A two-sample test for comparison of long memory parameters

F. Lavancier ${ }^{1}$, A. Philippe ${ }^{1}$, D. Surgailis ${ }^{2}$
${ }^{1}$ Laboratoire Jean Leray, Université de Nantes
${ }^{2}$ Institute of Mathematics and Informatics, Vilnius

JSTAR 2008
(1) Introduction
(2) Test Statistic
(3) Consistency of the test

4 The bivariate fractional Brownian motion
(5) The case of bivariate linear models
(6) Practical implementation of the test
(7) Some simulations

(1) Introduction

Introduction

Let $X(t), t \in \mathbb{Z}$, be a second order, stationary time series and let $\gamma(h)$ be its covariance function, i.e.

$$
\gamma(h)=\operatorname{cov}(X(t), X(t+h))
$$

We say that X exhibit long memory when its covariance function is not summable :

$$
\sum_{h \in \mathbb{Z}}|\gamma(h)|=\infty .
$$

 $d \in(-1 / 2,1 / 2)$, verify $\gamma(h) \sim h^{2 d-1}$ when $h \rightarrow \infty$ and long memory occurs when $0<d<1 / 2$.

Let

- X_{1} a $\operatorname{FARIMA}\left(p_{1}, d_{1}, q_{1}\right)$ with $0 \leq d_{1}<1 / 2$,
- X_{2} a $\operatorname{FARIMA}\left(p_{2}, d_{2}, q_{2}\right)$ with $0 \leq d_{2}<1 / 2$.

We want to test the null hypothesis

$$
\mathrm{H}_{0}: d_{1}=d_{2}
$$

Let

- X_{1} a $\operatorname{FARIMA}\left(p_{1}, d_{1}, q_{1}\right)$ with $0 \leq d_{1}<1 / 2$,
- X_{2} a $\operatorname{FARIMA}\left(p_{2}, d_{2}, q_{2}\right)$ with $0 \leq d_{2}<1 / 2$.

We want to test the null hypothesis

$$
\mathrm{H}_{0}: d_{1}=d_{2}
$$

Our framework :

- X_{1} and X_{2} may not be independent.
- We do not restrict to FARIMA models (see the assumptions later)

(2) Test Statistic

$$
\mathrm{H}_{0}: d_{1}=d_{2}
$$

First idea :

- estimate d_{1} and d_{2} by \hat{d}_{1} and \hat{d}_{2} (different estimators are available : log-periodogram, Whittle, GPH, FEXP, etc.)
- evaluate $\left(\hat{d}_{1}-\hat{d}_{2}\right)$ to conclude

$$
\mathrm{H}_{0}: d_{1}=d_{2}
$$

First idea :

- estimate d_{1} and d_{2} by \hat{d}_{1} and \hat{d}_{2} (different estimators are available : log-periodogram, Whittle, GPH, FEXP, etc.)
- evaluate $\left(\hat{d}_{1}-\hat{d}_{2}\right)$ to conclude

Drawbacks :

- the joint probability law of \hat{d}_{1} and \hat{d}_{2} in the dependent case is not known.
- the behavior of $\left(\hat{d}_{1}-\hat{d}_{2}\right)$ is strongly sensitive to the short-memory part of the induced processes X_{1} and X_{2} (e.g. the ARMA part of a FARIMA), leading to a bad size of the test.

Our approach : If X exhibits long memory,

$$
S_{n}(\tau)=\sum_{t=1}^{[n \tau]}(X(t)-E X(t))
$$

does not have a standard asymptotic behavior.

Our approach : If X exhibits long memory,

$$
S_{n}(\tau)=\sum_{t=1}^{[n \tau]}(X(t)-E X(t))
$$

does not have a standard asymptotic behavior. For testing

$$
H_{0}: d=0 \text { (short memory) vs } H_{1}: d \neq 0 \text { (long memory) }
$$

several procedures rely on the variations of S_{n}.

- R/S (Lo, 1991) : based on the range of S_{n},
- KPSS (Kwiatkowski et al., 1992) : based on $E\left(S_{n}^{2}\right)$,
- V/S (Giraitis et al., 2003) : based on $\operatorname{Var}\left(S_{n}\right)$.

