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Abstract

This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on
a class of warped product Riemannian manifolds (M, g) whose boundary ∂M consists in two
distinct connected components Γ0 and Γ1. First, we show that the Steklov eigenvalues can be
divided into two families (λ±

m)m≥0 which satisfy accurate asymptotics as m → ∞. Second,
we consider the associated Steklov eigenfunctions which are the harmonic extensions of the
boundary Dirichlet to Neumann eigenfunctions. In the case of symmetric warped product,
we prove that the Steklov eigenfunctions are exponentially localized on the whole boundary
∂M as m → ∞. Whenever we add an asymmetric perturbation to a symmetric warped
product, we observe a flea on the elephant effect. Roughly speaking, we prove that "half"
the Steklov eigenfunctions are exponentially localized on one connected component of the
boundary, say Γ0, and the other half on the other connected component Γ1 as m→∞.
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1 Introduction and main results

1.1 History of the problem

Let (M, g) be a smooth compact connected Riemannian manifold of dimension n ≥ 2 with
boundary ∂M . The Steklov spectrum corresponds to the eigenvalues of the Dirichlet to Neumann
(DN) operator Λg(ω) defined by

Λg(ω)ψ = (∂νu)|∂M , (1.1)

where for all ψ ∈ H
1
2 (∂M), u ∈ H1(M) is the unique solution of the Dirichlet problem{

−∆gu = ω u, on M,
u = ψ, on ∂M.

(1.2)

Here, ω is a fixed frequency that does not belong to the Dirichlet spectrum of −∆g, the positive
Laplace-Beltrami operator on (M, g). It is well known (see for instance [20, 23]) that the DN
operator Λg(ω) is an elliptic, first-order, selfadjoint operator on L2(∂M) and thus, that its
spectrum is discrete and forms an increasing sequence

λ0 < λ1 ≤ · · · ≤ λm → +∞ .

Denote by (φm)m≥0 the corresponding normalized eigenfunctions in L2(∂M) and by (ϕm)m≥0
their so-called ω-harmonic extensions, i.e the solutions of (1.2) with ψ = φm. The functions
(ϕm)m≥0 are called the Steklov eigenfunctions and will be the main object of interest of this
paper.

In the case of a bounded domainM ⊂ Rn and zero frequency ω = 0, Hislop and Lutzer proved
in [14] that Steklov eigenfunctions concentrate at the boundary ∂M as m → +∞. Precisely,
they proved

Theorem 1.1 (Hislop, Lutzer (2001)). Let (φm)m≥0 be the sequence of normalized eigenfunc-
tions of Λg(0) satisfying Λg(0)φm = λm φm and ‖φm‖L2(∂M) = 1 for all m ≥ 0, and (ϕm)m≥0 be
their harmonic extensions to M , i.e. the solutions of (1.2) with ψ = φm. Then for any compact
set K ⊂

◦
M , then, as m→∞,

‖ϕm‖H1(K) = O(m−∞) .

They conjectured moreover that "the decay should be actually of order O(e−dist(K,∂M)|m|) in
the case of real-analytic metric g up to the boundary ∂M". This conjecture has been studied
recently in the two dimensional case by Polterovich, Sher and Toth in [18]. These authors
proved that there exist some positive constants τ and C depending only on the geometry of a
Riemannian surface M such that

|ϕm(x)| ≤ Ce−τ dist(x,∂M)λm as m→∞,

where dist(x, ∂M) denotes the Riemannian distance from x to ∂M . In the case of higher
dimensional real analytic Riemannian manifolds up to the boundary, a similar (though local)
result was obtained by Galkowski and Toth in [7]. Precisely, they proved:
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Theorem 1.2 (Galkowski-Toth (2019)). Assume that (M, g) is a real-analytic compact Rie-
mannian manifold with real-analytic boundary ∂M . Then for any δ > 0, there exists 0 < ε =
ε(M, g, δ) such that, if (φm)m≥0 is a sequence of normalized eigenfunction of Λg(0) satisfying
Λg(0)φm = λmφm and ‖φm‖L2(∂M) = 1, then their harmonic extensions ϕm satisfy the expo-
nential decay estimate

|∂αxϕm(x)| ≤ Cα,δ λ
n
2−

3
4 +|α|

m e−d(x)λm for dist(x, ∂M) < ε,

where Cα,δ > 0 is a constant independent of m and

d(x) = dist(x, ∂M) + (CM,g − δ) dist2(x, ∂M) .

Here
CM,g = −3

2 + 1
2 inf

(x′,ξ′)∈S∗∂M
Q(x′, ξ′),

where Q is the symbol of the second fundamental form of ∂M .

Note that the above accurate pointwise exponential localization of the Steklov eigenfunctions
ϕm as m → ∞ only holds in a collar neighbourhood of the boundary ∂M . However, using
additionally the maximum principle for the Laplace equation, one can prove that there exist
positive constants τ, C,m0 such that for all m ≥ m0

|ϕm(x)| ≤ Ce−τ λm , dist(x, ∂M) ≥ ε.

Two remarks in the papers [7, 18] motivated the present paper.

1. In [18], through the study of the example of an annular 2D domain, Polterovich, Sher
and Toth noticed that the Steklov eigenfunctions aren’t localized on the whole boundary
in general, but can be localized on certain connected components of the boundary only.
They call dominant and residual boundary components the parts of the boundary where
the Steklov eigenfunctions concentrate or decay exponentially as m→∞ respectively.

2. From a heuristic point of view, Galkowski and Toth interpret the above exponential lo-
calization results as a tunnelling effect of the Steklov eigenfunctions from the bound-
ary ∂M (where they concentrate microlocally on the cosphere bundle S∗∂M = {(x, ξ) ∈
T ∗∂M, |ξ|g = 1}) into the interior of the manifoldM (where the Steklov eigenfunctions sat-
isfy −∆gϕm = ωϕm and thus must concentrate at the zero section {(x, ξ) ∈ T ∗M, |ξ|g = 0}
as m→∞). We refer to the introduction of [7], p. 2 for this interpretation.

In this paper, we would like to develop and precise these two observations through the analysis
of the Steklov eigenfunctions on warped product Riemannian manifolds whose boundaries have
two distinct connected components. Precisely, we consider a cylinder M = [0, 1] × K with K
a (n − 1)-dimensional smooth closed manifold equipped with a Riemannian metric having the
form

g = f(x)[dx2 + gK ], (1.3)
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where f is a smooth positive function on [0, 1] and gK is any smooth Riemannian metric1 on
K. Such a Riemannian manifold is called a warped product and f is called the corresponding
warping function. Note that the boundary ∂M of M is disconnected since it consists in two
copies of K:

∂M = Γ0 ∪ Γ1, Γ0 = {0} ×K, Γ1 = {1} ×K.

For such simple models that contain in particular the cases of disks, cylinders and annulus,
we shall be able to improve the results of [14, 18, 7] in several directions:

1. The warped products are not supposed to be real-analytic up to the boundary, but C∞,
and even less regular. More precisely, some of our results only require a certain regularity
Ck([0, 1]), k ≥ 2 on the horizontal metric coefficients and only C2 on the transversal metric
coefficients.

2. We slightly improve the pointwise exponential localization estimates of the Steklov eigen-
functions as m → ∞ in the case of warped products. In particular, we connect the notion of
dominant and residual boundary components of [18] to a slight asymmetry (with respect to 1

2)
of the warping function f under consideration.

3. Better than that, we put into evidence Simon’s "flea on the elephant phenomenon" for
the localization of the Steklov eigenfunctions on the boundary (see [2, 13, 15, 21]) and appendix
B). Precisely, we prove that for symmetric (with respect to 1

2) warped products, the Steklov
eigenfunctions concentrate at both connected components of the boundary as m→∞. But we
also show that any generic asymmetric perturbation breaks this picture ! Indeed, we prove that
for asymmetric warped products, the Steklov eigenfunctions either concentrate on the connected
component Γ0 of the boundary ∂M , or concentrate on the other connected component Γ1 as
m→∞.

1.2 Main results

In order to state our main results, let us introduce a few additional notations. Under our
hypotheses on the transversal Riemannian manifold (K, gK), the associated Laplace-Beltrami
operator −∆K is a second-order elliptic selfadjoint operator on K which has a discrete spectrum
(µm)m≥0 ordered (counting multiplicity) by :

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µm −→ +∞ .

We denote by (Ym)m≥0 a sequence of normalized eigenfunctions of −∆K associated with the
eigenvalues (µm)m≥0, i.e

−∆K Ym = µmYm .

1Sometimes, it will be enough to assume that f ∈ Ck, k ≥ 2 in our main results. Similarly, we do not need to
assume that gK is smooth on K, but only that gK is uniformly elliptic on K with C2 coefficients.
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The warped product structure of (M, g) entails that the transversal Laplace-Beltrami oper-
ator −∆K commutes with the Laplace-Beltrami operator −∆g on the whole manifold (M, g),
and also with the self-adjoint DN operator Λg(ω) on L2(∂M), (in what follows, we shall identify
L2(∂M) with L2(K) × L2(K)). As a consequence, we shall see below that we can associate to
each eigenvalue µm, m ≥ 0, of the transversal Laplacian two distinct Steklov eigenvalues λ±m,
(with λ+

m > λ−m), the set of pairs (µm, λ±m) forming the joint spectrum of (−∆K ,Λg(ω)).

