
Frédéric Lavancier,
Laboratoire Jean Leray, Nantes (France)
Work with D. Dereudre (LAMAV, Valenciennes, France).

Voronoï tessellations: applications in Astronomy, Biology, Physics, etc.
Voronoï tessellations: applications in Astronomy, Biology, Physics, etc.

Studied as a random object: based on Poisson point Processes.
Voronoï tessellations: applications in Astronomy, Biology, Physics, etc.

Studied as a random object: based on Poisson point Processes.
Introduction

- Voronoï tessellations: applications in Astronomy, Biology, Physics, etc.
- Studied as a random object: based on Poisson point Processes.

Drawback: Strong independent structures coming from the Poisson process
Introduction

- Voronoï tessellations: applications in Astronomy, Biology, Physics, etc.
- Studied as a random object: based on Poisson point Processes.

Drawback: Strong independent structures coming from the Poisson process \rightarrow Interactions between the cells?
Introduction

One solution:

Gibbs modifications of Poisson Voronoï tessellations.
Introduction

One solution:

Gibbs modifications of Poisson Voronoï tessellations.

Questions:

- What kind of interactions?
Introduction

One solution :
Gibbs modifications of Poisson Voronoï tessellations.

Questions :

- What kind of interactions?
 → Smooth interaction.
Introduction

One solution:
Gibbs modifications of Poisson Voronoï tessellations.

Questions:

- What kind of interactions?
 → Smooth interaction.
 → Hardcore interaction (some Voronoï tessellations are forbidden)
Introduction

One solution:

Gibbs modifications of Poisson Voronoi tessellations.

Questions:

- What kind of interactions?
 - Smooth interaction.
 - Hardcore interaction (some Voronoi tessellations are forbidden)

- Existence of models.
Introduction

One solution:
Gibbs modifications of Poisson Voronoï tessellations.

Questions:
- What kind of interactions?
 → Smooth interaction.
 → Hardcore interaction (some Voronoï tessellations are forbidden)
- Existence of models.
- Unicity of Gibbs measures.
Introduction

One solution:

Gibbs modifications of Poisson Voronoï tessellations.

Questions:

- What kind of interactions?
 - Smooth interaction.
 - Hardcore interaction (some Voronoi tessellations are forbidden)
- Existence of models.
- Unicity of Gibbs measures.
- Simulations.
Introduction

Options:

- Smooth interaction.
- Hardcore interaction (some Voronoi tessellations are forbidden)

Questions:

- What kind of interactions?
 - Smooth interaction.
 - Hardcore interaction (some Voronoi tessellations are forbidden)
- Existence of models.
- Unicity of Gibbs measures.
- Simulations.
- Parametric estimations.

Gibbs modifications of Poisson Voronoï tessellations.
Definitions

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Definitions</th>
<th>Simulation</th>
<th>Estimation</th>
<th>Theory</th>
</tr>
</thead>
</table>

2. **Definitions**
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2:
 $$\gamma \subset \mathbb{R}^2, \text{ such that for all } \Lambda \in \mathcal{B}(\mathbb{R}^2), \text{ card}(\gamma \cap \Lambda) < \infty.$$
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2:

 \[\gamma \subset \mathbb{R}^2, \text{ such that for all } \Lambda \in \mathcal{B}(\mathbb{R}^2), \text{ card}(\gamma \cap \Lambda) < \infty. \]

- γ_Λ is the restriction of γ on Λ : $\gamma_\Lambda = \gamma \cap \Lambda$.

$\text{Vor}(\gamma)$: Voronoï tessellation coming from γ.
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2:

$$\gamma \subset \mathbb{R}^2, \text{ such that for all } \Lambda \in \mathcal{B}(\mathbb{R}^2), \text{ card}(\gamma \cap \Lambda) < \infty.$$

- γ_Λ is the restriction of γ on Λ:

$$\gamma_\Lambda = \gamma \cap \Lambda.$$

- Vor(γ) : Voronoi tessellation coming from γ
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.

- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2 such that for all $\Lambda \in \mathcal{B}(\mathbb{R}^2)$, $\text{card}(\gamma \cap \Lambda) < \infty$.