Our approach : If X exhibits long memory,

$$
S_{n}(\tau)=\sum_{t=1}^{[n \tau]}(X(t)-E X(t))
$$

does not have a standard asymptotic behavior. For testing

$$
H_{0}: d=0 \text { (short memory) vs } H_{1}: d \neq 0 \text { (long memory) }
$$

several procedures rely on the variations of S_{n}.

- R/S (Lo, 1991) : based on the range of S_{n},
- KPSS (Kwiatkowski et al., 1992) : based on $E\left(S_{n}^{2}\right)$,
- V/S (Giraitis et al., 2003) : based on $\operatorname{Var}\left(S_{n}\right)$.

In the same spirit, for testing $\mathrm{H}_{0}: d_{1}=d_{2}$ our statistic is

$$
T_{n, q}=\frac{V_{1} / S_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{V_{1} / S_{1, q}}
$$

where $V_{1} / S_{1, q}$ is the standard V / S statistic for X_{1},
$V_{2} / S_{2, q}$ is the standard V / S statistic for X_{2}.

More precisely

$$
T_{n, q}=\frac{V_{1} / S_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{V_{1} / S_{1, q}} .
$$

For $\mathrm{i}=1,2, \bar{X}_{i}$ denotes the sample mean of X_{i}

$$
\hat{\gamma}_{i}(h) \text { the empirical covariance function of } X_{i} \text {. }
$$

$$
V_{i}=n^{-2} \sum_{k=1}^{n}\left(\sum_{t=1}^{k}\left(X_{i}(t)-\overline{X_{i}}\right)\right)^{2}-n^{-3}\left(\sum_{k=1}^{n} \sum_{t=1}^{k}\left(X_{i}(t)-\overline{X_{i}}\right)\right)^{2}
$$

(V_{i} is the empirical variance of the partial sums of X_{i})

$$
S_{i, q}=\sum_{h=-q}^{q}\left(1-\frac{|h|}{q+1}\right) \hat{\gamma}_{i}(h)=\frac{1}{q+1} \sum_{h, \ell=1}^{q+1} \hat{\gamma}_{i}(h-\ell) .
$$

($S_{i, q}$ estimates the variance of the limiting law of the partial sums of X_{i})

The dependent case

Consider the cross-covariance estimator

$$
S_{12, q}=\sum_{h=-q}^{q}\left(1-\frac{|h|}{q+1}\right) \hat{\gamma}_{12}(h)=\frac{1}{q+1} \sum_{h, \ell=1}^{q+1} \hat{\gamma}_{12}(h-\ell)
$$

where, $\hat{\gamma}_{12}(h)=n^{-1} \sum_{t=1}^{n-h}\left(X_{1}(t)-\bar{X}_{1}\right)\left(X_{2}(t+h)-\bar{X}_{2}\right), h>0$.

The dependent case

Consider the cross-covariance estimator

$$
S_{12, q}=\sum_{h=-q}^{q}\left(1-\frac{|h|}{q+1}\right) \hat{\gamma}_{12}(h)=\frac{1}{q+1} \sum_{h, \ell=1}^{q+1} \hat{\gamma}_{12}(h-\ell)
$$

where, $\hat{\gamma}_{12}(h)=n^{-1} \sum_{t=1}^{n-h}\left(X_{1}(t)-\bar{X}_{1}\right)\left(X_{2}(t+h)-\bar{X}_{2}\right), h>0$. When X_{1} and X_{2} are dependent, we introduce

$$
\tilde{X}_{1}(t)=X_{1}(t)-\left(S_{12, q} / S_{2, q}\right) X_{2}(t), \quad t=1, \ldots, n
$$

so that the partial sums of \tilde{X}_{1} and X_{2} are uncorrelated.