We shall also show that the Steklov eigenfunctions ϕ±m associated with λ±m have the product
structure

ϕ±m(x, θ) = f
2−n

4 (x)w±m(x)Ym(θ), ∀m ≥ 0, ∀(x, θ) ∈ [0, 1]×K, (1.4)
where the w±m(x) satisfy the 1D Schrödinger equation{

−(w±m)′′ + qf (x)w±m = −µmw±m, x ∈ [0, 1],
w±m(0) = φ±,0m , w±m(1) = φ±,1m ,

(1.5)

with

qf (x) =

(
f
n−2

4
)′′

(x)

f
n−2

4 (x)
− ωf(x),

and where φ±m = (φ±,0m Ym, φ
±,1
m Ym) are the normalized eigenfunctions of Λg(ω) associated with

the eigenvalues (λ±m)m≥0 .

Remark 1.1 (On the multiplicity of Steklov eigenvalues). Let us emphasize that the multi-
plicity of the Steklov eigenvalues λ±m comes from the multiplicity of the eigenvalues µm of the
Laplace-Beltrami operator on the transversal manifold (K, gK). In the case of non simple Steklov
eigenvalues, we thus do not have uniqueness in the choice of the corresponding Steklov eigen-
functions. However, among the eigenspaces E±m associated with an eigenvalue µm of multiplicity
`m > 1, all Steklov eigenfunctions can still be written as a product of functions depending on
x and on θ respectively. Indeed, note that the ODE (1.5) only depends on µm and not on the
choice of the transversal eigenfunctions Ym. Thus any eigenfunction Φ±m belonging to E±m has
the form

Φ±m(x, θ) = f
2−n

4 (x)w±m(x)Θm(θ), ∀(x, θ) ∈ [0, 1]×K,
where Θm is a finite linear combination of the Yj’s belonging to the eigenspace associated with
the eigenvalue µm.

Since our main results only depend on the product structure (1.4) of the Steklov eigenfunc-
tions, we shall identify in what follows the Steklov eigenfunctions with those given by a particular
choice of the orthonormal basis of eigenfunctions (Ym)m≥0.

Our main results concern the asymptotic behavior of the Steklov eigenvalues λ±m and of their
gap dm := |λ+

m − λ−m|, as well as the localization of the Steklov eigenfunctions ϕ±m. We shall
distinguish the case n = 2 and ω = 0 for which we have explicit formulas for the above quantities,
and the cases n = 2, ω 6= 0, or n ≥ 3.

Let us start with the case n = 2 and ω = 0, where we recall that qf = 0. We prove :
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Theorem 1.3 (n = 2, ω = 0).
1. If f(0) = f(1), then as m→∞

λ±m =
√
µm

f(0) +O(√µme−
√
µm),

dm = 2√
f(0)

√
µm

sinh(√µm) .

Moreover, there exist two constants C > 0 and m0 > 0 such that for all m ≥ m0 and for all
(x, θ) ∈ [0, 1]×K

|ϕ±m(x, θ)| ≤ C
(
e−
√
µmx + e−

√
µm(1−x)

)
.

2. If f(0) 6= f(1), then as m→ +∞

λ+
m = max

(
1√
f(0)

,
1√
f(1)

)
√
µm +O(√µme−

√
µm),

λ−m = min
(

1√
f(0)

,
1√
f(1)

)
√
µm +O(√µme−

√
µm),

dm =
∣∣∣∣∣ 1√

f(0)
− 1√

f(1)

∣∣∣∣∣√µm +O(√µme−2√µm).

Moreover, if f(0) < f(1), there exist two constants C > 0 and m0 > 0 such that for all m ≥ m0
and for all (x, θ) ∈ [0, 1]×K

|ϕ+
m(x, θ)| ≤ C

(
e−
√
µmx + e−

√
µm(2−x)

)
,

|ϕ−m(x, θ)| ≤ C
(
e−
√
µm(1+x) + e−

√
µm(1−x)

)
,

and the same equalities hold with + and − inverted if f(0) > f(1).

In addition we see that if f(0) = f(1), then the Steklov eigenfunctions are exponentially
localized at both boundaries Γ0 and Γ1 as m→∞, whereas if f(0) 6= f(1), then half the Steklov
eigenfunctions (for instance the ones indexed by +) are exponentially localized at Γ0 and the
other half (indexed by −) are exponentially localized at Γ1.

We turn now to the main results concerning the other cases n = 2, ω 6= 0 or n ≥ 3 for which
the potential qf does not vanish identically. We divide our results into four distinct cases.

Case I [(n = 2, ω 6= 0) or (n ≥ 3): symmetric warped product ]. We first assume that
the warping function is symmetric, that is f(x) = f(1 − x) for all x ∈ [0, 1

2 ]. In this case, we
prove
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Theorem 1.4 (Case I). Under the assumption of symmetry on f , we have as m→∞

λ±m =
√
µm√
f(0)

+O(1) ,

and
λ+
m − λ−m = 2√

f(0)
√
µme

−√µm

(
1 +O

(
1
√
µm

))
.

Moreover, there exist two constants C > 0 and m0 > 0 such that for all m ≥ m0 and for all
(x, θ) ∈ [0, 1]×K

|ϕ±m(x, θ)| ≤ Cµ
n−2

4
m

(
e−
√
µmx + e−

√
µm(1−x)

)
.

We thus see that in the case of a symmetric warped product, the Steklov eigenfunctions are
exponentially localized and equidistributed at both boundaries Γ0 and Γ1 as m→∞. Note that
we only need to assume f ∈ C2([0, 1]) in that situation.

Case II [(n = 2, ω 6= 0) or (n ≥ 3): asymmetric warped product ]. The situation differs
drastically whenever we add an asymmetric warping function to the previous situation. Pre-
cisely, let us assume now that f(x) = f0(x) + f1(x) where f0 is symmetric with respect to 1

2 and
f1 is an asymmetric perturbation of f0. We shall distinguish three different subcases:

Case II.A. We assume here that the Taylor series of f(x) and f(1 − x) differ at the order
k at x = 0, i.e. k ≥ 0 is the smallest integer such that f (k)(0) 6= (−1)kf (k)(1).

First, let us define

a0 = b0 = 1√
f(0)

− 1√
f(1)

,

ak = − ω

2k+1
√
f(0)

(
f (k)(0)− (−1)kf (k)(1)

)
if k ≥ 1,

bk = n− 2
2k+1f(0)3/2

(
f (k)(0)− (−1)kf (k)(1)

)
if k ≥ 1. (1.6)

We shall see that the localization of the Steklov eigenfunctions depends heavily on the sign of
the nonzero constants ak for n = 2 and ω 6= 0, or bk for n ≥ 3.
More precisely, we have the following result

Theorem 1.5 (Case II.A). Under the above assumptions, we have as m→∞,

λ+
m = max

(
1√
f(1)

,
1√
f(0)

)
√
µm +O(1), λ−m = min

(
1√
f(1)

,
1√
f(0)

)
√
µm +O(1).
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The distance between the two eigenvalues λ±m satisfies in dimension n = 2 with ω 6= 0,

dm = |a0|
√
µm +O (1) if k = 0, (1.7)

dm = |ak| µ
− 1+k

2
m +O

(
µ
− k+2

2
m

)
if k ≥ 1, (1.8)

whereas in dimension n ≥ 3,

dm = |bk| µ
1−k

2
m +O

(
µ
− k2
m

)
if k ≥ 0. (1.9)

Moreover, there exist constants Ck > 0 and m0 > 0 such that for all m ≥ m0 and for all
(x, θ) ∈ [0, 1]×K, we have

1. For n = 2 with ω 6= 0, if ak < 0,

|ϕ+
m(x, θ)| ≤ C0

(
e−
√
µm(1+x) + e−

√
µm(1−x)

)
, if k = 0 .

|ϕ−m(x, θ)| ≤ C0
(
e−
√
µmx + e−

√
µm(2−x)

)
, if k = 0 .

|ϕ+
m(x, θ)| ≤ Ck

(
µ
k+2

2
m e−

√
µm(1+x) + e−

√
µm(1−x)

)
, if k ≥ 1 .

|ϕ−m(x, θ)| ≤ Ck
(
e−
√
µmx + µ

k+2
2

m e−
√
µm(2−x)

)
, if k ≥ 1 .

and, the same estimates hold with + and − inverted if ak > 0 .

2. For n ≥ 3, if bk < 0,

|ϕ+
m(x, θ)| ≤ Ck

(
µ
n+2k−2

4
m e−

√
µm(1+x) + µ

n−2
4

m e−
√
µm(1−x)

)
,

|ϕ−m(x, θ)| ≤ Ck
(
µ
n−2

4
m e−

√
µmx + µ

n+2k−2
4

m e−
√
µm(2−x)

)
,

and, the same estimates hold with + and − inverted if bk > 0 .

Hence, if the Taylor series of f(x) and f(1− x) differ at the order k at x = 0, then for large
enough m, "half" the Steklov eigenfunctions (for instance the ones indexed by +) are exponen-
tially localized at Γ1, and the other "half" (the ones indexed by −) are exponentially localized
at Γ0. Note that we only need to assume f ∈ C`([0, 1]) with ` = max(2, k) in that situation.

Finally, as a by-product, we deduce

Corollary 1.1. If f(x) and f(1−x) have the same Taylor series at x = 0 , one has as m→∞,

λ+
m − λ−m = O(µ−∞m ).
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Case II.B. We assume now that there exists a ∈ [0, 1
2 [ such that f(x) = f(1 − x) for all

x ∈ [0, a]. If a = 0, then we assume only that f(x) and f(1− x) have the same Taylor series at
x = 0. Moreover, we assume that there exists 0 < δ < 1

2 − a such that for all x ∈]a, a + δ], we
have either qf (x)− qf (1− x) > 0, or qf (x)− qf (1− x) < 0. We can prove in this case :

Theorem 1.6 (Case II.B). Under the above assumptions, if there exists δ > 0 such that qf (x)−
qf (1− x) > 0 for all x ∈]a, a+ δ], we have as m→∞,

λ−m =
√
µm√
f(0)

+O(1), λ+
m =

√
µm√
f(1)

+O(1).