- γ_{Λ} is the restriction of γ on Λ : $\gamma_{\Lambda} = \gamma \cap \Lambda$.

- $\text{Vor}(\gamma)$: Voronoï tessellation coming from γ.

- λ is the Lebesgue measure on \mathbb{R}^2.
Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2:
 \[
 \gamma \subset \mathbb{R}^2, \quad \text{such that for all } \Lambda \in \mathcal{B}(\mathbb{R}^2), \quad \text{card}(\gamma \cap \Lambda) < \infty.
 \]
- $\gamma|_{\Lambda}$ is the restriction of γ on Λ:
 \[
 \gamma|_{\Lambda} = \gamma \cap \Lambda.
 \]
- $\text{Vor}(\gamma)$: Voronoï tessellation coming from γ.
- λ is the Lebesgue measure on \mathbb{R}^2.
- For $z > 0$, π^z : Poisson point process with intensity $z\lambda$.

For $z > 0$, π^z : Poisson point process with intensity $z\lambda$.

Notations

- $\mathcal{B}(\mathbb{R}^2)$ denotes the space of bounded sets in \mathbb{R}^2.
- $\mathcal{M}(\mathbb{R}^2)$ is the space of locally finite point configurations γ in \mathbb{R}^2:
 \[\gamma \subset \mathbb{R}^2, \quad \text{such that for all } \Lambda \in \mathcal{B}(\mathbb{R}^2), \text{ card}(\gamma \cap \Lambda) < \infty. \]
- γ_Λ is the restriction of γ on Λ:
 \[\gamma_\Lambda = \gamma \cap \Lambda. \]
- $\text{Vor}(\gamma)$: Voronoï tessellation coming from γ.
- λ is the Lebesgue measure on \mathbb{R}^2.
- For $z > 0$, π^z: Poisson point process with intensity $z\lambda$.
- π^z_Λ: π^z restricted on Λ.
Gibbs measures

Let \((H_\Lambda)_{\Lambda \in \mathcal{B}(\mathbb{R}^2)}\) be a family of energies

\[
H_\Lambda : \mathcal{M}(\Lambda) \times \mathcal{M}(\Lambda^c) \longrightarrow \mathbb{R} \cup \{+\infty\}
\]

\[(\gamma_\Lambda, \gamma_{\Lambda^c}) \longmapsto H_\Lambda(\gamma_\Lambda|\gamma_{\Lambda^c})\]

We suppose that it is compatible. For every \(\Lambda \subset \Lambda'\)

\[
H_{\Lambda'}(\gamma_{\Lambda'}|\gamma_{\Lambda'^c}) = H_\Lambda(\gamma_{\Lambda}|\gamma_{\Lambda^c}) + \varphi_{\Lambda,\Lambda'}(\gamma_{\Lambda^c}).
\]
Gibbs measures

Let \((H_\Lambda)_{\Lambda \in \mathcal{B}(\mathbb{R}^2)}\) be a family of energies

\[
H_\Lambda : \mathcal{M}(\Lambda) \times \mathcal{M}(\Lambda^c) \longrightarrow \mathbb{R} \cup \{+\infty\}
\]

\[
(\gamma_\Lambda, \gamma_{\Lambda^c}) \longrightarrow H_\Lambda(\gamma_\Lambda|\gamma_{\Lambda^c})
\]

We suppose that it is compatible. For every \(\Lambda \subset \Lambda'\)

\[
H_{\Lambda'}(\gamma_{\Lambda'}|\gamma_{\Lambda'^c}) = H_\Lambda(\gamma_\Lambda|\gamma_{\Lambda^c}) + \varphi_{\Lambda,\Lambda'}(\gamma_{\Lambda^c}).
\]

