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Introduction

Long memory, self-similarity in (multivariate) time series :
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Introduction

Long memory, self-similarity in images :
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Introduction

Attraction, repulsion between points :
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Introduction

Dependence between cells of a tesselation :
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Introduction

Random sets as a union of interacting balls :
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Introduction

General motivations

Developping mathematical models that

respect some prescribed features (e.g. self-similiarity, long range
dependence, repulsion or attraction between points,...) ;

are flexible enough (through few parameters) ;

we can simulate.

From a stastical point of view :

fitting these models to data (inference problem) ;

assessing the theoretical quality of inference (consistency,
limiting law, optimality,...) ;

providing some diagnostic tools :

- adequation of the model to data,
- change-point problems.
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1 Self-similarity, Long memory
Vector Fractional Brownian Motion
Long memory time series
Long memory random fields (images)

2 Point processes, random geometry
Estimation of Gibbs point processes
Model validation for Gibbs point processes
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Fractional Brownian Motion

Some univariate examples :
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Aim : correlating p fractional
Brownian motions
→ Vector (or Multivariate) FBM
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Vector FBM with P.-O. Amblard, J.-F. Coeurjolly, A. Philippe, D. Surgailis

A multivariate process B(t) = (B1(t), . . . , Bp(t)) is a Vector FBM with
parameter H = (H1, . . . , Hp) if B(0) = 0 and

it is Gaussian ;

it is H-self-similar, i.e.

∀c > 0, (B1(ct), . . . , Bp(ct))t∈R
L
= (cH1B1(t), . . . , cHpBp(t))t∈R;

it has stationary increments.

Lamperti type result :
If there exist a vector process (Y1(t), . . . , Yp(t))t∈R and real functions
a1, ...., ap such that

(a1(n)Y1(nt), . . . , ap(n)Yp(nt))
n→∞−−−−→
fidi

Z(t),

then the vector process (Z(t)) is self-similar.

Convergence of partial sums :
Any Vector FBM can be obtained as the limit of partial sums of some
superlinear processes.



Self-similarity, Long memory Point processes, random geometry

Vector FBM with P.-O. Amblard, J.-F. Coeurjolly, A. Philippe, D. Surgailis

A multivariate process B(t) = (B1(t), . . . , Bp(t)) is a Vector FBM with
parameter H = (H1, . . . , Hp) if B(0) = 0 and

it is Gaussian ;

it is H-self-similar, i.e.

∀c > 0, (B1(ct), . . . , Bp(ct))t∈R
L
= (cH1B1(t), . . . , cHpBp(t))t∈R;

it has stationary increments.

Lamperti type result :
If there exist a vector process (Y1(t), . . . , Yp(t))t∈R and real functions
a1, ...., ap such that

(a1(n)Y1(nt), . . . , ap(n)Yp(nt))
n→∞−−−−→
fidi

Z(t),

then the vector process (Z(t)) is self-similar.

Convergence of partial sums :
Any Vector FBM can be obtained as the limit of partial sums of some
superlinear processes.



Self-similarity, Long memory Point processes, random geometry

Comprehensive characterisation : (p = 2)

1. Let (B1(t), B2(t)) be a (H1, H2)-VFBM, then (when H1 +H2 6= 1) :
B1 is a H1-FBM and B2 is a H2-FBM
for 0 ≤ s ≤ t, the cross-covariance is

EB1(s)B2(t) ∝ (ρ+ η)sH1+H2 + (ρ− η)tH1+H2 − (ρ− η)(t− s)H1+H2

with ρ = corr(B1(1), B2(1)), η = corr(B1(1),B2(−1))−corr(B1(−1),B2(1))

2−2H1+H2
.

