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Statistical study of spatial dependences in
long memory random fields on a lattice,
point processes and random geometry.

Frédéric Lavancier,
Laboratoire de Mathématiques Jean Leray, Nantes

9 décembre 2011.
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Introduction

Long memory, self-similarity in (multivariate) time series :
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Introduction

Long memory, self-similarity in images :
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Introduction

Attraction, repulsion between points :

I g
B o o . .t .
° ° ..
&5 R o ° s -
o el e .
o o . HEN .
o e o o o ° .. .
) ) o ° a3 -
& ) o o° et L . .
0 ® ° o o o o el .
%58, o, © ° . s s e
o % 3 ° T . .
c O X .o . .
° ° . - .
) ° o% o ° o st . :
&0 Sow o B .. e s
8, ° ° 1
° ° oa °© © ° '-. * -'- °
° o ©° N T
o ° ° : BRI
0,0 ° S .. « -
0 ° . .
Bgs & ° ° o 4 c. e oo M .
o0 o [T C
{wo L&s ° B o 4 o o . P
0. © ©° . *
% o 4 o o o o . ..
o . 3
Y 8 © oo ° o . . . 5L
o0 00 ° . . N
o ° - . e -
& ° o o o




Self-similarity, Long memory Point processes, random geometry
000000000000 00 0000000000

Introduction

Dependence between cells of a tesselation :
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Introduction

Random sets as a union of interacting balls :
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Introduction

General motivations

Developping mathematical models that

@ respect some prescribed features (e.g. self-similiarity, long range
dependence, repulsion or attraction between points,...) ;

@ are flexible enough (through few parameters) ;

@ we can simulate.
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Introduction

General motivations

Developping mathematical models that

@ respect some prescribed features (e.g. self-similiarity, long range
dependence, repulsion or attraction between points,...) ;

@ are flexible enough (through few parameters) ;

@ we can simulate.

From a stastical point of view :

o fitting these models to data (inference problem);

@ assessing the theoretical quality of inference (consistency,
limiting law, optimality,...) ;
@ providing some diagnostic tools :

- adequation of the model to data,
- change-point problems.
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© Self-similarity, Long memory
@ Vector Fractional Brownian Motion
e Long memory time series
e Long memory random fields (images)

9 Point processes, random geometry
o Estimation of Gibbs point processes
@ Model validation for Gibbs point processes
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Fractional Brownian Motion

Some univariate examples :
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Fractional Brownian Motion

H=0.2

Some univariate examples :

Aim : correlating p fractional
Brownian motions '
— Vector (or Multivariate) FBM

-z00

-300




Self-similarity, Long memory Point processes, random geometry
000@0000000000 0000000000

VGCtOI' FBM with P.-O. Amblard, J.-F. Coeurjolly, A. Philippe, D. Surgailis

A multivariate process B(t) = (Bi(t),. .., Bp(t)) is a Vector FBM with
parameter H = (Hy, ..., H,) if B(0) =0 and

@ it is Gaussian;

@ it is H-self-similar, i.e.
V £ Hy Hp .
¢>0, (Bi(et),...,Bp(ct))ter = (¢ *Bi(t),...,c P Bp(t))ter;

@ it has stationary increments.
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Vector FBM with P.-O. Amblard, J.-F. Coeurjolly, A. Philippe, D. Surgailis
A multivariate process B(t) = (Bi(t),. .., Bp(t)) is a Vector FBM with
parameter H = (Hy, ..., H,) if B(0) =0 and
@ it is Gaussian;
@ it is H-self-similar, i.e.
£ Hy Hp .
Ve >0, (Bi(et),...,Bp(ct))ter = (¢ ' Bi(t),...,c ?Bp(t))ter;

@ it has stationary increments.

Lamperti type result :
If there exist a vector process (Yi(t),...,Yp(t))tcr and real functions
a1, ...., ap such that

(ar(n)Yi(nt), ..., ap(n)Y,(nt)) if:f% Z(),

then the vector process (Z(t)) is self-similar.