If a > 0, for all ε > 0 small enough, there exists three constants cε > 0, Cε > 0, and mε > 0
such that for all m ≥ mε.

cε e
−2(a+ε)√µm ≤ λ+

m − λ−m ≤ Cε e−2(a−ε)√µm ,

If a = 0, for all ε > 0 small enough, there exists two constants cε > 0 and mε > 0 such that for
all m ≥ mε,

λ+
m − λ−m ≥ cε e−2ε√µm .

Moreover, for all m ≥ mε and for all (x, θ) ∈ [0, 1]×K,

|ϕ−m(x, θ)| ≤ Cε
(
e−
√
µm(1−2(a+ε)+x) +√µm

n−2
2 e−

√
µm(1−x)

)
,

|ϕ+
m(x, θ)| ≤ Cε

(√
µm

n−2
2 e−

√
µmx + e−

√
µm(2−2(a+ε)−x)

)
.

If for all x ∈]a, a + δ], we have qf (x) − qf (1 − x) < 0, the same estimates hold with + and −
inverted.

Hence, we once again prove that half the Steklov eigenfunctions (for instance the ones indexed
by +) are exponentially localized at Γ0, and the other half (indexed by −) are exponentially
localized at Γ1 as m → ∞. We also show the precise dependence of these estimates on the
interval [0, a] on which f(x) and f(1−x) coincide. This shows that the decay rate of the Steklov
eigenfunctions at the residual boundaries crucially depends on the support of the asymmetric
perturbation f1(x). Observe at last that f is supposed to be C∞ on [0, 1] and that the sign
conditions qf (x)− qf (1−x) > 0, or qf (x)− qf (1−x) < 0, can be interpreted as mere conditions
on the scalar curvature Sg of (M, g) (see (2.30)-(2.31) and Remark 2.5).

Case II.C. We only assume that f(x) and f(1 − x) have the same Taylor series at x = 0.
Our results are less complete but we are able to prove:

Theorem 1.7 (Case II.C). Under the above assumptions, for all m ≥ 0,

λ+
m − λ−m ≥

2 µm
(f(0))1/2

1
√
µm sinh(√µm) + e

√
µm+||qf ||

,
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where ||qf || is the L2-norm of the potential qf .
Moreover, there exists a subsequence (mk)k≥0 such that we have either

λ−mk =
√
µmk√
f(0)

+O(1) , λ+
mk

=
√
µmk√
f(1)

+O(1) as mk →∞.

and moreover, there exists a constant C > 0 such that for all ε > 0, there exists mε > 0 such
that for all mk ≥ mε and for all (x, θ) ∈ [0, 1]×K

|ϕ−mk(x, θ)| ≤ C√µmk
n−2

2
(
εe−
√
µmkx + e−

√
µmk (1−x)

)
,

|ϕ+
mk

(x, θ)| ≤ C√µmk
n−2

2
(
e−
√
µmkx + εe−

√
µmk (1−x

)
,

or the same estimates hold with + and − inverted.

Hence, we can only prove in this last case that there exists a sequence of Steklov eigen-
functions ϕ±mk such that the eigenfunctions with superscript + are localized at Γ0 , and the
eigenfunctions with superscript − are localized at Γ1. Note moreover that the warping function
f is assumed to be in C∞([0, 1]) in this case.

Remark 1.2. In Theorems 1.3, 1.4, 1.5, 1.6 and 1.7, we use the variable x to state our local-
ization results since it is the natural variable in our description of (M, g). However, it would be
more intrinsic to use dist(p, ∂M) the Riemannian distance from p ∈ M to the boundary ∂M .
Note that for p = (x, θ) ∈M , we have

dist(p, ∂M) = min(dist(p,Γ0),dist(p,Γ1)),

where
dist(p,Γ0) = d0(x) =

∫ x

0

√
f(s)ds, dist(p,Γ1) = d1(x) =

∫ 1

x

√
f(s)ds.

Using that f is positive and smooth on [0, 1], we obtain the following approximations of x in
terms of d0(x) and d1(x) at the order 2

x = 1√
f(0)

(
d0(x) + 1

2κ0d
2
0(x) +O(d3

0(x))
)

as x→ 0,

1− x = 1√
f(1)

(
d1(x) + 1

2κ1d
2
1(x) +O(d3

1(x))
)

as x→ 1,

where
κ0 = − f ′(0)

4f3/2(0)
, κ1 = f ′(1)

4f3/2(1)
are the second fundamental forms of Γ0 and Γ1 respectively (see Petersen [17] chapter 3, warped
product). We thus observe that the leading terms e−

√
µmx and e−

√
µm(1−x) obtained in the esti-

mates of Theorems 1.4, 1.5, 1.6 and 1.7 become

e
−
√
µm√
f(0)

(d0(x)+ 1
2κ0d2

0(x)+O(d3
0(x))) as x→ 0 and e

−
√
µm√
f(1)

(d1(x)+ 1
2κ1d2

1(x)+O(d3
1(x))) as x→ 1 .
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Using that the Steklov eigenvalues λ±m are well approximated either by
√
µm√
f(0)

+ O(1) or
√
µm√
f(1)

+ O(1) as m → ∞, we recover the results of Theorem 1.2 by Galkowski and Toth in
[7].

Remark 1.3. In [12] the authors analyzed the exponential decay of the eigenfunctions associated
with the non positive eigenvalues ωk(h) of the Robin problem. This corresponds to ω = ωk(h).
Note that in this application ωk(h) tends to −∞ as h→ 0.

Remark 1.4. Another natural normalization for the eigenfunctions would be to consider the L2

norm on M . We will show in Theorem 3.1 that it changes only the estimate by a multiplicative
factor C µ

1
4
m.

1.3 Outline of the paper

In Section 2, using the symmetries of warped product manifolds, we first decompose the Dirich-
let to Neumann operator Λg on (M, g) onto a natural family of invariant two dimensional sub-
spaces (Hm)m≥0 in Subsection 2.1. This decomposition allows us to get a precise expression
of the Steklov eigenvalues λ±m on each Hm and study carefully their asymptotics and splitting
dm = λ+

m − λ−m as m → ∞ in the four distinct cases presented above in Subsection 2.2. We
finally introduce the precise expressions of the Steklov eigenfunctions ϕ±m in Subsection 2.3. In
Section 3, we prove our exponential localization results for the Steklov eigenfunctions. Precisely,
they will obtained as consequences of more precise localization estimates given in Subsection 3.2
for symmetric warped products and Subsection 3.3 for asymmetric warped products. Eventually,
we recall in appendix A the necessary material on the Weyl-Titchmarsh theory of one dimen-
sional Schrödinger operators that will be needed in the course of the paper and in appendix B
the analogy between the above problem and the flea on the elephant phenomenon for double-well
potentials.

Acknowledgments: We would like to thank Germain Gendron and Ayman Kachmar for useful
discussions on the results of this paper.

2 The Steklov eigenfunctions on warped product manifolds

2.1 The model

Let us start with the Dirichlet problem (1.2). Using the transformation law of the Laplace-
Beltrami operator under a conformal change of the metric, we have the following convenient
expression for −∆g.

−∆g = f−
n+2

4 (−∂2
x −∆K + cf (x))f

n−2
4 ,
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where −∆K denotes the Laplace-Beltrami operator on the transversal Riemannian manifold
(K, gK) and

cf (x) =

(
f
n−2

4
)′′

f
n−2

4
.

Hence setting v = f
n−2

4 u and
qf (x) = cf (x)− ωf(x) ,

the Dirichlet problem (1.2) becomes{
(−∂2

x −∆K + qf (x))v = 0, on M,

v = f
n−2

4 ψ, on ∂M.
(2.1)

Remark 2.1. Note that for n = 2, we have simply qf = −ωf . Thus qf = 0 when n = 2 and
ω = 0.

Remark 2.2 (Geometric interpretation of qf ).
If we denote by S0 and S the scalar curvatures of g0 = dx2 + gK and g respectively, we observe
that S0 is equal to SK the scalar curvature of the transversal Riemannian manifold (K, gK).
A consequence of the Yamabe equation [1], p.171 leads for n ≥ 2 to the following geometric
interpretation of the potential cf :

cf (x) = n− 2
4(n− 1) (SK − f(x)S) ,

and thus consequently
qf (x) = n− 2

4(n− 1) (SK − f(x)S)− ωf(x).

We recall now that
L2(K, dVK) =

⊕
m≥0
〈Ym〉,

where the (Ym)m≥0 are the sequence of normalized eigenfunctions of −∆K associated with the
eigenvalues (µm)m≥0 (indexed in increasing order counting multiplicity). Define also for j = 0, 1
the functions Y j

m = f
1−n

4 (j)Ym. The two families (Y j
m)m≥0, j = 0, 1 are Hilbert bases of

L2(Γj , dVgj ) with gj = f(j)gK . In particular, we have

L2(Γj , dVgj ) =
⊕
m≥0

〈Y j
m〉, j = 0, 1.