2. Conversely any Gaussian process with the above co-
variance function is a VFBM iff for some known R > 0

ρ2 sin
“π

2
(H1 +H2)

”2

+ η2 cos
“π

2
(H1 +H2)

”2

≤ R

→ not possible to set up arbitrary correlated FBM

3. Consider the increments ∆Bi(n) = Bi(n+ 1)−Bi(n), for i = 1, 2.
The two components are either non-correlated components or

E∆B1(n)∆B2(n+ h) ∼ κ|h|H1+H2−2

→ Very constrained cross-correlation
(For instance H1 +H2 ≥ 1 ⇒ long-range cross-dependence)
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Some examples :

Simulations are achieved thanks to a Wood and Chan algorithm.

Below, the correlation between any couple of FBM is ρ = 0.6

H ∈ [0.3, 0.4]
(decentered) H ∈ [0.8, 0.9] H ∈ [0.4, 0.8]
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Vector Fractional Brownian Motion
Long memory time series
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Definition :
A stationary, L2, time series (X(n))n∈Z exhibits long memory ifX

n∈Z

|r(n)| = +∞

where r denotes the covariance function of X.

Typically : for some 0 < d < 0.5, r(n) ∼∞ κ|n|2d−1.
The parameter d is called the long memory parameter.

d = 0.3 :
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Examples :

If B is a FBM, X(n) = B(n+ 1)−B(n) with d = H − 0.5.

An I(d) time series : X(n) = (1− L)−dε(n)
(where ε is a white noise and L the lag operator : Lεn = εn−1)
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Change point problem with R. Leipus, A. Philippe, D. Surgailis

Constant vs non-constant long memory parameter ? ex : I(d1)→ I(d2)
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Change point problem with R. Leipus, A. Philippe, D. Surgailis

Basically, under H0 : d is constant :

n−d−0.5

[nt]X
k=1

X(k)
D([0,1])−→ κBd+0.5(t) and V ar

0@ [nt]X
k=1

X(k)

1A ≈ n2d+1

Under H1 : d increases, for some t0

V ar

0@[nt0]X
k=1

X(k)

1A� V ar

0@ nX
k=[nt0]

X(k)

1A
⇒ To test for H0 against H1, we estimate and compare these variances.

Let Sj =
Pj
k=1 X(k) and S∗n−j =

Pn
k=j+1 X(k). Define

the forward variance : Vk = dV ar(S1, . . . , Sk)

the backward variance : V ∗n−k = dV ar(S∗n−k+1, . . . , S
∗
1 )

Test statistic, Consistency

In =

Z 1

0

V ∗n−[nt]

V[nt]

dt

Under H0 : In → I(Bd+0.5) (simulable) ; Under H1 : In → +∞
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Definition :
A stationary, L2, random field (X(n))n∈Zd exhibits long memory ifX

n∈Zd
|r(n)| = +∞

where r denotes the covariance function of X.

Main difference with time series : possible occurence of anisotropy.

Examples (d = 2) : for 0 < α < 1

r(n1, n2) ∼∞ (n2
1 + n2

2)−α r(n1, n2) ∼∞ |n1|−α|n2|−α r(n1, n2) ∼∞ |n1 + n2|−α
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Investigations on long memory random fields

Modelling : long memory random fields appear

in similar models as for time series (increment of fractional Brownian
sheet ; aggregation of short memory random fields ; fractional filtering
of a white noise)

in some Gibbs processes on Zd in phase transition
ex : Ising model at the critical temperature

Limit theorems, statistical applications :

for partial sums −→ non Central Limit Theorems
⇒ Testing for the presence of long memory.

for the empirical process −→ asymptotic degeneracy
⇒ Asymptotics for U-Statistics.

for some quadratic forms (with A. Philippe)
−→ non-CLTs for

P
g(i− j)X(i)X(j) where (X(i))i∈Z2 is Gaussian.

⇒ Asymptotics of empirical covariance functions.
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Partial sums of long memory random fields
Let X(n) =

X
k∈Zd

ak ε(n−k), where (ak) ∈ `2 and ε is a Gaussian white noise.