Convergence of partial sums :
Any Vector FBM can be obtained as the limit of partial sums of some

superlinear processes.
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Comprehensive characterisation : (p = 2)
1. Let (Bl(t),BQ(t)) be a (H1,H2)—VFBM, then (When H1 + H2 7& 1) .
@ B;isa H:i-FBM and B> is a H>-FBM
@ for 0 < s < t, the cross-covariance is
EBi(5)Bs(t) o< (p+m)s™ 2 4 (p— )t 2 — (p—n)(t — s) 112

with p = corr(B1(1), B2(1)), n = CO”(Bl(1)732(211;;;11032(31(—1),32(1))’
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Comprehensive characterisation : (p = 2)

1. Let (Bl(t),BQ(t)) be a (H1,H2)—VFBM, then (When H1 + H2 7& 1) .
@ B;isa H:i-FBM and B> is a H>-FBM
@ for 0 < s < t, the cross-covariance is
EBi(s)Ba(t) o< (p+m)s™ 2 4 (p— )t — (p— ) (t — )T H12

with p = corr(Bi(1), Ba(1)), n = <2xBrl).B2(C ) —eon(Bi(-1). B2 (1)

2—2M1
2 — H1=0.1, H2=01 H1=01, H2=06

) ) TSR e

2. Conversely any Gaussian process with the above co- S es Bty

0s

variance function is a VFBM iff for some known R > 0

p2 sin (g(Hl + Hz))2 +172 cos (g(Hl —|—H2))2 <R °°

— mnot possible to set up arbitrary correlated FBM
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Comprehensive characterisation : (p = 2)
1. Let (Bl(t),BQ(t)) be a (H1,H2)—VFBM, then (When H1 + H2 7& 1) .
@ B;isa H:i-FBM and B> is a H>-FBM
@ for 0 < s < t, the cross-covariance is
EBi(s)Ba(t) o< (p+m)s™ 2 4 (p— )t — (p— ) (t — )T H12

with p = corr(Bi1(1), B2(1)), n = Corr(BlULBQ(;};E?EZ,(BI<71)’B2(1)).

2. Conversely any Gaussian process with the above co-
variance function is a VFBM iff for some known R > 0

0s

p2 sin (g(Hl + Hz))2 +172 cos (g(Hl —|—H2))2 <R °°

— mnot possible to set up arbitrary correlated FBM

3. Consider the increments AB;(n) = B;(n + 1) — B;(n), for i = 1,2.°
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Comprehensive characterisation : (p = 2)

1. Let (Bl(t),BQ(t)) be a (H1,H2)—VFBM, then (When H1 + H2 7& 1) .
@ B;isa H:i-FBM and B> is a H>-FBM
@ for 0 < s < t, the cross-covariance is
EB1(s)Ba(t) o (p+mn)s™ 2 4 (p— ™2 — (p—p)(t — 5)1HH2

with p = corr(Bi1(1), B2(1)), n = Corr(BlULBQ(;};;;I?;Z,(BI<71)’B2(1)).

2. Conversely any Gaussian process with the above co-
variance function is a VFBM iff for some known R > 0

0s

p2 sin (g(Hl + Hz))2 +172 cos (g(Hl —|—H2))2 <R °°

— mnot possible to set up arbitrary correlated FBM

3. Consider the increments AB;(n) = B;(n+ 1) — B;(n), fori =1,2."
The two components are either non-correlated components or
EAB; (n)ABa(n + h) ~ w|h|T1HH272
— Very constrained cross-correlation
(For instance Hy + H2 > 1 = long-range cross-dependence)
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Some examples :

Point processes, random geometry

0000000000

Simulations are achieved thanks to a Wood and Chan algorithm.

Below, the correlation between any couple of FBM is p = 0.6
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@ Vector Fractional Brownian Motion
o Long memory time series

e Long memory random fields (images)
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Definition :
A stationary, L?, time series (X (n))nez exhibits long memory if

D Ir(n)| = +oo

where r denotes the covariance function of X.

Typically : for some 0 < d < 0.5, 7(n) ~oo x|n|?471.

The parameter d is called the long memory parameter.

d=0.45: MMWWWMWWWWWM H1H!HHHHHH!HHHHH

Examples :
@ If Bisa FBM, X(n) = B(n+1) — B(n) with d = H — 0.5.
@ An I(d) time series : X(n) = (1 — L) %(n)
(where € is a white noise and L the lag operator : Len, = €n—1)
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Change point problem wi . Leipus, o. Phitippe, D. Surgailis

Constant vs non-constant long memory parameter ? ex : I(dy) — I(dz)
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Change point problem wi . Leipus, o. Phitippe, D. Surgailis

Basically, under Hy : d is constant :
[nt] [nt]

n~ 4705 g X(k Dg kBato.5(t) and Var ZX(k) ~ 24t
k=1
Under H; : d increases, for some ¢

[nto]

> X(k) | < Var zn: X (k)
k=1

k=[nto]

= To test for Hp against H;, we estimate and compare these variances.
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Change point problem wi . Leipus, o. Phitippe, D. Surgailis

Basically, under Hy : d is constant :
[nt] [nt]

n~ 4705 g X(k Dg kBato.5(t) and Var ZX(k) ~ 24t
k=1
Under H; : d increases, for some ¢

[nto]

> X(k) | < Var zn: X (k)
k=1

k=[nto]

= To test for Hp against H;, we estimate and compare these variances.

