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Introduction

Let X(t), t ∈ Z, be a second order, stationary time series and let
γ(h) be its covariance function, i.e.

γ(h) = cov(X(t), X(t+ h)).

We say that X exhibit long memory when its covariance
function is not summable :∑

h∈Z
|γ(h)| =∞.

Exemple : FARIMA(p,d,q) processes, defined for p ∈ N, q ∈ N,
d ∈ (−1/2, 1/2), verify γ(h) ∼ h2d−1 when h→∞ and long
memory occurs when 0 < d < 1/2.
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Let
X1 a FARIMA(p1, d1, q1) with 0 ≤ d1 < 1/2,
X2 a FARIMA(p2, d2, q2) with 0 ≤ d2 < 1/2.

We want to test the null hypothesis

H0 : d1 = d2

Our framework :
X1 and X2 may not be independent.
We do not restrict to FARIMA models (see the
assumptions later)
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2 Test Statistic
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H0 : d1 = d2

First idea :
estimate d1 and d2 by d̂1 and d̂2

(different estimators are available : log-periodogram,
Whittle, GPH, FEXP, etc.)
evaluate (d̂1 − d̂2) to conclude

Drawbacks :
the joint probability law of d̂1 and d̂2 in the dependent case
is not known.
the behavior of (d̂1 − d̂2) is strongly sensitive to the
short-memory part of the induced processes X1 and X2

(e.g. the ARMA part of a FARIMA), leading to a bad size
of the test.
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Our approach : If X exhibits long memory,

Sn(τ) =
∑[nτ ]

t=1
(X(t)− EX(t))

does not have a standard asymptotic behavior.

For testing

H0 : d = 0 (short memory) vs H1 : d 6= 0 (long memory)

several procedures rely on the variations of Sn.

R/S (Lo, 1991) : based on the range of Sn,

KPSS (Kwiatkowski et al., 1992) : based on E(S2
n),

V/S (Giraitis et al., 2003) : based on V ar(Sn).

In the same spirit, for testing H0 : d1 = d2 our statistic is

Tn,q =
V1/S1,q

V2/S2,q
+

V2/S2,q

V1/S1,q
,

where V1/S1,q is the standard V/S statistic for X1,
V2/S2,q is the standard V/S statistic for X2.
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More precisely

Tn,q =
V1/S1,q

V2/S2,q
+

V2/S2,q

V1/S1,q
.

For i=1,2, Xi denotes the sample mean of Xi

γ̂i(h) the empirical covariance function of Xi.

Vi = n−2
n∑
k=1

(
k∑
t=1

(Xi(t)−Xi)

)2

− n−3

(
n∑
k=1

k∑
t=1

(Xi(t)−Xi)

)2

(Vi is the empirical variance of the partial sums of Xi)

Si,q =
q∑

h=−q

(
1− |h|

q + 1

)
γ̂i(h) =

1
q + 1

q+1∑
h,`=1

γ̂i(h− `).

(Si,q estimates the variance of the limiting law of the partial sums of
Xi)
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The dependent case

Consider the cross-covariance estimator

S12,q =
q∑

h=−q

(
1− |h|

q + 1

)
γ̂12(h) =

1
q + 1

q+1∑
h,`=1

γ̂12(h− `)

where, γ̂12(h) = n−1
∑n−h

t=1 (X1(t)−X1)(X2(t+ h)−X2), h > 0.

When X1 and X2 are dependent, we introduce

X̃1(t) = X1(t)− (S12,q/S2,q)X2(t), t = 1, . . . , n.

so that the partial sums of X̃1 and X2 are uncorrelated.
Then we consider

T̃n =
Ṽ1/S̃1,q

V2/S2,q
+

V2/S2,q

Ṽ1/S̃1,q

,

where Ṽ1 and S̃1,q are the same as before but with respect to X̃1.
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Ṽ1/S̃1,q

,
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3 Consistency of the test
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Assumptions

Assumption A(d1, d2) There exist di ∈ [0, 1/2), i = 1, 2 such that for
any i, j = 1, 2 the following limits exist

1) cij = lim
n→∞

1
n1+di+dj

n∑
t,s=1

γij(t− s).

