1. If limn→∞ qn = ∞ and limn→∞ qn/n = 0, then,
(i) Under H0,

Mn
L−→
∫

|0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)2

dt −
[∫

[0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)
dt

]2

, (3.4)

where B is the Brownian Sheet on [0, 1]d and
L−→ denotes the convergence in law.

(ii) Under H1,

Mn
P−→ ∞, (3.5)

where
P−→ denotes the convergence in probability.

The testing procedure is the following: Given a significance level α ∈ [0, 1], one rejects the null
hypothesis H0 if Mn, given by (3.3), is greater than c(α), where c(α) is such that

P (Ud > c(α)) = α,

where Ud is distributed according to the asymptotic law involved in (3.4). Proposition 1 guarantees
that the significance level of the test is asymptotically correct and that the power of the test goes
to 1.

Remark 2. To our knowledge, the theoretical form of the asymptotic law Ud in (3.4) is unknown for
d > 1. When d = 1, the distribution function of U1 is FK(π

√
x), where FK denotes the Kolmogorov

distribution function (see [10]). This identification comes from Watson (1961, [19]) and is not easy
to extend to d > 1. It is however straightforward to obtain E(Ud) = (1/2)d + (1/4)d − 2(1/3)d.
For d = 2, a simulation of the density distribution of U2 is presented in Section 4.1 (cf Figure 1).

Proof. Notice that if k
n ≤ t1 < k+1

n , then

S∗
n(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1) = S∗

n(k + 1, ⌊nt2⌋ + 1, . . . , ⌊ntd⌋ + 1),

where S∗
n(j) ≡ S∗

n,j is defined for all j ∈ An in (3.1). Therefore

n−d
∑

j∈An

S∗
n,j =

∫

[0,1]d
S∗

n(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1)dt.

The same equality holds with respect to S∗
n

2 and expression (3.3) of Mn becomes

Mn =
n−d

ŝ2
n



∫

[0,1]d
S∗

n
2(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1)dt −

(∫

[0,1]d
S∗

n(⌊nt1⌋ + 1, . . . , ⌊ntd⌋ + 1)dt

)2

 .

Let Sn(t) = n−d/2
∑

k∈An(t) Xk, then Mn can be expressed as

Mn =

1

ŝ2
n



∫

[0,1]d

(
Sn+1(t) −

d∏

i=1

⌊nti⌋ + 1

n
Sn(1)

)2

dt −
(∫

[0,1]d
Sn+1(t) −

d∏

i=1

⌊nti⌋ + 1

n
Sn(1)dt

)2

 .

Hence ŝ2
nMn is of the form Φ(Sn(.)), where Φ is a continuous map.
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As a consequence, under SM2 and from the continuous mapping theorem,

ŝ2
n

σ2
Mn

L−→
∫

|0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)2

dt −
[∫

[0,1]d

(
B(t) −

(
d∏

i=1

ti

)
B(1)

)
dt

]2

.

Besides, under LM1,

ŝ2
n

nd

n2γL(n)2
Mn

L−→
∫

|0,1]d

(
Y (t) −

(
d∏

i=1

ti

)
Y (1)

)2

dt −
[∫

[0,1]d
Y (t) −

(
d∏

i=1

ti

)
Y (1)dt

]2

.

The proof is concluded thanks to the following lemma.

Lemma 1. If limn→∞ qn = ∞ and limn→∞ qn/n = 0, then,
(i) Under H0,

ŝ2
n

P−→ σ2.

(ii) Under H1,
nd

n2γL(n)2
ŝ2

n
P−→ 0.

Proof of Lemma 1.
The demonstration is an adaptation from Giraitis et al. (2003, [10]) to the random field

framework.
Denote k = (k1, . . . , kd) and |j| = (|j1|, . . . , |jd|),

r̃(j) =
1

nd

n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(Xk − µ)
(
Xk+|j| − µ

)
,

where µ is the expectation of X . We split ŝ2
n as

ŝ2
n =

∑

j∈Bq−1

ωq,j r̃(j) +
∑

j∈Bq−1

ωq,j (r̂(j) − r̃(j)) := un + vn. (3.6)

We first show that, under H0, E(|vn|) → 0 when n → ∞, while under H1, E(|vn|) = o(n2γ−dL(n)2)
when n → ∞.