Definition

A probability measure \(P\) on \(\mathcal{M}(\mathbb{R}^2)\) is a Gibbs measure for \(z > 0\) and \((H_\Lambda)\) if for every \(\Lambda \in \mathcal{B}(\mathbb{R}^2)\) and \(P\)-almost every \(\gamma_{\Lambda^c}\)

\[
P(d\gamma_\Lambda|\gamma_{\Lambda^c}) = \frac{1}{Z_\Lambda(\gamma_{\Lambda^c})} e^{-H_\Lambda(\gamma_\Lambda|\gamma_{\Lambda^c})} \pi_\Lambda^z(d\gamma_\Lambda),
\]

where

\[
Z_\Lambda(\gamma_{\Lambda^c}) = \int e^{-H_\Lambda(\gamma'|\gamma_{\Lambda^c})} \pi_\Lambda(d\gamma'),
\]
A typical energy of a Voronoï tessellation:

\[H_\Lambda(\gamma_\Lambda | \gamma_{\Lambda^c}) = \sum_{C \in \text{Vor}(\gamma)} V_1(C) + \sum_{C, C' \in \text{Vor}(\gamma)} V_2(C, C'). \]

- \(V_1(C) \) is given by
 \[\begin{cases} +\infty & \text{if } h_{\text{min}}(C) \leq \epsilon \\ +\infty & \text{if } h_{\text{max}}(C) \geq \alpha \\ +\infty & \text{if } h_2(C) / \text{Vol}(C) \geq B_0 \\ \text{otherwise} & \end{cases} \]

- \(V_2(C, C') \) is given by
 \[\theta \left(\max(\text{Vol}(C), \text{Vol}(C')) - \min(\text{Vol}(C), \text{Vol}(C')) \right)^{1/2}, \quad \theta \in \mathbb{R} \]
A typical energy of a Voronoï tessellation:

\[H_\Lambda(\gamma_\Lambda | \gamma_\Lambda^c) = \sum_{C \in \text{Vor}(\gamma), C \cap \Lambda \neq \emptyset} V_1(C) + \sum_{C, C' \in \text{Vor}(\gamma), C \text{ and } C' \text{ are neighbors}, (C \cup C') \cap \Lambda \neq \emptyset} V_2(C, C'). \]

Our guiding example:

\[V_1(C) = \begin{cases} +\infty & \text{if } h_{\min}(C) \leq \varepsilon \\ +\infty & \text{if } h_{\max}(C) \geq \alpha \\ +\infty & \text{if } \frac{h_{\max}^2(C)}{Vol(C)} \geq B \\ 0 & \text{otherwise} \end{cases} \]

\[0 < \varepsilon < \alpha, B > 1/2\sqrt{3}; \]
A typical energy of a Voronoï tessellation:

\[H_\Lambda(\gamma_\Lambda|\gamma_{\Lambda^c}) = \sum_{\substack{C \in \text{Vor}(\gamma) \cap \Lambda \neq \emptyset}} V_1(C) + \sum_{\substack{C,C' \in \text{Vor}(\gamma) \cap \Lambda \neq \emptyset \quad C \text{ and } C' \text{ are neighbors}}} V_2(C,C'). \]

Our guiding example:

\[V_1(C) = \begin{cases} +\infty & \text{if } h_{\min}(C) \leq \varepsilon \\ +\infty & \text{if } h_{\max}(C) \geq \alpha \\ +\infty & \text{if } h_{\text{max}}^2(C)/\text{Vol}(C) \geq B \\ 0 & \text{otherwise} \end{cases} \]

\[0 < \varepsilon < \alpha, \ B > 1/2\sqrt{3}; \]

\[V_2(C,C') = \theta \left(\frac{\max(\text{Vol}(C), \text{Vol}(C'))}{\min(\text{Vol}(C), \text{Vol}(C'))} - 1 \right)^{\frac{1}{2}}, \quad \theta \in \mathbb{R} \]
Existence results

- **First existence results (bounded interactions):** Bertin, Billiot and Drouilhet,

Existence results

- **First existence results (bounded interactions):**
 Bertin, Billiot and Drouilhet,

- **Existence results with hardcore interactions**

 \((B = +\infty)\):
Existence results

- **First existence results (bounded interactions)**: Bertin, Billiot and Drouilhet,

- **Existence results with hardcore interactions**

For the interaction given before:

A Gibbs measure exists but we don’t know if it is unique or not (phase transition problem!)
Simulation
Simulations

Strong hardcore interaction
Simulations

Strong hardcore interaction \Rightarrow Rigidity of the tessellation
Simulations

Strong hardcore interaction \Rightarrow Rigidity of the tessellation
\rightarrow Several difficulties for the simulations.
Simulations

Strong hardcore interaction ⇒ Rigidity of the tessellation → Several difficulties for the simulations.