Recalling that L2(∂M, dVg|∂M ) = L2(Γ0, dVg0)× L2(Γ1, dVg1), we can write

L2(∂M, dVg|∂M ) =
⊕
m≥0

(
C2 ⊗

(
Y 0
m

Y 1
m

))
:=

⊕
m≥0
Hm.
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This decomposition allows for separation of variables in (2.1). Precisely, writing v =
∑
m≥0

vm(x)Ym

and ψ =
∑
m≥0

(
ψ0
m

ψ1
m

)
⊗
(
Y 0
m

Y 1
m

)
, we see that the vm’s satisfy the 1D Schrödinger equations

{
−v′′m + qf (x)vm = −µmvm , x ∈ [0, 1] ,

vm(0) = f−
1
4 (0)ψ0

m , vm(1) = f−
1
4 (1)ψ1

m .
(2.2)

Moreover, each two-dimensional space Hm is left invariant through the action of the DN map.
More precisely, for each Dirichlet data

ψm =
(
ψ0
m

ψ1
m

)
⊗
(
Y 0
m

Y 1
m

)
∈ Hm,

the DN map simplifies as follows (we refer to [8, 9] and for the explicit calculus)

Λg(ω)ψm =
[
Λmg (ω)

(
ψ0
m

ψ1
m

)]
⊗
(
Y 0
m

Y 1
m

)
, Λmg (ω) =

(
Am Bm
Bm Cm

)
(2.3)

where  Am = −M(−µm)√
f(0)

+ (n− 2) f ′(0)
4f(0)3/2 , Cm = −N(−µm)√

f(1)
− (n− 2) f ′(1)

4f(1)3/2 ,

Bm = − 1
(f(0)f(1))1/4

1
∆(−µm) .

(2.4)

Here M,N and ∆ are the Weyl-Titchmarsh and characteristic functions associated with the
Schrödinger equation (2.2) with Dirichlet boundary conditions (see Appendix A for the defini-
tions). Note that all the previous quantities are well-defined since ∆(−µm) 6= 0 for all m ≥ 0
(see [5], Remark 3.1).

Let us make a few remarks before introducing the Steklov spectrum.
Remark 2.3.

1. The 2× 2 matrices Λmg (ω), m ≥ 0 are symmetric reflecting the fact that the DN operator
Λg(ω) is selfadjoint on L2(∂M, dVg|∂M ).

2. Clearly, when n ≥ 3, or when n = 2 and ω 6= 0, we have f(x) = f(1−x) for all x ∈ [0, 1
2 ]

if and only if qf (x) = qf (1 − x) for all x ∈ [0, 1
2 ]. As recalled in the appendix, under this as-

sumption, we have M(z) = N(z) for all z ∈ C\{poles} and thus Am = Cm for all m ≥ 0 .

3. Using the universal asymptotics of the characteristic and Weyl-Titchmarsh functions
recalled in Corollary A.1 and Theorem A.3 of the appendix, we have the following asymptotics
as m→∞ :

Am =
√
µm√
f(0)

+O(1), Cm =
√
µm√
f(1)

+O(1) (2.5)

Bm = − 1
(f(0)f(1))1/4

√
µme

−√µm

(
1 +O

(
1
√
µm

))
. (2.6)
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Note that these asymptotics hold true for warping functions f ∈ C2([0, 1]) only.

4. In dimension n = 2 and for the frequency ω = 0, the potential qf (x) = 0. So, we get
explicit formulae for Am, Bm and Cm, (see for instance [5], Remark 3.1 ) : for m ≥ 1,

Am = 1√
f(0)

√
µm coth(√µm), (2.7)

Bm = − 1
(f(0)f(1))1/4

√
µm

sinh(√µm) , (2.8)

Cm = 1√
f(1)

√
µm coth(√µm), (2.9)

and for m = 0, we have

A0 = 1√
f(0)

, B0 = − 1
(f(0)f(1))1/4 , C0 = 1√

f(1)
. (2.10)

2.2 The Steklov spectrum

The Steklov spectrum is by definition the spectrum of the DN operator Λg(ω), (we refer the
reader to the nice survey [11] for the state of the art). Clearly, using the symmetry of our model,
the Steklov spectrum is given by ⋃

m≥0
σ(Λmg (ω)),

where
Λmg (ω) =

(
Am Bm
Bm Cm

)
.

The characteristic polynomial of Λmg (ω) is

Pm(λ) = λ2 − (Am + Cm)λ+ (AmCm −B2
m).

with discriminant
δ = (Am − Cm)2 + 4B2

m > 0 .

Thus for each m ≥ 0 there are two eigenvalues

λ±m = (Am + Cm)±
√

(Am − Cm)2 + 4B2
m

2 . (2.11)

The distance between these two eigenvalues is always given by

dm = λ+
m − λ−m =

√
(Am − Cm)2 + 4B2

m .
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We can easily estimate from below the splitting between these two eigenvalues. Precisely, we
always have for all m ≥ 0,

dm ≥
2 µm

(f(0)f(1))1/4
1

√
µm sinh(√µm) + e

√
µm+||qf ||

, (2.12)

where ||qf || is the L2-norm of the potential qf . Note that this estimate from below is optimal
for symmetric warping function f . To prove this, we start with

dm ≥ 2 |Bm| =
2

(f(0)f(1))1/4
1

|∆(−µm)| .

Using (A.4), we have ∆(−µm) = s0(1,−µm, q). So, we deduce the estimate from below from
([19], Theorem 3, page 13).

Remark 2.4. In dimension n = 2 with ω = 0, we can get explicit formulae for the eigenvalues.
Indeed, using (2.7) - (2.10), we obtain for m ≥ 1,

λ±m =
√
µm

2

((
1√
f(0)

+ 1√
f(1)

)
coth(√µm)

±

√√√√( 1√
f(0)

− 1√
f(1)

)2

coth2(√µm) + 4√
f(0)f(1)

1
sinh2(√µm)

 , (2.13)

and
λ+

0 = 1√
f(0)

+ 1√
f(1)

, λ−0 = 0. (2.14)

In particular, when f(0) = f(1), we recover the results obtained in [4], (see also [11], Example
1.3.3). Precisely, for m ≥ 1, we have

λ+
m = 1√

f(0)
√
µm coth(

√
µm

2 ) , λ−m = 1√
f(0)

√
µm tanh(

√
µm

2 ) (2.15)

and
λ+

0 = 2√
f(0)

, λ−0 = 0. (2.16)

As a consequence, if f(0) 6= f(1), we deduce that the distance between the eigenvalues λ±m is
given by

λ+
m − λ−m =

∣∣∣∣∣ 1√
f(0)

− 1√
f(1)

∣∣∣∣∣√µm +O(√µme−2√µm), (2.17)

and if f(0) = f(1), one has for m ≥ 1,

λ+
m − λ−m = 2√

f(0)

√
µm

sinh(√µm) . (2.18)

The above explicit formulae entail immediately the asymptotic behaviors of the Steklov eigenval-
ues λ±m and of the gap dm as m→∞ given in Theorem 1.3.
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In order to understand the asymptotic behaviour of the eigenvalues λ±m in the other cases (i.e.
when n ≥ 3, or when n = 2 and ω 6= 0), we need to understand whether the term (Am − Cm)2

dominates, or not, the term 4B2
m in the square root

√
(Am − Cm)2 + 4B2

m, as m→∞. For this,
we shall consider the four distinct cases given in the introduction.

Case I [(n = 2, ω 6= 0) or (n ≥ 3): symmetric warped product ]:
Let us assume f(x) = f(1 − x) for all x ∈ [0, 1

2 ], or equivalently that qf (x) = qf (1 − x) for all
x ∈ [0, 1

2 ]. Then for all m ≥ 0, we have Am = Cm and thus

λ+
m = Am + |Bm|, λ−m = Am − |Bm|,

and the two eigenvalues are exponentially closed since

dm = 2|Bm| =
2√
f(0)
√
µme

−√µm

(
1 +O

(
1
√
µm

))
.

In that case, we recover the asymptotics given in (2.5), i.e.

λ±m =
√
µm√
f(0)

+O(1), m→∞.

Case II [(n = 2, ω 6= 0) or (n ≥ 3): asymmetric warped product ]:
Let us assume that f = f0 + f1 where f0 is a symmetric warping function and f1 is an asym-
metric perturbation of f0. Of course, the corresponding potential qf will also be asymmetric in
that case. We consider three subcases:

Case II.A: We assume that the Taylor series of f(x) and f(1 − x) differ at 0 at the order
k . More precisely, let k ≥ 0 be the smallest integer such that f (k)(0) 6= (−1)kf (k)(1).

Let us begin with the following lemma:

Lemma 2.1. 1. For n = 2 with ω 6= 0, there exists a constant ak 6= 0 such that

Am − Cm = a0
√
µm +O

(
µ
− 1

2
m

)
if k = 0, (2.19)

Am − Cm = ak µ
− k+1

2
m +O

(
µ
− k+2

2
m

)
if k ≥ 1. (2.20)

More precisely, we have

a0 = 1√
f(0)

− 1√
f(1)

,

ak = − ω

2k+1
√
f(0)

(
f (k)(0)− (−1)kf (k)(1)

)
if k ≥ 1.
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2. For n ≥ 3, there exists a constant bk 6= 0 such that

Am − Cm = bk µ
1−k

2
m +O

(
µ
− k2
m

)
. (2.21)

More precisely, we have b0 = 1√
f(0)
− 1√

f(1)
,

bk = n−2
2k+1f(0)3/2

(
f (k)(0)− (−1)kf (k)(1)

)
if k ≥ 1.

Proof. 1. For n = 2, using (2.4) we get

Am = −M(−µm)√
f(0)

, Cm = −N(−µm)√
f(1)

.