Some computations lead to

r̂(j)− r̃(j) =

d∏

i=1

(
1 − |ji|

n

)(
Xn − µ

)2 −n−d
(
Xn − µ

) n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(
(Xk − µ) + (Xk+|j| − µ)

)
.

From the Cauchy-Schwartz inequality

E(|vn|) ≤
∑

j∈Bq−1

E |r̂(j) − r̃(j)|

≤
∑

j∈Bq−1

{
E
(
Xn − µ

)2
+ n−d

√
E
(
Xn − µ

)2
[
√√√√√E




n−|j1|∑

k1=1

· · ·
n−|jd|∑

kd=1

(Xk − µ)




2

+

√√√√√E




n∑

k1=|j1|
· · ·

n∑

kd=|jd|
(Xk − µ)




2]}
.
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Since r is bounded, if si < ti, for all i = 1 . . . d,

E

(
t1∑

i1=s1

· · ·
td∑

id=sd

(Xi − µ)

)2

=

t1∑

i1,i′
1
=s1

· · ·
td∑

id,i′
d
=sd

r(i − i′) ≤ c

d∏

i=1

(ti − si),

where c is a positive constant. Therefore

E(|vn|) ≤ c
∑

j∈Bq−1

(
E
(
Xn − µ

)2
+ 2n−d

√
E
(
Xn − µ

)2 d∏

i=1

√
n − |ji|

)

≤ c
∑

j∈Bq−1

(
E
(
Xn − µ

)2
+ 2n−d/2

√
E
(
Xn − µ

)2
)

. (3.7)

Under SM1, E
(
Xn − µ

)2 ≤ cn−d, while under LM2, E
(
Xn − µ

)2 ≤ cn2γ−2dL2(n). Since
q/n goes to 0, it is then straightforward to conclude that, under H0, E(|vn|) vanishes and, under
H1, E(|vn|) = o(n2γ−dL2(n)).

Now, we turn to the asymptotic behavior of un.
Let us first show that under H0, un, defined by (3.6), converges in probability to σ2 when n

goes to infinity. Notice that

E(un) =
∑

j∈Bq−1

ωq,j

(
d∏

i=1

n − |ji|
n

)
r(j) → σ2.

According to (3.6), ŝ2
n converges in probability to σ2 if E (un − E(un))

2
converges to 0.

E (un − E(un))
2

= E


 ∑

j∈Bq−1

ωq,j [r̃(j) − E (r̃(j))]




2

=
∑

j,j′∈B2

q−1

ωq,jωq,j′cov(r̃(j), r̃(j′))

≤
∑

j,j′∈B2

q−1

|cov(r̃(j), r̃(j′))|

≤ 1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

∣∣cov
(
(Xk − µ)(Xk+|j| − µ), (Xk′ − µ)(Xk′+|j′| − µ)

)∣∣ .

We split the sum above in two terms involving on one side the cumulants and on the other side
the covariance function. Indeed

cov
(
(Xk − µ)(Xk+|j| − µ), (Xk′ − µ)(Xk′+|j′| − µ)

)
=

cum(Xk, Xk+|j|, X
′
k, Xk′+|j′|) + r(k − k′)r(k′ − k + |j′| − |j|) + r(k − k′ − |j′|)r(k − k′ + |j|).

First, thanks to SM3,

1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

∣∣cum(Xk, Xk+|j|, X
′
k, Xk′+|j′|)

∣∣

≤ 1

n2d

∑

j∈Bq−1

∑

k∈An

∑

i,i′∈B2n

∣∣cum(X0, X|j|, Xi, Xi′)
∣∣

≤ 1

nd

∑

j∈Bq−1

∑

i,i′∈B2n

|c4(|j|, i, i′)|

≤ c
( q

n

)d

,
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where c is a positive constant.
Then,

1

n2d

∑

j,j′∈B2

q−1

∑

k,k′∈A2
n

|r(k − k′)r(k′ − k + |j′| − |j|) + r(k − k′ − |j′|)r(k − k′ + |j|)|

≤ 1

n2d

∑

j∈Bq−1

∑

k∈An

∑

i,i′∈B2n

2 |r(i)r(i′)|

≤ c
( q

n

)d

,

where c is a positive constant.
Finally E (un − E(un))

2
converges to 0 if q/n → 0 and this completes the proof of (i).