Moreover, when q →∞, n→∞, n/q →∞,

2)

∑q
k,l=1 γ̂ij(k − l)∑q
k,l=1 γij(k − l)

→p 1

This assumption claims that

1) the second moment of the partial sums of Xi converge with
the proper normalization,

2) the natural estimation of this second moment is consistent.
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Assumptions

Assumption B(d1, d2) The partial sums of X1 and X2(
n−d1−(1/2)

∑[nτ ]

t=1
(X1(t)− EX1(t)), n−d2−(1/2)

∑[nτ ]

t=1
(X2(t)− EX2(t))

)
converge (jointly) in finite dimensional distribution to

(
√
c11B1,d1(τ),

√
c22B2,d2(τ)) ,

where (B1,d1(τ), B2,d2(τ)) is a bivariate fractional Brownian motion
with parameters d1, d2 and the correlation coefficient ρ = c12/

√
c11c22.

Some questions :

What is a bivariate fractional Brownian motion ? see later.

Is this assumption restrictive (especially the joint convergence) ?
→ We will show that it holds for linear processes.
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Recall that H0 : d1 = d2 and the test statistic is

T̃n =
Ṽ1/S̃1,q

V2/S2,q
+

V2/S2,q

Ṽ1/S̃1,q

,

Proposition (Consistency of the test)

(i) Let Assumptions A(d1, d2) and B(d1, d2) be satisfied with some
d1 = d2 = d ∈ [0, 1/2). Then, as n, q, n/q →∞,

T̃n →law T =
U1

U2
+
U2

U1
,

where

Ui =

Z 1

0

(B0
i,d(τ))

2dτ −
„Z 1

0

B0
i,d(τ)dτ

«2

(i = 1, 2)

and where B0
1,d(τ), B

0
2,d(τ) are mutually independent fractional bridges with

the same parameter d.

(ii) Let Assumptions A(d1, d2) and B(d1, d2) be satisfied with
d1 6= d2 (d1, d2 ∈ [0, 1/2)). Then, as n, q, n/q →∞,

|T̃n| →p ∞.
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4 The bivariate fractional Brownian motion
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Definition

A bi-fBm
`
B1,d1(s), B2,d2(s)), s ∈ R with parameters di ∈ (−1/2, 1/2),

i = 1, 2, is a Gaussian process with (for s1, s2 > 0 and d1 + d2 6= 0)

EB1,d1(s) = EB2,d2(s) = 0

EB1,d1(s1)B1,d1(s2) = (1/2)(|s1|2d1+1 + |s2|2d1+1 − |s1 − s2|2d1+1),

EB2,d2(s1)B2,d2(s2) = (1/2)(|s1|2d2+1 + |s2|2d2+1 − |s1 − s2|2d2+1),

EB1,d1(s1)B2,d2(s2) =(
c1|s1|d1+d2+1 + c2|s2|d1+d2+1 − c1|s1 − s2|d1+d2+1, if s1 ≥ s2,

c1|s1|d1+d2+1 + c2|s2|d1+d2+1 − c2|s1 − s2|d1+d2+1, if s1 ≤ s2,

where c1, c2 are some constants yielding the positive definiteness.

the definition extends to all (s1, s2) ∈ R2 and to d1 + d2 = 0,
the case d1 + d2 = 0 involves logarithm functions,
the extension from a bi-fBm to a p-fBm is straightforward.
What we proved about the domain of definition of c1, c2 :
|c1 + c2| ≤ 1 is necessary but clearly too large ;
It suffices that (c1, c2) belongs to an elliptic domain centered at 0.
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Characterization

Theorem

Let X(t) = (X1(t), X2(t))t≥0 be a centered, 2nd order process, null at 0.
Assume that

X has stationary increments : For any t, h1, h2 ≥ 0

(X1(h1 + t)−X1(t), X2(h2 + t)−X2(t)) =fdd (X1(h1), X2(h2))

X is scale invariant : For any t, λ > 0,

(X1(λt), X2(λt)) =fdd

“
λd1+1/2X1(t), λ

d2+1/2X2(t)
”
,

Moreover, assume that t 7→ EX1(t)X2(1) and t 7→ EX2(t)X1(1) are
continuously differentiable on (0, 1) ∪ (1,∞).

Then X has the same covariance structure as the bi-fBm defined above.