The dependent case

Consider the cross-covariance estimator

$$
S_{12, q}=\sum_{h=-q}^{q}\left(1-\frac{|h|}{q+1}\right) \hat{\gamma}_{12}(h)=\frac{1}{q+1} \sum_{h, \ell=1}^{q+1} \hat{\gamma}_{12}(h-\ell)
$$

where, $\hat{\gamma}_{12}(h)=n^{-1} \sum_{t=1}^{n-h}\left(X_{1}(t)-\bar{X}_{1}\right)\left(X_{2}(t+h)-\bar{X}_{2}\right), h>0$. When X_{1} and X_{2} are dependent, we introduce

$$
\tilde{X}_{1}(t)=X_{1}(t)-\left(S_{12, q} / S_{2, q}\right) X_{2}(t), \quad t=1, \ldots, n
$$

so that the partial sums of \tilde{X}_{1} and X_{2} are uncorrelated.
Then we consider

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

where \tilde{V}_{1} and $\tilde{S}_{1, q}$ are the same as before but with respect to $\tilde{X}_{\underline{p}}$.
(3) Consistency of the test

Assumptions

Assumption $\mathrm{A}\left(d_{1}, d_{2}\right)$ There exist $d_{i} \in[0,1 / 2), i=1,2$ such that for any $i, j=1,2$ the following limits exist

$$
\text { 1) } \quad c_{i j}=\lim _{n \rightarrow \infty} \frac{1}{n^{1+d_{i}+d_{j}}} \sum_{t, s=1}^{n} \gamma_{i j}(t-s) .
$$

Moreover, when $q \rightarrow \infty, n \rightarrow \infty, n / q \rightarrow \infty$,

$$
\frac{\sum_{k, l=1}^{q} \hat{\gamma}_{i j}(k-l)}{\sum_{k, l=1}^{q} \gamma_{i j}(k-l)} \quad \rightarrow_{p} \quad 1
$$

This assumption claims that

1) the second moment of the partial sums of X_{i} converge with the proper normalization,
2) the natural estimation of this second moment is consistent.

Assumptions

Assumption $\mathrm{B}\left(d_{1}, d_{2}\right)$ The partial sums of X_{1} and X_{2}

$$
\left(n^{-d_{1}-(1 / 2)} \sum_{t=1}^{[n \tau]}\left(X_{1}(t)-E X_{1}(t)\right), n^{-d_{2}-(1 / 2)} \sum_{t=1}^{[n \tau]}\left(X_{2}(t)-E X_{2}(t)\right)\right)
$$

converge (jointly) in finite dimensional distribution to

$$
\left(\sqrt{c_{11}} B_{1, d_{1}}(\tau), \sqrt{c_{22}} B_{2, d_{2}}(\tau)\right),
$$

where $\left(B_{1, d_{1}}(\tau), B_{2, d_{2}}(\tau)\right)$ is a bivariate fractional Brownian motion with parameters d_{1}, d_{2} and the correlation coefficient $\rho=c_{12} / \sqrt{c_{11} c_{22}}$.

Some questions :

- What is a bivariate fractional Brownian motion? see later.
- Is this assumption restrictive (especially the joint convergence)?
\rightarrow We will show that it holds for linear processes.

Recall that $\mathrm{H}_{0}: d_{1}=d_{2}$ and the test statistic is

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

Recall that $\mathrm{H}_{0}: d_{1}=d_{2}$ and the test statistic is

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

Proposition (Consistency of the test)

(i) Let Assumptions $A\left(d_{1}, d_{2}\right)$ and $B\left(d_{1}, d_{2}\right)$ be satisfied with some $d_{1}=d_{2}=d \in[0,1 / 2)$. Then, as $n, q, n / q \rightarrow \infty$,

$$
\tilde{T}_{n} \rightarrow \text { law } T=\frac{U_{1}}{U_{2}}+\frac{U_{2}}{U_{1}}
$$

where

$$
U_{i}=\int_{0}^{1}\left(B_{i, d}^{0}(\tau)\right)^{2} \mathrm{~d} \tau-\left(\int_{0}^{1} B_{i, d}^{0}(\tau) \mathrm{d} \tau\right)^{2} \quad(i=1,2)
$$

and where $B_{1, d}^{0}(\tau), B_{2, d}^{0}(\tau)$ are mutually independent fractional bridges with the same parameter d.