By Theorem A.3, the Weyl-Titchmarsh function M satisfy the asymptotics

M(−κ2) = −κ−
k∑
j=0

βjκ
−j−1 +O(κ−k) as κ→ +∞,

where the constants βj can be computed inductively by βj = βj(0) with

β0(x) = 1
2qf (x), βj+1(x) = 1

2β
′
j(x) + 1

2

j∑
`=0

β`(x)βj−`(x).

A straightforward calculation gives

βj(x) = 1
2j+1 q

(j)
f (x) + β̃j(x),

where β̃j(x) only depends on the derivatives q(p)
f (x) for all p ≤ j − 1. In the same way, the

asymptotics of N(−κ2) are given by

N(−κ2) = −κ−
k∑
j=0

γjκ
−j−1 +O(κ−k) as κ→ +∞ ,

and the constants γj can be computed inductively by γj = γj(0) with

γ0(x) = 1
2 q̌f (x), γj+1(x) = 1

2γ
′
j(x) + 1

2

j∑
`=0

γ`(x)γj−`(x) ,

where we have set q̌f (x) = qf (1− x).
As previously,

γj(x) = 1
2j+1 q̌

(j)
f (x) + γ̃j(x) ,
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where γ̃j(x) only depends on the derivatives q̌(p)
f (x) for all p ≤ j − 1 .

First, note that the proof in the case k = 0 is obvious. Secondly, recalling that the potential
qf = −ωf , we see that for every k ≥ 1, one has βp = γp for all p ≤ k−1, and the proof is complete.

2. For n ≥ 3, one has

Am = −M(−µm)√
f(0)

+ (n− 2) f ′(0)
4f(0)3/2 , Cm = −N(−µm)√

f(1)
− (n− 2) f ′(1)

4f(1)3/2 ,

and
qf (x) = (n− 2)

4
f ′′(x)
f(x) + (n− 2)

4
(n− 6)

4

(
f ′(x)
f(x)

)2
.

Then, we follow the same strategy as in the case n = 2. We leave the details to the reader.

Since B2
m = O(µme−2√µm), we see that in all dimensions the term (Am − Cm)2 dominates

the term 4B2
m as m→∞. However, to distinguish the two dimensional case and the case n ≥ 3,

we need to introduce the sequence (αk)k≥0 defined by α0 = 1
2 and for k ≥ 1,

αk =
{

k+3
2 if n = 2, ω 6= 0.
k+1

2 if n ≥ 3. (2.22)

Coming back to (2.11) we thus obtain :

Proposition 2.1. Under the above asumptions, we get :

1. For n = 2 with ω 6= 0, if ak > 0, (resp. if bk > 0 for n ≥ 3), then

λ+
m = Am +O

(
µαkm e−2√µm

)
as m→∞, (2.23)

λ−m = Cm +O
(
µαkm e−2√µm

)
as m→∞, (2.24)

2. For n = 2 with ω 6= 0, if ak < 0, (resp. if bk < 0 in dimension n ≥ 3), then

λ+
m = Cm +O

(
µαkm e−2√µm

)
as m→∞, (2.25)

λ−m = Am +O
(
µαkm e−2√µm

)
as m→∞. (2.26)

Depending on the sign of ak (resp. bk), we see that the eigenvalues λ±m are approximated by
either Am, or Cm, whose asymptotics are given in (2.5). Moreover, the distance between the
two eigenvalues λ±m satisfies for n = 2 with ω 6= 0,

dm = |a0|
√
µm +O (1) if k = 0, (2.27)

dm = |ak| µ
− 1+k

2
m +O

(
µ
− k+2

2
m

)
if k ≥ 1 , (2.28)
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whereas for n ≥ 3,
dm = |bk| µ

1−k
2

m +O
(
µ
− k2
m

)
if k ≥ 0 . (2.29)

Case II.B: Now, we assume that there exists a ∈ [0, 1
2 [ such that f(x) = f(1 − x) for all

x ∈ [0, a] and if a = 0, we only assume that the Taylor series of f(x) and f(1− x) are equal at
x = 0 at all orders. Moreover, we make the following sign assumption: there exists δ ∈]0, 1

2 − a[
such that for all x ∈]a, a+ δ], either

f(1− x)
(

n− 2
4(n− 1)S(1− x) + ω

)
> f(x)

(
n− 2

4(n− 1)S(x) + ω

)
, (2.30)

or
f(1− x)

(
n− 2

4(n− 1)S(1− x) + ω

)
< f(x)

(
n− 2

4(n− 1)S(x) + ω

)
, (2.31)

where S(x) is the scalar curvature of (M, g) at x.

Remark 2.5. 1. In the case where a > 0, since f is smooth, the Taylor series of f(x) and
f(1−x) also coincide at x = a at all orders, (and the same is true for qf (x) and qf (1−x)).

2. We can see that, if n = 2, the condition (2.30) (for instance) is thus equivalent to

f(1− x) > f(x),

and if n ≥ 3 and ω = 0, this is equivalent to

f(1− x)S(1− x) > f(x)S(x).

3. According to Remark 2.2, (2.30) is equivalent to the simplest condition qf (x)−qf (1−x) > 0
on ]a, a + δ], whereas (2.31) is equivalent to qf (x) − qf (1 − x) < 0 on the same interval.
This implies in particular that for all 0 < ε < δ, there exists a constant cε > 0 such that
for all x ∈ [a+ ε, a+ δ], qf (x)− qf (1− x) ≥ cε or qf (x)− qf (1− x) ≤ −cε.

Let us prove the lower bound:

Proposition 2.2. Under the above assumptions, for all ε > 0 small enough there exist a positive
constant cε and an integer mε large enough such that for all m ≥ mε ,

|Am − Cm| ≥ cε e−2(a+ε)√µm .

Proof. Set L(x) = qf (x) − qf (1 − x) and assume that L(x) = 0 for all x ∈ [0, a] and L(x) > 0
for all x ∈]a, a+ δ]. We start from the general formula proved in Proposition A.2 :

Mq(z)−Nq(z) =
∫ 1

0
L(x)Ψ(x, z, q)Φ(1− x, z, q)dx. (2.32)
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From Lemma A.1 and Corollary A.1, the asymptotics

Ψ(x,−µm, q) = s1(x,−µm, q)
∆q(−µm) = −2e−

√
µm sinh(√µm(1− x)) +O

(
e−
√
µmx

√
µm

)
as m→∞,

(2.33)

Φ(x,−µm, q) = s0(x,−µm, q)
∆q(−µm) = 2e−

√
µm sinh(√µmx) +O

(
e−
√
µm(1−x)
√
µm

)
as m→∞, (2.34)

hold uniformly for x ∈ [0, 1].
Thus in particular, we have

Ψ(x,−µm, q) = e−
√
µmx

(
1− e−2√µm(1−x) +O( 1

√
µm

)
)

= O
(
e−
√
µmx

)
as m→∞, (2.35)

Φ(x,−µm, q) = e−
√
µm(1−x)

(
1− e−2√µmx +O( 1

√
µm

)
)

= O
(
e−
√
µm(1−x)

)
as m→∞, (2.36)

uniformly in x ∈ [0, 1]. Then we write

Mq(−µm)−Nq(−µm) =
∫ a+δ

a
L(x)Ψ(x,−µm, q)Φ(1− x,−µm, q)dx

+
∫ 1−a

a+δ
L(x)Ψ(x,−µm, q)Φ(1− x,−µm, q)dx.

On one hand, observe that using (2.35)-(2.36), the second integral can be estimated by∫ 1−a

a+δ
L(x)Ψ(x,−µm, q)Φ(1− x,−µm, q)dx = O

(
e−2(a+δ)√µm
√
µm

)
as m→∞.

On the other hand, using the assumptions on L and (2.35)-(2.36) again, the first integral can
be estimated from below as follows. For all 0 < ε < δ and as m→ +∞∫ a+δ

a
L(x)Ψ(x,−µm, q)Φ(1− x,−µm, q)dx ≥

1
2

∫ a+δ

a
L(x)e−2√µmxdx

≥ cε
2

∫ a+δ

a+ε
e−2√µmxdx

≥ cε
4
e−2(a+ε)√µm
√
µm

+O
(
e−2(a+δ)√µm
√
µm

)
,

where the constant cε is given in Remark 2.5. Putting everything together, we see that for all
ε > 0 small enough, there exist cε > 0 and mε > 0 such that for m ≥ mε,

Mq(−µm)−Nq(−µm) ≥ cε
√
f(0) e−2(a+ε)√µm .
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Since
Am − Cm = Nq(−µm)−Mq(−µm)√

f(0)
,

we have
|Am − Cm| =

Mq(−µm)−Nq(−µm)√
f(0)

≥ cε e−2(a+ε)√µm as m→∞,

and the result is proved. The other case can be treated similarly.

Remark 2.6. Under the above assumptions on f , the local Borg-Marchenko theorem A.2 entails
in the case a > 0 that for all ε > 0, there exist Cε > 0 and mε such that for m ≥ mε ,

|Am − Cm| ≤ Cε e−2(a−ε)√µm ,

whereas if a = 0, Corollary 1.1 implies

|Am − Cm| = O
(
µ−∞m

)
.

We deduce from Lemma 2.2 that the term (Am−Cm)2 dominates the term 4B2
m as m→∞.

Coming back to (2.11), we get (similarly to the case II.A.) for all ε > 0,

λ±m = (Am + Cm)± |Am − Cm|
2 +O

(
e−2(1−a−ε)√µm

)
as m→∞.