Therefore, the bi-fBm is the unique Gaussian process satisfying a stationary
increments and scale invariant property.
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5 The case of bivariate linear models
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Definition of a bivariate linear process

We consider bivariate linear models (X1(t), X2(t)), t ∈ Z as given by

X1(t) =
∞∑
k=0

a11(k)ξ1(t− k) +
∞∑
k=0

a12(k)ξ2(t− k),

X2(t) =
∞∑
k=0

a21(k)ξ1(t− k) +
∞∑
k=0

a22(k)ξ2(t− k),

where aij(k) are real coefficients with
∑∞
k=0 a

2
ij(k) <∞ and

(ξ1(t), ξ2(t)), t ∈ Z is a bivariate (weak) white noise :

- For i = 1, 2 Eξi(t) = 0 and E(ξi(t)2) = 1,

- E(ξ1(t), ξ2(t)) = ρ ∈ (−1, 1) and E(ξ1(t), ξ2(s)) = 0 if s 6= t.
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We assume that (ξ1(t), ξ2(t)), t ∈ Z is a sequence of i.i.d. random
vectors and that there exists dij ∈ [0, 1/2) such that :

∞∑
k=0

|aij(k)| <∞, if dij = 0,

aij(k) = (αij + o(1)) |k|dij−1 (k →∞) if dij ∈ (0, 1/2),

where αij 6= 0 are some numbers, i, j = 1, 2.

Proposition

If there exists p > 1 such that E|ξi(t)|2p <∞ (i = 1, 2), then
(X1(t), X2(t)) satisfies Assumptions A(d1, d2) and B(d1, d2), with

di = max{di1, di2} ∈ [0, 1/2) (i = 1, 2).

=⇒ For such bivariate linear processes, our test is consistent.
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Some examples

Example

Let cij ∈ R (i = 1, 2) be some constants, and let

Xi(t) = (1− L)−di(ci1ξ1(t) + ci2ξ2(t)) (i = 1, 2)

be FARIMA(0, di, 0) processes with d1, d2 ∈ (0, 1/2) may be different.

Example

(1− L)d
′
11X1(t) + β(1− L)d

′
12X2(t) = ξ1(t),

(1− L)d
′
22X2(t) = ξ2(t),

where d′ij ∈ [0, 1/2), β ∈ R are parameters, d′22 + d′12 − d′12 < 1/2.
A stationary solution of the above equation is given by

X2(t) = (1− L)−d
′
22ξ2(t),

X1(t) = (1− L)−d
′
11ξ1(t)− β(1− L)d

′
12−d

′
11−d

′
22ξ2(t).
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6 Practical implementation of the test



Introduction Test Statistic Consistency bi-fBm bi-linear models In practice Simu

Recall that we want to test H0 : d1 = d2 with the test statistic

T̃n =
Ṽ1/S̃1,q

V2/S2,q
+

V2/S2,q

Ṽ1/S̃1,q

.

Under H0, T̃n →law Ud which depends on d = d1 = d2.

For a practical implementation, given a sample and a signifiance
level α ∈ (0, 1), we must :

first choose the parameter q
compute T̃n
estimate d by a consistent estimator d̂
test whether T̃n > cα(d̂) (the critical region),

where cα(d) is the upper quantile of order α of Ud.
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Choice of q

The choice of q is crucial.
It appears mainly in the asymptotic behaviour of S in V/S.
From the theory, we must have q, n/q →∞ when n→∞.
In Giraitis et al (2006), q = [n1/3] is suggested.

But simulations show that

n being fixed, d has a strong effect on the optimal choice of q,

the short memory part is important (e.g. the ARMA part of a
FARIMA).

We optimize q under H0 to guarantee a correct size of the test.
We focus on the ratio S1,q/S2,q that appears in T̃n.
Starting from a result of Disasto et al (2008), we obtain the linear
expansion of

E

(
S1,q

S2,q
∗ c22
c11
− 1
)2

.

We choose q which minimizes the first term in this expansion.
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Choice of q

This scheme leads to the choice

q =

8<:0.3

q
|Î1 − Î2| n1/(3+4d̂), if d̂ < 1/4,

0.3

q
|Î1 − Î2| n1/2−d̂, if d̂ > 1/4.

where d̂ = (d̂1 + d̂2)/2 is the adaptive FEXP estimator (see Louditsky et al,
2001) and

Îi =

Z π

0

x−2d̂ sin−2(x/2)
ĝi(x)

ĝi(0)
dx,

where ĝi estimates the short memory part of the spectral density of Xi.