For proving (ii), recall that

E(un) =
∑

j∈Bq−1

ωq,j

(
d∏

i=1

n − |ji|
n

)
r(j).

According to LM2, E(un) ≤ q−d
∑

j∈Bq−1

(∏d
i=1(q − |ji|)

)
r(j) = O(q2γ−dL2(q)). Therefore,

from (3.6) and (3.7), E(|ŝ2
n|) = E(ŝ2

n) = E(un) + E(vn) = o(n2γ−dL2(n)) + O(q2γ−dL2(q)) and
(ii) of Lemma 1 follows because q/n vanishes when n goes to infinity.

4 Simulations in dimension d = 2

The following simulations give an idea of the power of the test under different situations of strong
dependence. First, one has to approach the asymptotic law of the test statistic Mn under the
null hypothesis. This is done in subsection 4.1. We then focus on the choice of q when n = 128
and n = 256 to guarantee a proper size of the test. In subsection 4.3, the power of the test is
assessed. Several kinds of long memory random fields are simulated and submitted to the testing
procedure. As these simulations are highly time consuming, we restrict ourselves to random fields
of size 128× 128 and 256× 256. The simulations results reveal a close relation between the power
and the kind of strong dependence encountered. The power depends on the strength of the long
memory but also on its anisotropy.

4.1 Asymptotic law under H0

The first step to implement the test consists in simulating the asymptotic law of Mn under the
null hypothesis. According to Proposition 1, this is the law of

∫

|0,1]2

(
B(t) −

(
2∏

i=1

ti

)
B(1)

)2

dt −
[∫

[0,1]2

(
B(t) −

(
2∏

i=1

ti

)
B(1)

)
dt

]2

, (4.1)

where B is the Brownian Sheet on [0, 1]2. After some computations, (4.1) can be written

∫

|0,1]2
B(t1, t2)

2dt1dt2 − 2B(1, 1)

∫

|0,1]2
t1t2B(t1, t2)dt1dt2 −

(∫

|0,1]2
B(t1, t2)dt1dt2

)2

+
B(1, 1)

2

∫

|0,1]2
B(t1, t2)dt1dt2 +

7

144
B(1, 1)2.

To simulate a sample under this law, each integral above is approximated by a Riemann sum, for
instance ∫

|0,1]2
t1t2B(t1, t2)dt1dt2 ≈ 1

n2

n∑

k1=1

n∑

k2=1

k1

n

k2

n
B

(
k1

n
,
k2

n

)
,
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where a realization of
(
B
(

k1

n , k2

n

))
1≤k1,k2≤n

is given by

B

(
k1

n
,
k2

n

)
=

1

n

k1∑

j1=1

k2∑

j2=1

εj1,j2 , ∀(k1, k2) ∈ {1, . . . , n}2,

with (εj)j∈Z2 a Gaussian white noise.
For n = 7000, 10000 realizations of the law (4.1) have been computed. The histogram of the

sample is shown in Figure 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0   

0.02

0.04

0.06

0.08

0.10

0.12

 

 

Figure 1: Estimated density function of the limiting law (4.1)

From the simulated sample, an estimated mean of 0.0897 is obtained, the empirical variance
is 0.0018 and the empirical quantiles of order 90% and 95% are respectively 0.1448 and 0.1692.

4.2 Choice of q

The sample size n being fixed, one has to choose the value of q involved in definition (3.3) of Mn.
This choice is not easy. We decide to choose it so that the size of the test is optimized. This
reduces to check that the p-values under H0 are uniformly distributed on [0, 1].

Small values of q lead to an increase of the probability of rejecting H0. So, in order to maximize
the power of the test, we have to find the smallest q such that the size is correct.