Birth-death-move MCMC algorithm on \([0, 1]^2\):

1. Draw independently \(a\) and \(b\) uniformly on \([0, 1]\).
2. If \(a < 1/3\) then generate \(x\) uniformly on \([0, 1]^2\) and
 \[
 \text{if } b < \frac{f(\gamma + x)z}{(n + 1)f(\gamma)}, \text{ then } \gamma + x \mapsto \gamma \text{ otherwise "do nothing".}
 \]
3. If \(1/3 < a < 2/3\) then generate \(x\) on \(\gamma\) and
 \[
 \text{if } b < \frac{nf(\gamma - x)}{f(\gamma)z}, \text{ then } \gamma - x \mapsto \gamma \text{ otherwise "do nothing".}
 \]
4. If \(a > 2/3\) then generate \(x\) on \(\gamma\), \(y \sim \mathcal{N}(x, \sigma^2)\) and
 \[
 \text{if } b < \frac{f(\gamma - x + y)}{f(\gamma)}, \text{ then } \gamma - x + y \mapsto \gamma \text{ otherwise "do nothing".}
 \]
Examples of simulations

We fix \(z = 100, \, \varepsilon = 0, \, \alpha = 0.05 \):

\[
B = +\infty, \; \theta = 0.5 \\
B = 1, \; \theta = 0.5 \\
B = 0.625, \; \theta = 0.5 \\
B = +\infty, \; \theta = -0.5 \\
B = 1, \; \theta = -0.5 \\
B = 0.625, \; \theta = -0.5
\]
Monitoring control

$B = +\infty, \theta = 0.5$

$B = 1, \theta = 0.5$

$B = 0.625, \theta = 0.5$

$B = +\infty, \theta = -0.5$

$B = 1, \theta = -0.5$

$B = 0.625, \theta = -0.5$
4 Estimation
The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.
Pseudo-likelihood Estimation

The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.

- **Hardcore parameters**: ε, α and B.
 \rightarrow Empirical extremum hardcore parameters.
The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.

- **Hardcore parameters**: ε, α and B.
 \rightarrow Empirical extremum hardcore parameters.

- **Smooth parameters**: z and θ.
 \rightarrow Pseudolikelihood procedure.

Why the pseudo and not the MLE? MLE is too time consuming (because of the estimation by simulations of the normalizing constant). Pseudo is proved to be asymptotically consistent and normal in most cases.

Bibliography:
Pseudo-likelihood Estimation

The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.

- **Hardcore parameters**: ε, α and B.
 - \rightarrow Empirical extremum hardcore parameters.

- **Smooth parameters**: z and θ.
 - \rightarrow Pseudolikelihood procedure.

Why the pseudo and not the MLE?
Pseudo-likelihood Estimation

The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.

- **Hardcore parameters**: ε, α and B.
 \rightarrow Empirical extremum hardcore parameters.

- **Smooth parameters**: z and θ.
 \rightarrow Pseudolikelihood procedure.

Why the pseudo and not the MLE?

- MLE is too time consuming (because of the estimation by simulations of the normalizing constant).
The aim: Estimate the parameters of the interaction from one realization γ of the Gibbs measure.

- **Hardcore parameters**: ε, α and B.
 \rightarrow Empirical extremum hardcore parameters.

- **Smooth parameters**: z and θ.
 \rightarrow Pseudolikelihood procedure.

Why the pseudo and not the MLE?

- MLE is too time consuming (because of the estimation by simulations of the normalizing constant).
- Pseudo is proved to be asymptotically consistent and normal in most cases.

Practical estimation procedures

Let $\Lambda_n = [-n, n]^2$ be the observation window and γ a realization of the Gibbs measure P.
Practical estimation procedures

Let $\Lambda_n = [-n, n]^2$ be the observation window and γ a realization of the Gibbs measure P.