Recall that $\mathrm{H}_{0}: d_{1}=d_{2}$ and the test statistic is

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

Proposition (Consistency of the test)

(i) Let Assumptions $A\left(d_{1}, d_{2}\right)$ and $B\left(d_{1}, d_{2}\right)$ be satisfied with some $d_{1}=d_{2}=d \in[0,1 / 2)$. Then, as $n, q, n / q \rightarrow \infty$,

$$
\tilde{T}_{n} \rightarrow_{\text {law }} T=\frac{U_{1}}{U_{2}}+\frac{U_{2}}{U_{1}}
$$

where

$$
U_{i}=\int_{0}^{1}\left(B_{i, d}^{0}(\tau)\right)^{2} \mathrm{~d} \tau-\left(\int_{0}^{1} B_{i, d}^{0}(\tau) \mathrm{d} \tau\right)^{2} \quad(i=1,2)
$$

and where $B_{1, d}^{0}(\tau), B_{2, d}^{0}(\tau)$ are mutually independent fractional bridges with the same parameter d.
(ii) Let Assumptions $A\left(d_{1}, d_{2}\right)$ and $B\left(d_{1}, d_{2}\right)$ be satisfied with $d_{1} \neq d_{2}\left(d_{1}, d_{2} \in[0,1 / 2)\right)$. Then, as $n, q, n / q \rightarrow \infty$,

$$
\left|\tilde{T}_{n}\right| \quad \rightarrow_{p} \quad \infty
$$

4 The bivariate fractional Brownian motion

Definition

A bi-fBm $\left(B_{1, d_{1}}(s), B_{2, d_{2}}(s)\right), s \in \mathbb{R}$ with parameters $d_{i} \in(-1 / 2,1 / 2)$, $i=1,2$, is a Gaussian process with (for $s_{1}, s_{2}>0$ and $d_{1}+d_{2} \neq 0$)

$$
\begin{aligned}
& E B_{1, d_{1}}(s)=E B_{2, d_{2}}(s)=0 \\
& E B_{1, d_{1}}\left(s_{1}\right) B_{1, d_{1}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{1}+1}+\left|s_{2}\right|^{2 d_{1}+1}-\left|s_{1}-s_{2}\right|^{2 d_{1}+1}\right), \\
& E B_{2, d_{2}}\left(s_{1}\right) B_{2, d_{2}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{2}+1}+\left|s_{2}\right|^{2 d_{2}+1}-\left|s_{1}-s_{2}\right|^{2 d_{2}+1}\right)
\end{aligned}
$$

Definition

A bi-fBm $\left(B_{1, d_{1}}(s), B_{2, d_{2}}(s)\right), s \in \mathbb{R}$ with parameters $d_{i} \in(-1 / 2,1 / 2)$, $i=1,2$, is a Gaussian process with (for $s_{1}, s_{2}>0$ and $d_{1}+d_{2} \neq 0$)

$$
\begin{aligned}
& E B_{1, d_{1}}(s)=E B_{2, d_{2}}(s)=0 \\
& E B_{1, d_{1}}\left(s_{1}\right) B_{1, d_{1}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{1}+1}+\left|s_{2}\right|^{2 d_{1}+1}-\left|s_{1}-s_{2}\right|^{2 d_{1}+1}\right), \\
& E B_{2, d_{2}}\left(s_{1}\right) B_{2, d_{2}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{2}+1}+\left|s_{2}\right|^{2 d_{2}+1}-\left|s_{1}-s_{2}\right|^{2 d_{2}+1}\right)
\end{aligned}
$$

$E B_{1, d_{1}}\left(s_{1}\right) B_{2, d_{2}}\left(s_{2}\right)=$

$$
\begin{cases}c_{1}\left|s_{1}\right|^{d_{1}+d_{2}+1}+c_{2}\left|s_{2}\right|^{d_{1}+d_{2}+1}-c_{1}\left|s_{1}-s_{2}\right|^{d_{1}+d_{2}+1}, & \text { if } s_{1} \geq s_{2} \\ c_{1}\left|s_{1}\right|^{d_{1}+d_{2}+1}+c_{2}\left|s_{2}\right|^{d_{1}+d_{2}+1}-c_{2}\left|s_{1}-s_{2}\right|^{d_{1}+d_{2}+1}, & \text { if } s_{1} \leq s_{2}\end{cases}
$$

where c_{1}, c_{2} are some constants yielding the positive definiteness.