Even more precisely, we have the following result:

Proposition 2.3. If the condition (2.30) is satisfied, then for all ε > 0, there exist cε > 0 and
mε such that for all m ≥ mε

λ+
m = Cm +O

(
e−2(1−a−ε)√µm

)
, (2.37)

λ−m = Am +O
(
e−2(1−a−ε)√µm

)
, (2.38)

whereas, if (2.31) holds then,

λ+
m = Am +O

(
e−2(1−a−ε)√µm

)
, (2.39)

λ−m = Cm +O
(
e−2(1−a−ε)√µm

)
, (2.40)

At last, the gap between the two eigenvalues λ±m satisfies the lower bound for all m ≥ mε:

dm =
√

(Am − Cm)2 + 4B2
m ≥ cε e−2(a+ε)√µm . (2.41)

Case II.C: It remains to study the general case f = f0 +f1 where f0 is a symmetric warping
function and f1 is an asymmetric perturbation of f0. Here, we only assume that the Taylor series
of f(x) and f(1 − x) are equal at x = 0 at all orders. As previously, we need to understand
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whether the term (Am−Cm)2 dominates, or not, the term 4B2
m in (2.11) as m tends to infinity.

We shall obtain a result relatively close to the case II.B, but since we are not able to find a
precise asymptotic expansion (or a bound from below) of Mq(−µm)−Nq(−µm) as m→∞, we
do not obtain a quantitative result.

Nevertheless, we have the following proposition :

Proposition 2.4. There exists a subsequence (mk)k≥0 such that the quantity
∣∣∣Amk−CmkBmk

∣∣∣ tends
to infinity as k →∞.

Proof. We make a proof by contradiction and we assume that the sequence
(
|Am−CmBm

|
)

is
bounded. Clearly, thanks to (2.4) and (A.8), on has:

|Am − Cm
Bm

| = |(Mq(−µm)−Nq(−µm))∆q(−µm)| = |Dq(−µm)− Eq(−µm)|.

Thus, there exists a constant C > 0 such that

|Dq(−µm)− Eq(−µm)| ≤ C , ∀m ≥ 0.

Let us introduce the function F (z) := Dq(−z2)−Eq(−z2). Thanks to Corollary A.1, F (z) is an
entire function satisfying the estimate:

|F (z)| ≤ C eRe z , for Re z ≥ 0.

Moreover, by assumption, F (z) is bounded on the sequence (√µm). We recall that the Weyl
law implies the following asymptotics on the √µm (repeated according multiplicity):

√
µm = cn m

1
(n−1) +O(1),

where cn denotes a suitable constant independent of m. Setting λm = 1
cn

√
µmn−1 , we deduce

there exists c > 0 such that |λm − m| ≤ c. Now, for a fixed N ∈ N large enough, we set
νm = λmN

N , and we have |νm −m| ≤ c
N < 1

4 . We introduce a new function G(z) = F (cnNz),
which satisfies the same properties as F (z) and is bounded on the sequence (νm). It follows from
a theorem of Duffin and Schaeffer ([3], Theorem 10.5.1) that G(x), (and also F (x)), is bounded
for x > 0. Clearly, it implies that, as κ→ +∞,

Mq(−κ2) = Nq(−κ2) + Õ(e−κ),

where f(κ) = Õ(e−κ) means that for all ε > 0, f(κ) = O(e−κ(1−ε)) as κ→ +∞. Using the local
Borg-Marchenko’s theorem (see Theorem A.2) and (A.9), we see that q(x) = q(1 − x) for all
x ∈ [0, 1

2 ], but this is not possible since f1(x) is an asymmetric perturbation of f0(x).

As a by-product, there exists a subsequence, that we shall still denote by (mk)k≥0, such that
Amk−Cmk

Bmk
→ +∞ or −∞, as k → ∞. Thus, using the same proof as in Case II.B and Remark

2.6, we can state:
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Proposition 2.5. 1. If we assume that

Amk − Cmk
Bmk

→ −∞,

then, for all p ≥ 0

λ+
mk

= Amk +O
(
µ−pmk

)
, λ−mk = Cmk +O

(
µ−pmk

)
.

2. If we assume that
Amk − Cmk

Bmk
→ +∞ ,

then, for all p ≥ 0

λ+
mk

= Cmk +O
(
µ−pmk

)
, λ−mk = Amk +O

(
µ−pmk

)
.

Remark 2.7. 1. If we assume that that there exists a ∈]0, 1
2 [ such that f(x) = f(1 − x) for

all x ∈ [0, a], without the sign asumptions as in the case II.B, we can improve the previous
estimates thanks to the local Borg-Marchenko theorem, (see Remark 2.6) . For instance,
if we consider the case

Amk − Cmk
Bmk

→ −∞,

then we have for all ε > 0,

λ+
mk

= Amk +O
(
e
−2(a−ε)√µmk)

)
, λ−mk = Amk +O

(
e
−2(a−ε)√µmk)

)
.

2. Note also that in the general case II.C, we are not able to find a precise (sharp) lower
bound for dm, (even for dmk), as in the cases II.A and II.B.

2.3 The Steklov eigenfunctions

The Steklov eigenfunctions are now defined as the ω-harmonic extensions of the eigenfunctions
of the DN operator Λg(λ). Let us calculate the latters first. For each m ≥ 0, the eigenspaces
associated with the eigenfunctions λ±m of Λmg (ω) are given by

E±m = {(a±m, b±m) ∈ C2/(Am − λ±m)a±m +Bmb
±
m = 0}.

Since Bm 6= 0 for all m ≥ 0, let us choose

a±m = 1, b±m = λ±m −Am
Bm

.
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We deduce that for all m ≥ 0

ψ±m =
(

1
λ±m−Am
Bm

)
⊗
(
Y 0
m

Y 1
m

)
,

are (non-normalized) eigenfunctions of Λg(λ) associated with the eigenvalues λ±m. Since

‖ψ±m‖L2(∂M) =

√√√√1 +
(
λ±m −Am
Bm

)2

=: n±m, (2.42)

a sequence of normalized eigenfunctions of Λg(λ) are given by

φ±m = ψ±m
n±m

=

 1
n±m

λ±m−Am
Bmn

±
m

⊗ ( Y 0
m

Y 1
m

)
.

Coming back to (2.2), we consider now the functions v±m solutions of the boundary value
problems {

−(v±m)′′ + qf (x)v±m = −µmv±m, x ∈ [0, 1],
v±m(0) = f−

1
4 (0), v±m(1) = f−

1
4 (1)λ

±
m−Am
Bm

.

Recalling that the Weyl solutions {Ψ(x,−µm, q),Φ(x,−µm, q)} are a FSS of (2.2), we look for
v±m under the form

v±m(x) = α±mΨ(x,−µm, q) + β±mΦ(x,−µm, q).
The defining properties of the Weyl solutions immediately lead to

v±m(x) = Ψ(x,−µm, q)
f

1
4 (0)

+ λ±m −Am
Bm

Φ(x,−µm, q)
f

1
4 (1)

. (2.43)

Thus, the (non-normalized) Steklov eigenfunctions have the following expression

u±m(x, θ) = f
2−n

4 (x)v±m(x)Ym(θ), ∀m ≥ 0. (2.44)

In the next section, we shall study the localization of the Steklov eigenfunctions (2.44)
normalized in two different but natural ways. First, we normalize them by demanding that their
L2 norm on ∂M is equal to 1. We introduce thus

ϕ±m(x, θ) = u±m(x, θ)
n±m

= f
2−n

4 (x)w±m(x)Ym(θ), ∀m ≥ 0, (2.45)

where
w±m(x) = 1

n±m

Ψ(x,−µm, q)
f

1
4 (0)

+ λ±m −Am
Bmn

±
m

Φ(x,−µm, q)
f

1
4 (1)

. (2.46)

Secondly, we normalize them by demanding that their L2 norm on M is equal to 1, i.e.

ϕ̃±m(x, θ) = u±m(x, θ)
‖u±m‖2

, ‖u±m‖2 =
(∫ 1

0
|v±m(x)|2f(x)dx

) 1
2
, ∀m ≥ 0. (2.47)

Note that the first normalization ϕ±m corresponds to the normalization used in [14, 7].
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Remark 2.8. When n = 2 and ω = 0, we can get explicit expressions for the eigenfunctions
ϕ±m(x, θ) thanks to ([5], Remark 3.1). For instance, if f(0) = f(1), one has for m ≥ 1,

ϕ+
m(x, θ) =

√
2

f
1
4 (0)

coth(√µm) sinh(√µm(1− 2x)) Ym(θ),

ϕ−m(x, θ) =
√

2
f

1
4 (0)

cosh(√µm(1− 2x)) Ym(θ).

But, if f(0) < f(1), we have

ϕ±m(x, θ) = 1

f
1
4 (0)

√
1 + (α±m)2

sinh(√µm(1− x))
sinh(√µm) + 1

f
1
4 (1)

√
(α±m)2

1 + (α±m)2
sinh(√µmx)
sinh(√µm) ,

where

α±m = 1
2

√
f(1)−

√
f(0)

(f(0)f(1))
1
4

cosh(√µm)

1∓

√√√√1 + 4
√
f(0)f(1)

(
√
f(1)−

√
f(0))2

1
cosh2(√µm)

 .
If f(0) > f(1), then the same formula hold with + and − inverted.

The above explicit formula allow us to prove the localization results on the Steklov eigenfunc-
tions ϕ±m given in Theorem 1.3 in the case n = 2 and ω = 0.