To achieve this choice, we compute the test for different autoregressive fields Xk1,k2
defined by

(1 − aL1)(1 − aL2)Xk1,k2
= εk1,k2

, (4.2)

where ε is a Gaussian white noise, where 0 < a < 1 and Li represents the lag operator on the i-th
index. The simulation of such an autoregressive field is done by filtering a white noise as in [8].

Clearly, the size of the test will increase with a. As a consequence, in the simulations below, we
choose to quote only two situations: a = 0.5 and a = 0.8. The last case corresponds to a memory
close to strong dependence and a worse size in this case might be acceptable. Indeed, it will be
impossible to find q such that, uniformly on a, the size of the test is strictly the one expected.
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4.2.1 Case n = 128

Figure 2 represents the empirical distribution of the p-values, computed on 1000 realizations of
Mn, in the case n = 128, when q = 28, q = 30 and q = 32. The line with crosses stands for
a = 0.8 and the line with circles for a = 0.5. The diagonal line is added for sake of comparison.
The representations are zoomed in on [0, 0.1].
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Figure 2: Cumulative distribution function of the p-values on [0, 0.1] for model (4.2) with a = 0.8
(crosses) and a = 0.5 (circles) when n = 128 and q = 28 (left), q = 30 (middle), q = 32 (right).

The value q = 30 is chosen. For this value, the size associated with a = 0.8 is larger than
expected (for instance 15% instead of 10%). This error is acceptable since the dependence of an
autoregressive field (4.2) with a = 0.8 is close to long memory. The choice of a larger q reduces
this error but on the other hand, this may create a bias for smaller values of a (as seen in Figure
2 for q = 32 and a = 0.5), and consequently the test becomes less powerful.

4.2.2 Case n = 256

Figure 3 represents the empirical distribution of the p-values in the case n = 256 when q = 35,
q = 40 and q = 45. The line with crosses stands for a = 0.8 and the line with circles for a = 0.5.

The value q = 40 is chosen for the same reasons as before: The error for a = 0.8 seems
acceptable in comparison with the loss of power that the choice of a larger q would yield.
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Figure 3: Cumulative distribution function of the p-values on [0, 0.1] for model (4.2) with a = 0.8
(crosses) and a = 0.5 (circles) when n = 256 and q = 35 (left), q = 40 (middle), q = 45 (right).

4.3 Power under different alternatives

We implement the test on different Gaussian long memory random fields. The power is assessed
according to the type of memory. First, the case when the long memory is of tensorial product
type is studied: That is when the spectral density f(x1, x2) of the field, defined on [−π, π]2, is
equivalent at 0 to |x1|α1 |x2|α2 , −1 < α1 < 0, −1 < α2 < 0. The range of α1 and α2 guarantees
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the integrability of f . Notice that this spectral density does not follow the property of Definition
1. Then, we report the case when the long memory is isotropic: That is when the spectral density
is equivalent at 0 to (x2

1 + x2
2)

α/2, where, for integrability reasons, −2 < α < 0. In the last
simulations, we focus on the effect of anisotropy on the power. For this purpose, we simulate
Gaussian fields whose spectral densities are equivalent at 0 to |x1 + kx2|α, −1 < α < 0, k ∈ Z.
This is an extreme case of anisotropic field since f exhibits only one line of singularity. For all
these examples, assumption H1 holds with γ = 1 − (α1 + α2)/2 for the product-type case, and
γ = 1 − α/2 for the two other examples (see [14] or [15]).

All of the above fields are simulated thanks to the spectral method (cf [13]) which consists in
the following algorithm:

1. Generate N independent random variables (Z
(1)
1 , Z

(1)
2 ), . . . , (Z

(N)
1 , Z

(N)
2 ) on [−π, π]2 accord-

ing to the spectral measure µ (viewed, up to a normalization, as a probability distribution);

2. Generate N independent random variables U1, . . . , UN uniformly on [0, 1];

3. Compute for all (i, j), Xi,j =
√

2
N

∑N
k=1 cos(Z

(k)
1 i + Z

(k)
2 j + 2πUk).

According to the central limit theorem, the resulting field X is Gaussian with spectral measure
µ when N is large. In practice, the value N = 5000 is fixed.