Let Sj =>4, X(k) and S;_; =>7¢ .| X (k). Define
@ the forward variance : Vi, = @’(Sl, ey Sk)
@ the backward variance : V,_, = @“(SZ_,H_I, 87

Test statistic, Consistency

Under Hy : I, — I(Bato.5) (simulable); Under H; : I,, — +00
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e Vector Fractional Brownian Motion
e Long memory time series

e Long memory random fields (images)
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Definition :
A stationary, L?, random field (X (1)), ¢z« exhibits long memory if

S fr(m)| = +oo

where r denotes the covariance function of X.

Main difference with time series : possible occurence of anisotropy.
Examples (d=2) :for 0 < a < 1

r(n1,m2) ~eo (N +n3)"% | 7(n1,n2) ~eo [na| "% n2| ™ | r(n1,n2) ~oo N1 +ma|
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Investigations on long memory random fields

Modelling : long memory random fields appear

@ in similar models as for time series (increment of fractional Brownian
sheet ; aggregation of short memory random fields; fractional filtering
of a white noise)

@ in some Gibbs processes on Z? in phase transition
ex : Ising model at the critical temperature
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Investigations on long memory random fields

Modelling : long memory random fields appear

@ in similar models as for time series (increment of fractional Brownian
sheet ; aggregation of short memory random fields; fractional filtering
of a white noise)

@ in some Gibbs processes on Z? in phase transition
ex : Ising model at the critical temperature

Limit theorems, statistical applications :

@ for partial sums — non Central Limit Theorems
= Testing for the presence of long memory.

@ for the empirical process — asymptotic degeneracy
= Asymptotics for U-Statistics.

@ for some quadratic forms (with A. Philippe)
— non-CLTs for Y g(i — 7) X (4) X (§) where (X (2));cz2 is Gaussian.
= Asymptotics of empirical covariance functions.
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Partial sums of long memory random fields

Let X(n) = Z ar e(n—k), where (ax) € £* and € is a Gaussian white noise.
kezd

Theorem
Denote a(x) = >, cza axe'®?. If a € L? and VY, a(A\z) = |\ "%a(z),
0 < a < d, then denoting A, = {1,...,n}¢

d it @0
1 D([0,1]%) e'iti — 1

k€A Jj=1

The limit is the Fractional Brownian Sheet only when a(z) = H‘Z:l |azs |~ Hi.
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Partial sums of long memory random fields

Let X(n Z ar e(n—k), where (ax) € £* and € is a Gaussian white noise.
kezd

Theorem

Denote a(z) = 3, cza are’**. If a € L? and VA, a(Az) = |A| %a(x),
0 < a < d, then denoting A, = {1,...,n}¢

1 D([0,1]%)
nd/2+a Z Xk - d

k:EA[nt] R j=1

it T 1

a(@) [] S dZ(2)

124

The limit is the Fractional Brownian Sheet only when a(z) = H‘Z:l |azs |~ Hi.

1
W Z X = d/2+a Z / d ’Lk IdZ( ) Z : spectral measure of €
kEA, ™

(z)
:/[77r ) Z et d/2

keA,
d ’Lz'

:/[_nmmr] H L n(e mJ/n _ Z(a: *}/ x)H

dZ(:E)
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© Point processes, random geometry
o Estimation of Gibbs point processes
@ Model validation for Gibbs point processes
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Point processes

Notation :

@ Denote by ¢ a point pattern on R? ie. p = |J x, for T C N*
i€T

@ A point process ® is a random variable on the space Q = {¢}.

Example : the Poisson point process — independance in locations

8

How to introduce dependencies between the location of points ?
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Gibbs point processes (basic definition)

They are absolutely continuous w.r.t the Poisson point process with density

1 _
fo(p) = —e Vole) for some parameter 6 € R”.
Co

Vo () : energy of ¢ also called Hamiltonian (belongs to R U {+o0})
@ ¢ is more likely to occur if V(i) is small.
@ if Vy(p) = +o00, then ¢ is forbidden.
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Gibbs point processes (basic definition)

They are absolutely continuous w.r.t the Poisson point process with density

1 _
fo(p) = —e Vole) for some parameter 6 € R”.
Co

Vo () : energy of ¢ also called Hamiltonian (belongs to R U {+o0})
@ ¢ is more likely to occur if V() is small.
@ if Vy(p) = +o00, then ¢ is forbidden.