Definition

A bi-fBm $\left(B_{1, d_{1}}(s), B_{2, d_{2}}(s)\right), s \in \mathbb{R}$ with parameters $d_{i} \in(-1 / 2,1 / 2)$, $i=1,2$, is a Gaussian process with (for $s_{1}, s_{2}>0$ and $d_{1}+d_{2} \neq 0$)

$$
\begin{aligned}
& E B_{1, d_{1}}(s)=E B_{2, d_{2}}(s)=0 \\
& E B_{1, d_{1}}\left(s_{1}\right) B_{1, d_{1}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{1}+1}+\left|s_{2}\right|^{2 d_{1}+1}-\left|s_{1}-s_{2}\right|^{2 d_{1}+1}\right), \\
& E B_{2, d_{2}}\left(s_{1}\right) B_{2, d_{2}}\left(s_{2}\right)=(1 / 2)\left(\left|s_{1}\right|^{2 d_{2}+1}+\left|s_{2}\right|^{2 d_{2}+1}-\left|s_{1}-s_{2}\right|^{2 d_{2}+1}\right),
\end{aligned}
$$

$E B_{1, d_{1}}\left(s_{1}\right) B_{2, d_{2}}\left(s_{2}\right)=$

$$
\begin{cases}c_{1}\left|s_{1}\right|^{d_{1}+d_{2}+1}+c_{2}\left|s_{2}\right|^{d_{1}+d_{2}+1}-c_{1}\left|s_{1}-s_{2}\right|^{d_{1}+d_{2}+1}, & \text { if } s_{1} \geq s_{2} \\ c_{1}\left|s_{1}\right|^{d_{1}+d_{2}+1}+c_{2}\left|s_{2}\right|^{d_{1}+d_{2}+1}-c_{2}\left|s_{1}-s_{2}\right|^{d_{1}+d_{2}+1}, & \text { if } s_{1} \leq s_{2}\end{cases}
$$

where c_{1}, c_{2} are some constants yielding the positive definiteness.

- the definition extends to all $\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$ and to $d_{1}+d_{2}=0$,
- the case $d_{1}+d_{2}=0$ involves logarithm functions,
- the extension from a bi- fBm to a p - fBm is straightforward.
- What we proved about the domain of definition of c_{1}, c_{2} :
$\left|c_{1}+c_{2}\right| \leq 1$ is necessary but clearly too large;
It suffices that $\left(c_{1}, c_{2}\right)$ belongs to an elliptic domain centered at 0 .

Characterization

Theorem

Let $X(t)=\left(X_{1}(t), X_{2}(t)\right)_{t \geq 0}$ be a centered, 2nd order process, null at 0 . Assume that

- X has stationary increments : For any $t, h_{1}, h_{2} \geq 0$

$$
\left(X_{1}\left(h_{1}+t\right)-X_{1}(t), X_{2}\left(h_{2}+t\right)-X_{2}(t)\right)==_{\text {fdd }} \quad\left(X_{1}\left(h_{1}\right), X_{2}\left(h_{2}\right)\right)
$$

- X is scale invariant : For any $t, \lambda>0$,

$$
\left(X_{1}(\lambda t), X_{2}(\lambda t)\right)==_{\mathrm{fdd}}\left(\lambda^{d_{1}+1 / 2} X_{1}(t), \lambda^{d_{2}+1 / 2} X_{2}(t)\right),
$$

Moreover, assume that $t \mapsto E X_{1}(t) X_{2}(1)$ and $t \mapsto E X_{2}(t) X_{1}(1)$ are continuously differentiable on $(0,1) \cup(1, \infty)$.