4.3.1 Tensorial product type long memory

The power of the test is assessed for Gaussian fields with a spectral density equivalent at 0 to
|x1|α1 |x2|α2 , −1 < α1 < 0, −1 < α2 < 0. Figure 4 shows a simulation of such fields on a 256×256
grid using the spectral method, when, from left to right, α1 = α2 = −0.25, α1 = α2 = −0.5 and
α1 = α2 = −0.75. These cases correspond respectively in (2.5) to γ = 1.25, γ = 1.5 and γ = 1.75.

Figure 4: Gaussian fields with product-type long memory where γ = 1.25 (left), γ = 1.5 (middle)
and γ = 1.75 (right).

The empirical c.d.f. of the p-values of the test is represented on Figure 5. Each curve is
computed on 500 simulated fields. On the left, the simulations correspond to fields of size 128×128,
while on the right n = 256. The parameter q has been chosen according to subsection 4.2, that
is q = 30 when n = 128 and q = 40 when n = 256. In each case, three curves are represented,
corresponding to α1 = α2 = −0.25 (crosses), α1 = α2 = −0.5 (circles) and α1 = α2 = −0.75
(triangles). We observe logically that the power of the test increases with the strength of the
memory (quantified by γ) and with the size of the sample.
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Figure 5: C.d.f. of the p-values when γ = 1.25 (crosses), γ = 1.5 (circles) and γ = 1.75 (triangles),
where n = 128 (left) and n = 256 (right).

4.3.2 Isotropic long memory

Now, the power of the test is assessed on isotropic long memory fields. Their spectral density is
equivalent at 0 to (x2 + y2)α/2, −2 < α < 0. A simulation of such fields is presented on Figure 6
when α = −0.5, α = −1 and α = −1.5, which correspond to γ = 1.25, γ = 1.5 and γ = 1.75 in
(2.5).

Figure 6: Gaussian fields with isotropic long memory when γ = 1.25 (left), γ = 1.5 (middle) and
γ = 1.75 (right).

Figure 7 represents the same c.d.f as in Figure 5 but for the isotropic case when α = −0.5
(crosses), α = −1 (circles) and α = −1.5 (triangles). These choices correspond to the same
strengths of long memory (i.e. the same γ) as in Figure 5. The power follows a similar behavior:
It increases with the strength of the memory and with the sample size. However, the power for the
isotropic case is smaller than in the product-type setting studied before. This is due to the form of
the statistic Mn (see Section 3.1): The empirical variance of S∗

n,j is computed using quadrants Aj ’s.
This suits better product-type fields than isotropic ones for detecting long memory. Indeed, in the
product-type setting, this empirical variance will tend to return higher values. This sensitivity to
anisotropy is studied further in the last subsection.
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Figure 7: C.d.f. of the p-values when γ = 1.25 (crosses), γ = 1.5 (circles) and γ = 1.75 (triangles),
where n = 128 (right) and n = 256 (left).

4.3.3 The effect of anisotropy on the power

As seen before, the power for the isotropic long memory case is smaller than for the product-type
setting. To assess properly the sensitivity to anisotropy, we focus on one-direction long memory
fields in the sense that their spectral density behaves at zero as |x1 + kx2|α, k ∈ Z. Note that
this form of the spectral density demands −1 < α < 0 to be integrable. This yields the restriction
γ < 1.5 in (2.5). Figure 8 shows a simulation on a 256 × 256 grid when k = −1 and k = 0 and
when α = −0.5, corresponding to γ = 1.25 in (2.5). As we can see on Figure 8, the worst case, in
terms of computation using quadrants, should be k = −1 while the most suitable situation should
be k = 0.

Figure 8: Gaussian fields with one-direction long memory (γ = 1.25) when k = −1 (left) and
k = 0 (right).

Figure 9 shows the power of the test when k = −1 (solid line) and k = 0 (dotted line) for
n = 128 (left) and n = 256 (right). This representation confirms the effect of anisotropy. Therefore,
from a practical point of view, it seems better to study first the isotropy of the dependence before
testing the presence of long memory, in order to rotate the image sample if necessary.
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Figure 9: C.d.f. of the p-values when k = −1 (solid line) and k = 0 (dotted line) for γ = 1.25 and
where n = 128 (left) and n = 256 (right).
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