Example : Strauss process with range of interaction R = 0.05 on [0, 1]2

‘/9(90) =0 Z ]I\y—ac|<R7 6>0

(z,y)€p

9=0.35: B Lo 9 =23 :
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Geometric interactions

For a point pattern ¢, denote Vor(p) the associated Voronoi tessellation.

Gibbs Voronofi tessellation : one example

Volp)= > W(C)+ 6 > [vol(C) — vol(C")|
Ce Vor(p) c,cl'e Vor(¢)
C and C’are neighbors

400 if the cell is too "irregular",

w@:{

0 otherwise
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Geometric interactions

Quermass model
Each point z € ¢ is associated with a random radius 7.
Vo(p) =61 P(T) + 02 A(T) + 605 EI) where TI'= | J B(=,r)
TEP

P : perimeter A :area & : EP characteristic (nb connected sets - nb holes).

01 >0 0 >0 03 >0
(62 = 63 = 0) (61
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Statistical issues

Let ¢ be a point pattern observed (or Vor(y), or I',...) on a domain A.

Assumption : ¢ is the realisation of a Gibbs point process associated to
Vi for some (unknown) 6 € RP.
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Statistical issues

Let ¢ be a point pattern observed (or Vor(y), or I',...) on a domain A.

Assumption : ¢ is the realisation of a Gibbs point process associated to
Vi for some (unknown) 6 € RP.

Caution :
The family (Vy)s must lead to a well defined Gibbs process for all 0

(For the geometric interactions above, see D. Dereudre, R. Drouilhet, H.-O. Georgii)
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Statistical issues

Let ¢ be a point pattern observed (or Vor(y), or I',...) on a domain A.

Assumption : ¢ is the realisation of a Gibbs point process associated to
Vi for some (unknown) 6 € RP.

Caution :

The family (Vy)s must lead to a well defined Gibbs process for all 0

(For the geometric interactions above, see D. Dereudre, R. Drouilhet, H.-O. Georgii)

@ How to estimate 07

From fo(p) = éefv"(‘?) : maximum likelihood procedure.

— Problem : ¢y is intractable and (prohibitive) time consuming
simulations are required to approach it.
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Statistical issues

Let ¢ be a point pattern observed (or Vor(y), or I',...) on a domain A.

Assumption : ¢ is the realisation of a Gibbs point process associated to
Vi for some (unknown) 6 € RP.

Caution :

The family (Vy)s must lead to a well defined Gibbs process for all 0

(For the geometric interactions above, see D. Dereudre, R. Drouilhet, H.-O. Georgii)

@ How to estimate 07

From fo(p) = éefv"(‘?) : maximum likelihood procedure.

— Problem : ¢y is intractable and (prohibitive) time consuming
simulations are required to approach it.

@ Is the above assumption reasonable ?
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Takacs-Fiksel method

Campbell equilibrium equation (Georgii, Nguyen, Zessin)

Let Vy(z|p) = Va(p Uz) — Va(p) (energy needed to insert x in ¢)
® is a Gibbs point process with energy Vj if and only if, for all function h,

Eo (/]Rd h(z, ®) e_V"(z‘q))dx) =Es <Z h(z,®\ x)) .

zed
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Takacs-Fiksel method

Campbell equilibrium equation (Georgii, Nguyen, Zessin)

Let Vy(z|p) = Va(p Uz) — Va(p) (energy needed to insert x in ¢)
® is a Gibbs point process with energy Vj if and only if, for all function h,

Eo (/Rd h(z, ®) e*Ve(z‘@dx) =Es <Z h(x,<1>\x)> .

zed

Empirical counterpart : Takacs Fiksel estimation
Let hi,...,h, be K test functions (to be chosen),

% 2
6 = arg min / (2, p)e Vo @19 qg — he(z, o\ )| .
] ; A k(2 ¢) > hi(z, 0\ x)

TEP
TF estimation includes pseudo-likelihood estimation as a particular case
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Takacs-Fiksel method

Campbell equilibrium equation (Georgii, Nguyen, Zessin)

Let Vy(z|p) = Va(p Uz) — Va(p) (energy needed to insert x in ¢)
® is a Gibbs point process with energy Vj if and only if, for all function h,