Theorem

Denote a(x) =
P
k∈Zd akei k.x. If a ∈ L2 and ∀λ, a(λx) = |λ|−αa(x),

0 < α < d, then denoting An = {1, . . . , n}d

1

nd/2+α

X
k∈A[nt]

Xk
D([0,1]d)−→

Z
Rd
a(x)

dY
j=1

eitjxj − 1

ixj
dZ(x)

The limit is the Fractional Brownian Sheet only when a(x) =
Qd
i=1 |xi|

−Hi .

1

nd/2+α

X
k∈An

Xk =
1

nd/2+α

X
k∈An

Z
[−π,π]d

a(x)ei k.xdZ(x) Z : spectral measure of ε

=

Z
[−π,π]d

n−αa(x)
X
k∈An

ei k.x
dZ(x)

nd/2

=

Z
[−nπ,nπ]d

a(x)
dY
j=1

eixj − 1

n(eixj/n − 1)
dZ(x)

L2
−→

Z
Rd
a(x)

dY
j=1

eixj − 1

ixj
dZ(x)
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2 Point processes, random geometry
Estimation of Gibbs point processes
Model validation for Gibbs point processes
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Point processes

Notation :

Denote by ϕ a point pattern on Rd, i.e. ϕ =
S
i∈I

xi, for I ⊂ N∗

A point process Φ is a random variable on the space Ω = {ϕ}.

Example : the Poisson point process → independance in locations
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How to introduce dependencies between the location of points ?
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Gibbs point processes (basic definition)

They are absolutely continuous w.r.t the Poisson point process with density

fθ(ϕ) =
1

cθ
e−Vθ(ϕ), for some parameter θ ∈ Rp.

Vθ(ϕ) : energy of ϕ also called Hamiltonian (belongs to R ∪ {+∞})
ϕ is more likely to occur if Vθ(ϕ) is small.
if Vθ(ϕ) = +∞, then ϕ is forbidden.

Example : Strauss process with range of interaction R = 0.05 on [0, 1]2

Vθ(ϕ) = θ
X

(x,y)∈ϕ

1I|y−x|<R, θ > 0

θ = 0.35 :
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θ = 2.3 :
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Geometric interactions

For a point pattern ϕ, denote Vor(ϕ) the associated Voronoï tessellation.

Gibbs Voronoï tessellation : one example

Vθ(ϕ) =
X

C∈ Vor(ϕ)

V1(C) + θ
X

C,C′∈ Vor(ϕ)

C and C′are neighbors

˛̨
vol(C)− vol(C′)

˛̨

V1(C) =

(
+∞ if the cell is too "irregular",
0 otherwise

θ > 0 θ < 0
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Geometric interactions

Quermass model

Each point x ∈ ϕ is associated with a random radius r.

Vθ(ϕ) = θ1 P(Γ) + θ2 A(Γ) + θ3 E(Γ) where Γ =
[
x∈ϕ

B(x, r)

P : perimeter A : area E : EP characteristic (nb connected sets - nb holes).

θ1 > 0
(θ2 = θ3 = 0)

θ2 > 0
(θ1 = θ3 = 0)

θ3 > 0
(θ1 = θ2 = 0)
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Statistical issues

Let ϕ be a point pattern observed (or Vor(ϕ), or Γ,...) on a domain Λ.

Assumption : ϕ is the realisation of a Gibbs point process associated to
Vθ for some (unknown) θ ∈ Rp.

Caution :
The family (Vθ)θ must lead to a well defined Gibbs process for all θ
(For the geometric interactions above, see D. Dereudre, R. Drouilhet, H.-O. Georgii)

1 How to estimate θ ?
From fθ(ϕ) = 1

cθ
e−Vθ(ϕ) : maximum likelihood procedure.

→ Problem : cθ is intractable and (prohibitive) time consuming
simulations are required to approach it.