Hardcore parameter estimators:

- $\hat{\varepsilon} = \min\{h_{\text{min}}(C), C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$,
- $\hat{\alpha} = \max\{h_{\text{max}}(C), C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$,
- $\hat{B} = \max\{h_{\text{max}}^2(C)/\text{Vol}(C), C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$.
Practical estimation procedures

Let $\Lambda_n = [-n, n]^2$ be the observation window and γ a realization of the Gibbs measure P.

- **Hardcore parameter estimators**:

 $\hat{\epsilon} = \min\{h_{\min}(C), \ C \in Vor(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$,

 $\hat{\alpha} = \max\{h_{\max}(C), \ C \in Vor(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$,

 $\hat{B} = \max\{h_{\max}^2(C)/\text{Vol}(C), \ C \in Vor(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset\}$.

- **Smooth parameter estimators**:

 $(\hat{z}, \hat{\theta}) = \text{argmin}_{z,\theta} PLL_{\Lambda_n}(\gamma, z, \theta, \hat{\epsilon}, \hat{\alpha}, \hat{B}),$
Let $\Lambda_n = [-n, n]^2$ be the observation window and γ a realization of the Gibbs measure P.

Hardcore parameter estimators:

\[
\hat{\varepsilon} = \min \{ h_{\min}(C), \ C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset \}, \\
\hat{\alpha} = \max \{ h_{\max}(C), \ C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset \}, \\
\hat{B} = \max \{ h_{\text{max}}^2(C)/\text{Vol}(C), \ C \in \text{Vor}(\gamma) \text{ and } C \cap \Lambda_n \neq \emptyset \}.
\]

Smooth parameter estimators:

\[(\hat{z}, \hat{\theta}) = \arg\min_{z, \theta} \text{PLL}_{\Lambda_n}(\gamma, z, \theta, \hat{\varepsilon}, \hat{\alpha}, \hat{B}),\]

with

\[
\text{PLL}_{\Lambda_n}(\gamma, z, \theta, \hat{\varepsilon}, \hat{\alpha}, \hat{B}) = \int_{\Lambda_n} z \exp(-h(x, \gamma)) \, dx + \sum_{x \in \gamma_{\Lambda_n} \cap \Lambda_n} (h(x, \gamma-x) - \ln(z)), \\
H_{\Lambda_n}(\gamma-x) < \infty
\]

where $h(x, \gamma) = H_{\Lambda_n}(\gamma + x) - H_{\Lambda_n}(\gamma)$.
Theoretical results

For the hardcore parameters:

Theorem (Dereudre-L. (2009))

For P-almost all γ

$$\lim_{n \to \infty} (\hat{\varepsilon}, \hat{\alpha}, \hat{B}) = (\varepsilon, \alpha, B).$$

For the smooth parameters:

Theorem (Dereudre-L. (2009))

For P-almost all γ

$$\lim_{n \to \infty} (\hat{z}, \hat{\theta}) = (z, \theta).$$

$(\hat{z}, \hat{\theta})$ are asymptotic normal if ε, α and B are supposed to be known.
Theoretical results

For the hardcore parameters:

Theorem (Dereudre-L. (2009))

For P-almost all γ

$$\lim_{n \to \infty} (\hat{\varepsilon}, \hat{\alpha}, \hat{B}) = (\varepsilon, \alpha, B).$$

For the smooth parameters:

Theorem (Dereudre-L. (2009))

For P-almost all γ

$$\lim_{n \to \infty} (\hat{z}, \hat{\theta}) = (z, \theta).$$

$(\hat{z}, \hat{\theta})$ are asymptotic normal if ε, α and B are supposed to be known.
Estimation results

The true parameters: \(\varepsilon = 0, \; \alpha = 0.05, \; B = 0.625, \; z = 100 \) and \(\theta = -0.5 \).
Estimation results

The true parameters: \(\varepsilon = 0, \alpha = 0.05, B = 0.625, z = 100 \) and \(\theta = -0.5 \).

Typical tessellation: Hardcore parameter estimators:
Estimation results

The true parameters: \(\varepsilon = 0, \alpha = 0.05, B = 0.625, z = 100 \) and \(\theta = -0.5 \).