3 Exponential localization of the Steklov eigenfunctions: the
flea on the elephant phenomenon

In this section, we assume (n = 2, ω 6= 0) or (n ≥ 3) and we show that the normalized Steklov
eigenfunctions corresponding to the warped product (M, g) are exponentially localized at the
boundary ∂M as m→∞, proving in that particular case the results of Hislop, Lutzer [14] and
Galkowski, Toth [7]. More precisely we prove that the Steklov eigenfunctions corresponding to
a symmetric warped product are exponentially localized at both boundaries x = 0 and x = 1
as m → ∞. On the contrary, if the warped product is asymmetric, then we roughly speaking
prove that half the Steklov eigenfunctions are localized at x = 0, whereas the other half Steklov
eigenfunctions are localized at x = 1 as m → ∞. This result is similar to what Barry Simon
calls the flea on the elephant phenomenon for Schrödinger operators with an asymmetric double
well potential (see [13, 21]).

3.1 On Hörmander’s L∞ estimates.

Using the Hörmander’s L∞ bound in the version given by Donnelly [6], we can consider any
transversal compact Riemannian manifolds (K, gK) with metric coefficients in C2 and have:

25



Proposition 3.1. There exists a constant C > 0 such that for any µ ∈ σ(−∆K) and any
L2-normalized eigenfunction Yµ, we have

||Yµ||L∞(K) ≤ C
√
µ
n−2

2 . (3.1)

Here the constant C only depends on a bound for the absolute value of the sectional curvature
and a lower bound for the injectivity radius on K.

Using this proposition, we can thus focus on the x-dependence of the Steklov eigenfunctions
in what follows.

3.2 The case of symmetric warping functions

We prove here that for symmetric warped products, the normalized Steklov eigenfunctions are
exponentially localized and equi-distributed at both boundaries x = 0 and x = 1 as m → ∞.
Recalling that

ϕ±m(x, θ) = f
2−n

4 (x)w±m(x)Ym(θ) ,
we give first the asymptotics of w±m(x) when m→∞.

Proposition 3.2. Assume that the warping function is symmetric, that is f(x) = f(1− x) for
all x ∈ [0, 1

2 ]. Then, when m→∞ and uniformly for x ∈ [0, 1],

w±m(x) = −
√

2
f

1
4 (0)

e−
√
µm
(

sinh(√µm(1− x))± sinh(√µmx)
)

+O(e
−√µmx
√
µm

) +O(e
−√µm(1−x)
√
µm

).

Proof. Under the assumption of symmetry of f , we know that Am = Cm and λ±m = Am ± |Bm|
for all m ≥ 0. Consequently, using (2.42), we have

λ±m −Am
Bm

= ±|Bm|
Bm

= ∓1, n±m =
√

2.

Hence, we obtain
w±m(x) = Ψ(x,−µm, q)∓ Φ(x,−µm, q)√

2 f
1
4 (0)

.

Then, the result follows immediately from (2.33) and (2.34).

As a by-product, we obtain:

Corollary 3.1. Assume that the warping function is symmetric, that is f(x) = f(1 − x) for
all x ∈ [0, 1

2 ]. Then, there exist C > 0 and m0 > 0 such that for all m ≥ m0 and for all
(x, θ) ∈ [0, 1]×K

|ϕ±m(x, θ)| ≤ C
(
e−
√
µmx + e−

√
µm(1−x)

)
|Ym(θ)|.

The pointwise estimates for symmetric warped products given in Corollary 3.1 improve the
corresponding estimates obtained for flat warped product (f(x) = 1 in our notations) given by
Galkowski and Toth in [7], example 1.1.2.
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3.3 The case of asymmetric warping functions

We assume here that f(x) = f0(x) + f1(x) where f0 is symmetric with respect to 1
2 and f1 is an

asymmetric perturbation of f0.

Case II.A. As previously we need to distinguish the two dimensional case and the case
n ≥ 3. For k ≥ 0, we set

βk =
{
ak if n = 2, ω 6= 0.
bk if n ≥ 3, (3.2)

where ak and bk are the constants given in Lemma 2.1.

Proposition 3.3. If k ≥ 0 is the smallest integer such that f (k)(0) 6= (−1)kf (k)(1) and βk is
negative, then

w+
m(x) =− 2

βkf(0)
1
2 f(1)

1
4
µ
αk− 1

2
m e−2√µm sinh(√µm(1− x))− 2

f(1)
1
4
e−
√
µm sinh(√µmx)

+O
(
µαk−1
m e−

√
µm(x+1)

)
+O

(
e−
√
µm(1−x)
√
µm

)
, (3.3)

w−m(x) =− 2
f(0)

1
4
e−
√
µm sinh(√µm(1− x)) + 2

βkf(0)
1
4 f(1)

1
2
µ
αk− 1

2
m e−2√µm sinh(√µmx)

+O
(
µαk−1
m e−

√
µm(2−x)

)
+O

(
e−
√
µmx

√
µm

)
, (3.4)

holds uniformly for x ∈ [0, 1], where αk is the constant introduced in (2.22). Moreover, the same
asymptotics hold with + and − inverted if βk is positive.

Proof. We only give the proof in the case n ≥ 3 since the two dimensional case is similar. We
need to study the term

λ±m −Am
Bm

,

that appears in the expressions (2.42) or (2.46) of n±m and w±m respectively. Observe first that
we can rewrite this term as

λ±m −Am
Bm

= 1
2

Cm −Am
Bm

∓

√(
Cm −Am

Bm

)2
+ 4

 , (3.5)

since for m large enough Bm is negative . Using the notations of Lemma 2.1 and the asymptotics
(2.5)-(2.6), we see that there exists a constant ek (precisely we have ek = bk (f(0)f(1))1/4) such
that

Cm −Am
Bm

= ek µ
− k2
m e

√
µm

(
1 +O

(
1
√
µm

))
, as m→∞. (3.6)
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Hence the term
(
Cm−Am
Bm

)2
is exponentially increasing as m→∞ and dominates 4 in the square

root appearing in the equation (3.5). We thus obtain

λ±m −Am
Bm

= 1
2

[
Cm −Am

Bm
∓
∣∣∣∣Cm −AmBm

∣∣∣∣]∓ ∣∣∣∣ Bm
Cm −Am

∣∣∣∣+O
((

Bm
Cm −Am

)3
)
.

More precisely, if the constant bk < 0 and thus dk < 0,

λ+
m −Am
Bm

= Cm −Am
Bm

+O
(

Bm
Cm −Am

)
, as m→∞ , (3.7)

λ−m −Am
Bm

=
∣∣∣∣ Bm
Cm −Am

∣∣∣∣+O
((

Bm
Cm −Am

)3
)
, as m→∞ . (3.8)

Similarly, we have

1
n+
m

=
∣∣∣∣ Bm
Cm −Am

∣∣∣∣
(

1 +O
((

Bm
Cm −Am

)2
))

, as m→∞ , (3.9)

1
n−m

= 1 +O
((

Bm
Cm −Am

)2
)
, as m→∞ . (3.10)

Then, the result follows easily from (2.33) and (2.34) and

w±m(x) = 1
n±m

Ψ(x,−µm, q)
f

1
4 (0)

+ λ±m −Am
Bmn

±
m

Φ(x,−µm, q)
f

1
4 (1)

.

Note that if bk > 0 and thus dk > 0, the same equalities hold with + replaced by −.

As a by-product, we deduce

Corollary 3.2. If k ≥ 0 is the smallest integer such that f (k)(0) 6= (−1)kf (k)(1), there exist
Ck > 0 and m0 > 0 such that for all m ≥ m0 and for all (x, θ) ∈ [0, 1]×K, either

|ϕ+
m(x, θ)| ≤ Ck

(
µ
αk− 1

2
m e−

√
µm(1+x) + e−

√
µm(1−x)

)
|Ym(θ)|, (3.11)

|ϕ−m(x, θ)| ≤ Ck
(
e−
√
µmx + µ

αk− 1
2

m e−
√
µm(2−x)

)
|Ym(θ)|, (3.12)

or the same estimates hold with + and − inverted.

Using Hörmander’s L∞ bound (3.1) together with Corollary 3.2, we prove Theorem 1.5.

Case II.B. In this subsection, we are not able to precise the leading term of the Steklov
eigeinfunctions ϕ±m(x, θ) since we only got a lower bound for |Am − Cm| in Proposition 2.2.
We prove

28



Proposition 3.4. Assume that there exists a ∈ [0, 1
2 [ such that f(x) = f(1−x) for all x ∈ [0, a]

and that there exists 0 < δ < 1
2 − a such that for all x ∈]a, a+ δ], we have qf (x)− qf (1−x) > 0.

Then, for all ε > 0, there exist Cε and mε such that for all m ≥ mε and for all x ∈ [0, 1],

|w−m(x)| ≤ Cε
(
e−
√
µm(1−2(a+ε)+x) + e−

√
µm(1−x)

)
,

|w+
m(x)| ≤ Cε

(
e−
√
µmx + e−

√
µm(2−2(a+ε)−x)

)
,

The case qf (x)− qf (1− x) < 0 entails the same results with + and − inverted.

Proof. Assume that for all x ∈]a, a + δ], we have qf (x) − qf (1 − x) > 0. Using (2.5)-(2.6) and
Lemma 2.2, we get for all ε > 0 and m sufficiently large∣∣∣∣Cm −AmBm

∣∣∣∣ ≥ Cε e(1−2(a+ε))√µm . (3.13)

Hence the term
(
Cm−Am
Bm

)2
dominates 4 as m→∞. Coming back to (3.5), we infer that

λ±m −Am
Bm

= 1
2

[
Cm −Am

Bm
∓
∣∣∣∣Cm −AmBm

∣∣∣∣]+O
(

Bm
Cm −Am

)
.