Then X has the same covariance structure as the bi-fBm defined above.
Therefore, the bi-fBm is the unique Gaussian process satisfying a stationary increments and scale invariant property.
(5) The case of bivariate linear models

Definition of a bivariate linear process

We consider bivariate linear models $\left(X_{1}(t), X_{2}(t)\right), t \in \mathbb{Z}$ as given by

$$
\begin{aligned}
& X_{1}(t)=\sum_{k=0}^{\infty} a_{11}(k) \xi_{1}(t-k)+\sum_{k=0}^{\infty} a_{12}(k) \xi_{2}(t-k), \\
& X_{2}(t)=\sum_{k=0}^{\infty} a_{21}(k) \xi_{1}(t-k)+\sum_{k=0}^{\infty} a_{22}(k) \xi_{2}(t-k),
\end{aligned}
$$

where $a_{i j}(k)$ are real coefficients with $\sum_{k=0}^{\infty} a_{i j}^{2}(k)<\infty$ and ($\left.\xi_{1}(t), \xi_{2}(t)\right), t \in \mathbb{Z}$ is a bivariate (weak) white noise :

- For $i=1,2 \quad E \xi_{i}(t)=0$ and $E\left(\xi_{i}(t)^{2}\right)=1$,
- $E\left(\xi_{1}(t), \xi_{2}(t)\right)=\rho \in(-1,1)$ and $E\left(\xi_{1}(t), \xi_{2}(s)\right)=0$ if $s \neq t$.

We assume that $\left(\xi_{1}(t), \xi_{2}(t)\right), t \in \mathbb{Z}$ is a sequence of i.i.d. random vectors and that there exists $d_{i j} \in[0,1 / 2)$ such that :

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left|a_{i j}(k)\right|<\infty, \quad \text { if } \quad d_{i j}=0 \\
& a_{i j}(k)=\left(\alpha_{i j}+o(1)\right)|k|^{d_{i j}-1} \quad(k \rightarrow \infty) \quad \text { if } \quad d_{i j} \in(0,1 / 2)
\end{aligned}
$$

where $\alpha_{i j} \neq 0$ are some numbers, $i, j=1,2$.

Proposition

If there exists $p>1$ such that $E\left|\xi_{i}(t)\right|^{2 p}<\infty(i=1,2)$, then $\left(X_{1}(t), X_{2}(t)\right)$ satisfies Assumptions $A\left(d_{1}, d_{2}\right)$ and $B\left(d_{1}, d_{2}\right)$, with

$$
d_{i}=\max \left\{d_{i 1}, d_{i 2}\right\} \in[0,1 / 2) \quad(i=1,2) .
$$

\Longrightarrow For such bivariate linear processes, our test is consistent.

Some examples

Example

Let $c_{i j} \in \mathbb{R}(i=1,2)$ be some constants, and let

$$
X_{i}(t)=(1-L)^{-d_{i}}\left(c_{i 1} \xi_{1}(t)+c_{i 2} \xi_{2}(t)\right) \quad(i=1,2)
$$

be FARIMA $\left(0, d_{i}, 0\right)$ processes with $d_{1}, d_{2} \in(0,1 / 2)$ may be different.

Example

$$
\begin{aligned}
(1-L)^{d_{11}^{\prime}} X_{1}(t)+\beta(1-L)^{d_{12}^{\prime}} X_{2}(t) & =\xi_{1}(t), \\
(1-L)^{d_{22}^{\prime}} X_{2}(t) & =\xi_{2}(t),
\end{aligned}
$$

where $d_{i j}^{\prime} \in[0,1 / 2), \beta \in \mathbb{R}$ are parameters, $d_{22}^{\prime}+d_{12}^{\prime}-d_{12}^{\prime}<1 / 2$. A stationary solution of the above equation is given by

$$
\begin{aligned}
& X_{2}(t)=(1-L)^{-d_{22}^{\prime}} \xi_{2}(t) \\
& X_{1}(t)=(1-L)^{-d_{11}^{\prime}} \xi_{1}(t)-\beta(1-L)^{d_{12}^{\prime}-d_{11}^{\prime}-d_{22}^{\prime}} \xi_{2}(t)
\end{aligned}
$$

(6) Practical implementation of the test

Recall that we want to test $\mathrm{H}_{0}: d_{1}=d_{2}$ with the test statistic

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

Under $\mathrm{H}_{0}, \tilde{T}_{n} \rightarrow_{\text {law }} U_{d}$ which depends on $d=d_{1}=d_{2}$.