Smooth parameter estimators:

\[\hat{\theta} \text{ when } z \text{ is known} \quad \hat{\theta} \text{ when } z \text{ is estimated} \quad \hat{z} \]
Estimation results

The true parameters: \(\varepsilon = 0, \alpha = 0.05, B = 0.625, z = 100 \) and \(\theta = 0.5 \).
The true parameters: \(\varepsilon = 0, \alpha = 0.05, B = 0.625, z = 100 \) and \(\theta = 0.5 \).

Typical tessellation: Hardcore parameter estimators:

\[\hat{\alpha}, \hat{B} \]
Estimation results

The true parameters: $\varepsilon = 0$, $\alpha = 0.05$, $B = 0.625$, $z = 100$ and $\theta = 0.5$.

Smooth parameter estimators:

- $\hat{\theta}$ when z is known
- $\hat{\theta}$ when z is estimated
- \hat{z}
Conclusion

Our Gibbs Voronoi model:

- forces the shape and the maximal size of the cells
- provides some repulsive or attractive interaction between two neighbour cells.
Conclusion

Our Gibbs Voronoi model:

- forces the shape and the maximal size of the cells
- provides some repulsive or attractive interaction between two neighbour cells.

The simulation can be achieved by a Birth-Death-Move MCMC algorithm
→ very time consuming because of the hardcore interactions.
Our Gibbs Voronoi model:
- forces the shape and the maximal size of the cells
- provides some repulsive or attractive interaction between two neighbour cells.

The simulation can be achieved by a Birth-Death-Move MCMC algorithm
→ very time consuming because of the hardcore interactions.

A two-step estimation procedure can be applied
1. the hardcore parameters are estimated in a natural way,
2. the smooth parameters are estimated by pseudo-likelihood where the hardcore parameters are plugged in.
Conclusion

Our Gibbs Voronoi model:

- forces the shape and the maximal size of the cells
- provides some repulsive or attractive interaction between two neighbour cells.

The simulation can be achieved by a Birth-Death-Move MCMC algorithm
→ very time consuming because of the hardcore interactions.

A two-step estimation procedure can be applied

1. the hardcore parameters are estimated in a natural way,
2. the smooth parameters are estimated by pseudo-likelihood where the hardcore parameters are plugged in.

This is consistent and allows to distinguish between the repulsive and the attractive case in a non-trivial situation.

Some theoretical points
The problem of heredity

Definition

The family of energies \((H_\Lambda)_\Lambda\) is said **hereditary** if for every \(\Lambda\), every \(\gamma \in \mathcal{M}(\mathbb{R}^2)\) and every \(x \in \Lambda\)

\[
H_\Lambda(\gamma) = +\infty \Rightarrow H_\Lambda(\gamma + \delta x) = +\infty.
\]
The problem of heredity

Definition

The family of energies \((H_\Lambda)_\Lambda\) is said **hereditary** if for every \(\Lambda\), every \(\gamma \in \mathcal{M}(\mathbb{R}^2)\) and every \(x \in \Lambda\)

\[
H_\Lambda(\gamma) = +\infty \Rightarrow H_\Lambda(\gamma + \delta x) = +\infty.
\]

\(\gamma\) is forbidden \(\Rightarrow\) \(\gamma + \delta x\) is forbidden
The problem of heredity

Definition

The family of energies \((H_{\Lambda})_{\Lambda}\) is said **hereditary** if for every \(\Lambda\), every \(\gamma \in \mathcal{M}(\mathbb{R}^2)\) and every \(x \in \Lambda\)

\[
H_{\Lambda}(\gamma) = +\infty \Rightarrow H_{\Lambda}(\gamma + \delta_x) = +\infty.
\]

\(\gamma\) is forbidden \(\Rightarrow\) \(\gamma + \delta_x\) is forbidden

\(\gamma + \delta_x\) is allowed \(\Rightarrow\) \(\gamma\) is allowed
The problem of heredity

Definition

The family of energies $\left(H_\Lambda \right)_\Lambda$ is said **hereditary** if for every Λ, every $\gamma \in \mathcal{M}(\mathbb{R}^2)$ and every $x \in \Lambda$

$$H_\Lambda(\gamma) = +\infty \Rightarrow H_\Lambda(\gamma + \delta x) = +\infty.$$