2 Is the above assumption reasonable ?
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Takacs-Fiksel method
Campbell equilibrium equation (Georgii, Nguyen, Zessin)

Let Vθ(x|ϕ) = Vθ(ϕ ∪ x)− Vθ(ϕ) (energy needed to insert x in ϕ)
Φ is a Gibbs point process with energy Vθ if and only if, for all function h,

EΦ

„Z
Rd
h (x,Φ) e−Vθ(x|Φ)dx

«
= EΦ

 X
x∈Φ

h (x,Φ \ x)

!
.

Empirical counterpart : Takacs Fiksel estimation
Let h1, . . . , hk be K test functions (to be chosen),

θ̂ = arg min
θ

KX
k=1

"Z
Λ

hk(x, ϕ)e−Vθ(x|ϕ)dx−
X
x∈ϕ

hk(x, ϕ \ x)

#2

.

TF estimation includes pseudo-likelihood estimation as a particular case

Contributions : with J.-F. Coeurjolly, D. Dereudre, R. Drouihet, K. Stankova-Helisova

Identifiability (K > dim(θ)), consistency, asymptotic normality ;
Extension to a two-step procedure in presence of (possible non-hereditary)
hardcore interactions ;
Application to Gibbs Voronoï tessellations ;
Application to Quermass model, where points are not observed.
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Model Validation with J.-F. Coeurjolly

Let ϕ a point pattern supposed to be the observation on Λ of a Gibbs
process with parametric potential Vθ. Let θ̂ be an estimate of θ from ϕ.

The residuals assess the Campbell equilibrium : for any h,

RΛ(h) = |Λ|−1

 Z
Λ

h(x, ϕ)e−Vθ̂(x|ϕ)dx−
X
x∈ϕ

h(x, ϕ \ x)

!
.

If the model is well specified, we expect, for any h, RΛ(h) ≈ 0.

We have proved : as Λ→ Rd, RΛ(h)→ 0 and RΛ(h) ∼ N (0,Σ).

Towards χ2 goodness of fit tests : 2 frameworks

8>>>>>>>>>><>>>>>>>>>>:

RΛ(h1)

.

.

.
RΛ(hj)

.

.

.
RΛ(hs)

RΛ1(h) RΛ2(h) · · ·

· · · · · · · · ·

· · · · · · RΛq(h)

Ps
j=1 RΛ(ϕ, hj)

2 ∼ χ2 Pq
j=1 RΛj (ϕ, h)2 ∼ χ2
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Theoretical Ingredients

For the estimation and the validation procedures, our asymptotic results
rely on

the Campbell equilibrium equation,

an ergodic theorem (Nguyen and Zessin),

the central limit theorem below.

CLT for a linear functional U(ΦΛ) where ΦΛ = Φ ∩ Λ

Assume that if Λ = ∪nk=1∆k for disjoint ∆k’s then U(ΦΛ) =
Pn
k=1 U(Φ∆k )

Basically, if

(i) Conditioned centering : E
ˆ
U(Φ∆k )|Φ∆j , j 6= k

˜
= 0

(ii) Convergence of empirical covariances :
1

n

nX
k=1

nX
k′=1

U(Φ∆k )U(Φ∆k′ )
L1

−→ Σ

then 1√
n

Pn
k=1 U(Φ∆k )

L−→ N (0,Σ)

The key assumption (i) allows us to go without mixing assumptions
(which typically do not hold for all values of θ for a Gibbs process).
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Alternatives to Gibbs point processes ?

Gibbs processes introduce interactions in a very natural way, but

they can be tedious to simulate

there are many remaining challenges for inference

Alternatives to Gibbs processes :

Cox processes : Poisson processes with random intensity function.
⇒ They induce clustered point patterns.

Determinantal point processes (with J. Møller and E. Rubak)
Their joint intensities depend on a covariance function C.

⇒ They are repulsive point processes, for g(h) = 1− C(h)2

C(0)2
.

Appeals :
B Perfect and fast simulation is available
B Flexible models : just consider a parametric family of covariance

functions
B Inference is feasible by standard methods (maximum likelihood,

contrast functions,...)
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Thank you.
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