Recall that we want to test $\mathrm{H}_{0}: d_{1}=d_{2}$ with the test statistic

$$
\tilde{T}_{n}=\frac{\tilde{V}_{1} / \tilde{S}_{1, q}}{V_{2} / S_{2, q}}+\frac{V_{2} / S_{2, q}}{\tilde{V}_{1} / \tilde{S}_{1, q}}
$$

Under $\mathrm{H}_{0}, \tilde{T}_{n} \rightarrow_{\text {law }} U_{d}$ which depends on $d=d_{1}=d_{2}$.

For a practical implementation, given a sample and a signifiance level $\alpha \in(0,1)$, we must :

- first choose the parameter q
- compute \tilde{T}_{n}
- estimate d by a consistent estimator \hat{d}
- test whether $\tilde{T}_{n}>c_{\alpha}(\hat{d})$ (the critical region), where $c_{\alpha}(d)$ is the upper quantile of order α of U_{d}.

Choice of q

The choice of q is crucial.
It appears mainly in the asymptotic behaviour of S in V / S.
From the theory, we must have $q, n / q \rightarrow \infty$ when $n \rightarrow \infty$.
In Giraitis et al (2006), $q=\left[n^{1 / 3}\right]$ is suggested.

Choice of q

The choice of q is crucial.
It appears mainly in the asymptotic behaviour of S in V / S.
From the theory, we must have $q, n / q \rightarrow \infty$ when $n \rightarrow \infty$.
In Giraitis et al (2006), $q=\left[n^{1 / 3}\right]$ is suggested.

But simulations show that

- n being fixed, d has a strong effect on the optimal choice of q,
- the short memory part is important (e.g. the ARMA part of a FARIMA).

Choice of q

The choice of q is crucial.
It appears mainly in the asymptotic behaviour of S in V / S.
From the theory, we must have $q, n / q \rightarrow \infty$ when $n \rightarrow \infty$.
In Giraitis et al (2006), $q=\left[n^{1 / 3}\right]$ is suggested.
But simulations show that

- n being fixed, d has a strong effect on the optimal choice of q,
- the short memory part is important (e.g. the ARMA part of a FARIMA).
We optimize q under H_{0} to guarantee a correct size of the test. We focus on the ratio $S_{1, q} / S_{2, q}$ that appears in \tilde{T}_{n}. Starting from a result of Disasto et al (2008), we obtain the linear expansion of

$$
E\left(\frac{S_{1, q}}{S_{2, q}} * \frac{c_{22}}{c_{11}}-1\right)^{2}
$$

We choose q which minimizes the first term in this expansion.

Choice of q

This scheme leads to the choice

$$
q= \begin{cases}0.3 \sqrt{\left|\hat{I}_{1}-\hat{I}_{2}\right|} n^{1 /(3+4 \hat{d})}, & \text { if } \hat{d}<1 / 4 \\ 0.3 \sqrt{\left|\hat{I}_{1}-\hat{I}_{2}\right|} n^{1 / 2-\hat{d}}, & \text { if } \hat{d}>1 / 4\end{cases}
$$

where $\hat{d}=\left(\hat{d}_{1}+\hat{d}_{2}\right) / 2$ is the adaptive FEXP estimator (see Louditsky et al, 2001) and

$$
\hat{I}_{i}=\int_{0}^{\pi} x^{-2 \hat{d}} \sin ^{-2}(x / 2) \frac{\hat{g}_{i}(x)}{\hat{g}_{i}(0)} d x
$$

where \hat{g}_{i} estimates the short memory part of the spectral density of X_{i}.