γ is forbidden \Rightarrow $\gamma + \delta x$ is forbidden

$\gamma + \delta x$ is allowed \Rightarrow γ is allowed

It is a standard assumption in classical statistical mechanics. (Example: The classical hard ball model is hereditary.)
The problem of heredity

Definition

The family of energies \((H_\Lambda)_\Lambda\) is said **hereditary** if for every \(\Lambda\), every \(\gamma \in \mathcal{M}(\mathbb{R}^2)\) and every \(x \in \Lambda\)

\[
H_\Lambda(\gamma) = +\infty \Rightarrow H_\Lambda(\gamma + \delta_x) = +\infty.
\]

\(\gamma\) is forbidden \(\Rightarrow\) \(\gamma + \delta_x\) is forbidden

\(\gamma + \delta_x\) is allowed \(\Rightarrow\) \(\gamma\) is allowed

It is a standard assumption in classical statistical mechanics. (Example: The classical hard ball model is hereditary.)

The Gibbs Voronoi Tessellations are **not hereditary**.

\(\rightarrow\) When one adds a point in a too large cell, the new tessellation may be allowed.
Theorem (*Nguyen-Zessin (1979), hereditary case*)

Suppose that the energy \((H_\Lambda)\) is *hereditary*. \(P\) is Gibbs measure with intensity measure \(\nu\) if and only if, for every bounded non negative measurable function \(\psi\) from \(\mathbb{R}^2 \times \mathcal{M}(\mathbb{R}^2)\) to \(\mathbb{R}\),

\[
E_P \left(\sum_{x \in \gamma} \psi(x, \gamma - x) \right) = E_P \left(\int_{\mathbb{R}^2} \psi(x, \gamma) e^{-h(x, \gamma)} \nu(dx) \right),
\]

where \(h(x, \gamma) = H_{\Lambda_n} (\gamma + x) - H_{\Lambda_n} (\gamma)\).

Proposition (*Dereudre, L. (2009), general case*)

Let \(P\) be a Gibbs measure with intensity measure \(\nu\), then

\[
E_P \left(\sum_{x \in \gamma_{\Lambda_n}} \psi(x, \gamma - x) \right) = E_P \left(\int_{\mathbb{R}^2} \psi(x, \gamma) e^{-h(x, \gamma)} \nu(dx) \right).
\]
Validation: residuals process

We can extend the concept of residuals (see Baddeley et al., 2005) to the non-hereditary setting.

The residuals process on a set Δ is defined for any function ψ by

$$R(\Delta, \psi, \hat{h}, \hat{\nu}) = \sum_{x \in \gamma \Delta, H_{\Delta}(\gamma - x) < \infty} \psi(x, \gamma - x) - \int_{\Delta} \psi(x, \gamma) e^{-\hat{h}(x, \gamma)} \hat{\nu}(dx),$$

From the equilibrium equation given before, under the true model,

- $R(\Delta, \psi, \hat{h}, \hat{\nu}) \approx 0$
- $R(\Delta, \psi, \hat{h}, \hat{\nu})$ is approximatively gaussian.

\rightarrow Several diagnostic tools can then be applied when fitting a Gibbs Voronoi model.
Validation: residuals process

We can extend the concept of residuals (see Baddeley et al., 2005) to the non-hereditary setting. The residuals process on a set Δ is defined for any function ψ by

$$R(\Delta, \psi, \hat{h}, \hat{\nu}) = \sum_{x \in \gamma \Delta, H_{\Delta}(\gamma - x) < \infty} \psi(x, \gamma - x) - \int_{\Delta} \psi(x, \gamma)e^{-\hat{h}(x, \gamma)} \hat{\nu}(dx),$$

From the equilibrium equation given before, under the true model,

- $R(\Delta, \psi, \hat{h}, \hat{\nu}) \approx 0$
- $R(\Delta, \psi, \hat{h}, \hat{\nu})$ is approximatively gaussian.

Several diagnostic tools can then be applied when fitting a Gibbs Voronoi model.

For further asymptotic results on the residuals process R:

→ See the talk of J.-F. Coeurjolly on Friday morning.