For ĝi, we choose the spectral density of the best AR process approaching
this short memory part. We proceed in a two steps procedure :

we first estimate d by the adaptative FEXP estimator

then we fit an AR process to (1− L)d̂Xi by BIC criterion.



Introduction Test Statistic Consistency bi-fBm bi-linear models In practice Simu

Choice of q

This scheme leads to the choice

q =

8<:0.3

q
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Îi =

Z π

0

x−2d̂ sin−2(x/2)
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Let us sum-up the testing procedure.

Let two series X1(t), X2(t) and a signifiance level α ∈ (0, 1)

First estimate d1 and d2 with the adaptative FEXP
estimator
Estimate g1 and g2 which approximate the short-memory
part in the spectral density of X1 and X2

This leads to the choice of q
Compute T̃n and compare to cα((d̂1 + d̂2)/2)
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7 Some simulations
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Simulations

We compute the test with independent X1 and X2 where

X1 ∼ FAR(1, d1, 0)

X2 ∼ FAR(1, d2, 0)

i.e. (1− aiL)(1− L)diXi(n) = εi(n), where εi is a white noise.

Several values of ai and di are tested :

ai ∈ {−0.4, 0, 0.4} and di ∈ {0, 0.1, 0.2, 0.3, 0.4}.

The probability of rejection is evaluated on 1000 replications of
the test where the signifiance level is fixed at 5%.
The sample size of X1 and X2 is 4096.
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For fixed a1, a2 , each cell contains the probability of rejection of H0 for
different parameters (d1, d2) with di ∈ {0, 0.1, 0.2, 0.3, 0.4} and d1 ≤ d2

.057

.192 .050

.483 .148 .056

.774 .387 .113 .057

.911 .678 .356 .095 .029

.047 .051

.118 .061 .233 .041

.354 .092 .046 .589 .204 .048

.620 .290 .083 .041 .857 .488 .144 .043

.811 .568 .261 .078 .033 .958 .766 .422 .112 .029

.057 .052 .035

.101 .035 .108 .042 .201 .057

.293 .083 .046 .355 .109 .048 .573 .192 .042

.575 .246 .073 .043 .697 .342 .108 .052 .840 .536 .165 .040

.792 .475 .231 .061 .033 .882 .641 .302 .092 .033 .951 .778 .478 .143 .030
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Mean-Value of q chosen for the above simulations

4.3

3.7 3.3

3.2 2.8 2.7

2.8 2.6 2.2 1.6

2.7 2.2 1.7 1.0 0.5

10.9 3.2

9.1 7.9 2.7 2.1

7.9 6.9 6.2 2.3 2.0 1.7

6.9 6.3 5.2 3.9 1.9 1.8 1.4 1.0

6.2 5.3 3.9 2.5 1.5 1.8 1.5 1.0 0.5 0.3

15.8 11.2 5.4

13.1 11.2 9.0 7.5 4.4 3.7

11.1 9.5 8.6 7.5 6.3 5.3 3.6 3.0 2.7

9.6 8.5 7.0 5.1 6.2 5.3 4.3 2.9 3.1 2.6 2.0 1.4

8.4 7.1 5.0 3.3 2.0 5.3 4.4 2.9 1.8 1.0 2.6 2.0 1.4 0.8 0.4

a=-0.4

a=-0.4

a=0

a=0 a=0.4

a=0.4
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Simulations on dependent samples

We evaluate the test with

X1(n) = (1− p)Y1(n) + pY2(n)
X2(n) = (1− p)Y2(n) + pY1(n)

where Yi are independent F(di) with
di ∈ {0, 0.1, 0.2, 0.3, 0.4} and
p ∈ [0, 1/2).

.055

.242 .062

.639 .207 .057

.866 .571 .159 .046

.966 .837 .464 .104 .045

.053

.247 .061

.727 .214 .049

.945 .629 .185 .052

.993 .894 .493 .138 .043

.055

.836 .046

.983 .629 .059

.996 .957 .330 .031

1.000 .993 .850 .138 .044

p=0.25

p=0.45

p=0.05
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