Eo (/Rd h(z, ®) e*Ve(z‘@dx) =Es (Z h(x,@\x)> .

zed

Empirical counterpart : Takacs Fiksel estimation
Let hi,...,h, be K test functions (to be chosen),

% 2
6 = arg min / (2, p)e Vo @19 qg — he(z, o\ )| .
] ; A k(2 ¢) > hi(z, 0\ x)

TEP
TF estimation includes pseudo-likelihood estimation as a particular case

Contributions : with J.-F. Coeurjolly, D. Dereudre, R. Drouihet, K. Stankova-Helisova
@ Identifiability (K > dim(6)), consistency, asymptotic normality ;

@ Extension to a two-step procedure in presence of (possible non-hereditary)
hardcore interactions ;

@ Application to Gibbs Voronofi tessellations ;

@ Application to Quermass model, where points are not observed.
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Model Validation wicn 5.-. coeurjoly

Let ¢ a point pattern supposed to be the qbservation on A of a Gibbs
process with parametric potential V. Let 6 be an estimate of 6 from (.
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Model Validation wicn 5.-. coeurjoly

Let ¢ a point pattern supposed to be the qbservation on A of a Gibbs
process with parametric potential V. Let 6 be an estimate of 6 from (.

The residuals assess the Campbell equilibrium : for any h,

Ra(h) =A™ (/ h(z, @)e Vo 1®) qz — Z h(z,p\ ac)) .
A TEP
If the model is well specified, we expect, for any h, Ra(h) =~ 0.
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Model Validation wicn 5.-. coeurjoly

Point processes, random geometry
O00000e000

Let ¢ a point pattern supposed to be the qbservation on A of a Gibbs
process with parametric potential V. Let 6 be an estimate of 6 from (.

The residuals assess the Campbell equilibrium : for any h,

Ra(h) = [A]* </A W, @)e 9z — 3 ha, o\ x)) .

If the model is well specified, we expect, for any h, Ra(h) =~ 0.

We have proved : as A — R%, Rx(h) — 0 and R (h) ~ N(0,%).

Towards x? goodness of fit tests : 2 frameworks

R (h1)
R (hj)

R (hs)

81 Raly, hj)? ~ X2

| |
RAlw)} RA2<h)}

9y R (a2 ~x®
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Theoretical Ingredients

For the estimation and the validation procedures, our asymptotic results
rely on

@ the Campbell equilibrium equation,
@ an ergodic theorem (Nguyen and Zessin),

@ the central limit theorem below.
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Theoretical Ingredients

For the estimation and the validation procedures, our asymptotic results
rely on

@ the Campbell equilibrium equation,
@ an ergodic theorem (Nguyen and Zessin),
@ the central limit theorem below.

CLT for a linear functional U(®,) where &5 = PN A

Assume that if A = Ug_; Ay for disjoint Ag’s then U(Pp) = > 7_, U(Pa,)
Basically, if
(i) Conditioned centering :  E [U(®a,)|Pa,, j #k] =0

Ll

1 n n
(i) Convergence of empirical covariances : - Z Z U(®a,)U(®a,, ) —
k=1k/=1

then —= 31, U(®a,) £, N(0, %)

The key assumption (i) allows us to go without mixing assumptions
(which typically do not hold for all values of  for a Gibbs process).
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Alternatives to Gibbs point processes ?

Gibbs processes introduce interactions in a very natural way, but
@ they can be tedious to simulate

@ there are many remaining challenges for inference
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Alternatives to Gibbs point processes ?

Gibbs processes introduce interactions in a very natural way, but
@ they can be tedious to simulate

@ there are many remaining challenges for inference

Alternatives to Gibbs processes :

@ Cox processes : Poisson processes with random intensity function.
= They induce clustered point patterns.
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Alternatives to Gibbs point processes ?

Gibbs processes introduce interactions in a very natural way, but
@ they can be tedious to simulate

@ there are many remaining challenges for inference

Alternatives to Gibbs processes :

@ Cox processes : Poisson processes with random intensity function.
= They induce clustered point patterns.

@ Determinantal point processes (with J. Mgller and E. Rubak)
Their joint intensities depend on a covariance function C.

Cc(h)?
c(0)2"

= They are repulsive point processes, for g(h) =1 —
Appeals :

> Perfect and fast simulation is available
> Flexible models : just consider a parametric family of covariance
functions

> Inference is feasible by standard methods (maximum likelihood,

contrast functions,...)
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