Choice of q

This scheme leads to the choice

$$
q= \begin{cases}0.3 \sqrt{\left|\hat{I}_{1}-\hat{I}_{2}\right|} n^{1 /(3+4 \hat{d})}, & \text { if } \hat{d}<1 / 4 \\ 0.3 \sqrt{\left|\hat{I}_{1}-\hat{I}_{2}\right|} n^{1 / 2-\hat{d}}, & \text { if } \hat{d}>1 / 4\end{cases}
$$

where $\hat{d}=\left(\hat{d}_{1}+\hat{d}_{2}\right) / 2$ is the adaptive FEXP estimator (see Louditsky et al, 2001) and

$$
\hat{I}_{i}=\int_{0}^{\pi} x^{-2 \hat{d}} \sin ^{-2}(x / 2) \frac{\hat{g}_{i}(x)}{\hat{g}_{i}(0)} d x
$$

where \hat{g}_{i} estimates the short memory part of the spectral density of X_{i}.

For \hat{g}_{i}, we choose the spectral density of the best AR process approaching this short memory part. We proceed in a two steps procedure :

- we first estimate d by the adaptative FEXP estimator
- then we fit an AR process to $(1-L)^{\hat{d}} X_{i}$ by BIC criterion.

Let us sum-up the testing procedure.
Let two series $X_{1}(t), X_{2}(t)$ and a signifiance level $\alpha \in(0,1)$

- First estimate d_{1} and d_{2} with the adaptative FEXP estimator
- Estimate g_{1} and g_{2} which approximate the short-memory part in the spectral density of X_{1} and X_{2}
- This leads to the choice of q
- Compute \tilde{T}_{n} and compare to $c_{\alpha}\left(\left(\hat{d}_{1}+\hat{d}_{2}\right) / 2\right)$
(7) Some simulations

Simulations

We compute the test with independent X_{1} and X_{2} where

$$
\begin{aligned}
& X_{1} \sim F A R\left(1, d_{1}, 0\right) \\
& X_{2} \sim F A R\left(1, d_{2}, 0\right)
\end{aligned}
$$

i.e. $\left(1-a_{i} L\right)(1-L)^{d_{i}} X_{i}(n)=\epsilon_{i}(n)$, where ϵ_{i} is a white noise.

Several values of a_{i} and d_{i} are tested:

$$
a_{i} \in\{-0.4,0,0.4\} \text { and } d_{i} \in\{0,0.1,0.2,0.3,0.4\}
$$

The probability of rejection is evaluated on 1000 replications of the test where the signifiance level is fixed at 5%.
The sample size of X_{1} and X_{2} is 4096 .

For fixed a_{1}, a_{2}, each cell contains the probability of rejection of H_{0} for different parameters $\left(d_{1}, d_{2}\right)$ with $d_{i} \in\{0,0.1,0.2,0.3,0.4\}$ and $d_{1} \leq d_{2}$

Mean-Value of q chosen for the above simulations

Simulations on dependent samples

We evaluate the test with

$$
\begin{aligned}
& X_{1}(n)=(1-p) Y_{1}(n)+p Y_{2}(n) \\
& X_{2}(n)=(1-p) Y_{2}(n)+p Y_{1}(n)
\end{aligned}
$$

where Y_{i} are independent $\mathrm{F}\left(d_{i}\right)$ with $d_{i} \in\{0,0.1,0.2,0.3,0.4\}$ and $p \in[0,1 / 2)$.

Distaso，W．，Giraitis，L．and Abadir，K．（2008）Two estimators of long－run variance ：beyond short memory．Preprint．
Giraitis，L．，Kokoszka，P．，Leipus，R．and Teyssière，G．（2003） Rescaled variance and related tests for long memory in volatility and levels．J．Econometrics 112，265－294．
围 Giraitis，L．，Leipus，R．and Philippe，A．（2006）A test for stationarity versus trends and unit roots for a wide class of dependent errors．Econometric Th．22，989－1029．
目 Louditsky，A．，Moulines，E．and Soulier，Ph．（2001）Adaptive estimation of the fractional differencing coefficient Bernoulli 7，（5）， 699－731．
Kwiatkowski，D．，Phillips，P．C．B．，Schmidt，P．and Shin，Y． （1992）Testing the null hypothesis of stationarity against the alternative of a unit root ：how sure are we that economic time series have a unit root？J．Econometrics 54，159－178．
围 Lo，A．W．（1991）Long－term memory in stock market prices． Econometrica 59，1279－1313．