More precisely, it follows from the proof of Lemma 2.2 that Cm−Am
Bm

< 0 for m large enough.
Thus, we have

λ−m −Am
Bm

= Cm −Am
Bm

+O
(

Bm
Cm −Am

)
, as m→∞ ,

λ+
m −Am
Bm

= O
(

Bm
Cm −Am

)
, as m→∞ ,

where the remainder O
(

Bm
Cm−Am

)
= O

(
e−(1−2(a+ε))√µm

)
is exponentially decreasing as m→∞

due to (3.13). Similarly, we have

1
n−m

= O
(

Bm
Cm −Am

)
, as m→∞,

1
n+
m

= O (1) , as m→∞.

Mimicking the proof of the case II.A, we obtain easily the result.

Eventually, using Hörmander’s L∞ bound (3.1), we prove Theorem 1.6 as previously.

Case II.C. In this case, we prove
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Proposition 3.5. If f(x) and f(1 − x) have the same Taylor series at x = 0, there exists a
subsequence (mk)k≥0 and a constant C > 0 such that for all ε > 0, there exists mε > 0 such that
for all mk ≥ mε and for all x ∈ [0, 1],

|w−mk(x)| ≤ C
(
εe−
√
µmkx + e−

√
µmk (1−x)

)
,

|w+
mk

(x)| ≤ C
(
e−
√
µmkx + εe−

√
µmk (1−x

)
.

Proof. Recall from Proposition 2.4 that we can find a subsequence (mk)k≥0 such that (for in-
stance),

Amk − Cmk
Bmk

→ −∞,

but we are unable to give more precision of the decay rate. Thus, micmicking the proof of the
cases II.A and II.B, we obtain

λ−mk −Amk
Bmk

= Cmk −Amk
Bmk

+O
(

Bmk
Cmk −Amk

)
, as k →∞ ,

λ+
mk
−Amk
Bmk

= O
(

Bmk
Cmk −Amk

)
, as k →∞ .

Thus, we have

1
n−mk

= O
(

Bmk
Cmk −Amk

)
, k →∞,

1
n+
mk

= O (1) , k →∞,

and we finish the proof as previously.

Using Hörmander’s L∞ bound (3.1), we prove Theorem 1.7.

3.4 On the choice of normalization

At last, let us discuss the normalization question. Recall that the Steklov eigenfunctions ϕ±m
were defined such that their trace φ±m = (ϕ±m)|∂M on the boundary ∂M are normalized by

‖φ±m‖L2(∂M) = 1.

We consider now the Steklov eigenfunctions ϕ̃±m whose L2 norm is normalized on the whole
manifold M , i.e.

‖ϕ̃±m‖L2(M) = 1.
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The Steklov eigenfunctions ϕ±m and ϕ̃±m are obviously connected by

ϕ̃±m = ϕ±m
‖ϕ±m‖L2(M)

.

We can deduce estimates on ϕ̃±m from the corresponding estimates on ϕ±m using the following
result.
Theorem 3.1. There exist constants 0 < c1 < c2 and m0 > 0 such that for m ≥ m0

c1

µ
1
4
m

≤ ‖ϕ±m‖2 ≤
c2

µ
1
4
m

. (3.14)

Proof. We only prove the assertion in the case I corresponding to symmetric warped product
since the other cases use similar arguments. We shall use the expression (2.43), (2.44) and (2.47)
for the normalized eigenfunctions ϕ̃±m.

Under the assumption of symmetry on f , we recall that n±m =
√

2 and that

w±m(x) =
Ψ(x,−√µm, q)∓ Φ(x,−√µm, q)√

2f
1
4 (0)

.

Using (2.35)-(2.36), an easy calculation gives

w±m(x) =
e−
√
µmx

(
1 +O( 1√

µm
)
)
∓ e−

√
µm(1−x)

(
1 +O( 1√

µm
)
)

√
2f

1
4 (0)

, (3.15)

as m→∞ uniformly in x ∈ [0, 1].
Now, using (3.15), we can complete the proof of (3.14). Indeed, we first note that

m1

∫ 1

0
|w±m(x)|2dx ≤ ‖ϕ±m‖22 =

∫ 1

0
|w±m(x)|2f(x)dx ≤ m2

∫ 1

0
|w±m(x)|2dx,

for some constants 0 < m1 < m2. Then using (3.15) and the notation Im(x) =
(
1 +O( 1√

µm
)
)
,

we have ∫ 1

0
|w±m(x)|2dx = 1

2f
1
2 (0)

∫ 1

0

∣∣∣e−√µmxIm(x)∓ e−
√
µm(1−x)Ĩm(x)

∣∣∣2 dx,
= 1

2f
1
2 (0)

[ ∫ 1

0
e−2√µmxI2

m(x)dx∓ 2e−
√
µm

∫ 1

0
Im(x)Ĩm(x)dx

+
∫ 1

0
e−2√µm(1−x)Ĩ2

m(x)dx
]
.

The first and third integrals are estimated for all large enough m by
C1√
µm
≤
∫ 1

0
e−2√µmxI2

m(x)dx,
∫ 1

0
e−2√µm(1−x)Ĩ2

m(x)dx ≤ C2√
µm

,

for some constants 0 < C1 < C2, whereas the second term is bounded by e−
√
µm . Putting all

these estimates together, we get (3.14).
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A Some results on the theory of Weyl-Titchmarsh functions
We consider the class of regular Schrödinger equations on the interval [0, 1] given by

−v′′ + q(x)v = zv, (A.1)

where q ∈ L1([0, 1]) is a real potential and z ∈ C.
For all z ∈ C, we define the two Fundamental Systems of Solutions (FSS)

{c0(x, z, q), s0(x, z, q)}, {c1(x, z, q), s1(x, z, q)},

of (A.1) by imposing the Cauchy conditions{
c0(0, z, q) = 1, c′0(0, z, q) = 0, s0(0, z, q) = 0, s′0(0, z, q) = 1,
c1(1, z, q) = 1, c′1(1, z, q) = 0, s1(1, z, q) = 0, s′1(1, z, q) = 1. (A.2)

It follows from (A.2) that

W (c0, s0) = 1, W (c1, s1) = 1, ∀z ∈ C, (A.3)

where W (u, v) = uv′ − u′v is the Wronskian of u, v.
Moreover, the FSS {c0(x, z, q), s0(x, z, q)} and {c1(x, z, q), s1(x, z, q)} are entire functions of order
1
2 with respect to the variable z ∈ C.

We then define the characteristic function of (A.1) with Dirichlet boundary conditions by

∆q(z) = W (s0, s1) = s0(1, z, q) = −s1(0, z, q). (A.4)

The characteristic function z 7→ ∆q(z) is also an entire function of order 1
2 with respect to z and

its zeros (αk)k≥1 correspond to Dirichlet eigenvalues of the selfadjoint operator − d2

dx2 + q. The
eigenvalues αk are thus real, simple and are ordered by α1 < α2 < . . . .

We next define two Weyl-Titchmarsh functions by the following classical prescriptions. Let
the Weyl solutions Ψ and Φ be the unique solutions of (A.1) having the form

Ψ(x, z, q) = c0(x, z, q) +Mq(z)s0(x, z, q),
Φ(x, z, q) = c1(x, z, q)−Nq(z)s1(x, z, q), (A.5)

which satisfy the Dirichlet boundary condition at x = 1 and x = 0 respectively. Then a short
calculation using (A.2) shows that the Weyl-Titchmarsh functionsMq(z) and Nq(z) are uniquely
defined by

Mq(z) = −W (c0, s1)
∆q(z)

, Nq(z) = −W (c1, s0)
∆q(z)

. (A.6)

We introduce the functions

Dq(z) = W (c0, s1) = c0(1, z, q) = s′1(0, z, q), Eq(z) = W (c1, s0) = c1(0, z, q) = s′0(1, z, q), (A.7)
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which also turn out to be entire functions of order 1
2 in z. We then have

Mq(z) = −Dq(z)
∆q(z)

, Nq(z) = −Eq(z)∆(z) . (A.8)

Observe also that
Ψ(x, z, q) = −s1(x, z, q)

∆q(z)
, Φ(x, z, q) = s0(x, z, q)

∆q(z)
.

Remark A.1 (Symmetry with respect to 1
2). Given a potential q ∈ L1(0, 1), define the sym-

metrized potential
q̌(x) = q(1− x).

Then we can check easily that

c0(x, z, q̌) = č1(x, z, q), c1(x, z, q̌) = č0(x, z, q),
s0(x, z, q̌) = −š1(x, z, q), s1(x, z, q̌) = −š0(x, z, q).

This implies in turn that
∆q̌ = ∆q, Mq̌ = Nq. (A.9)

In particular, the N function corresponding to a potential q plays the role of the M function
corresponding to the symmetrized potential q̌. This emphasizes the natural symmetry about 1

2 of
the problem.

We now collect some results involving the functions ∆q(z), Dq(z), Eq(z), Mq(z) and NQ(z)
in the form we shall need later.

Proposition A.1. The FSS {c0(x, z, q), s0(x, z, q)} and {c1(x, z, q), s1(x, z, q)} have the follow-
ing asymptotics uniformly with respect to x ∈ [0, 1] as the variable ρ =

√
−z →∞ in the complex

plane C. 

c0(x, z, q) = cosh(
√
−zx) +O

(
e|<
√
−z|x

√
−z

)
,

c′0(x, z, q) =
√
−z sinh(

√
−zx) +O

(
e|<(
√
−z)|x

)
,

s0(x, z, q) = sinh(
√
−zx)√
−z +O

(
e|<(
√
−z)|x

z

)
,

s′0(x, z, q) = cosh(
√
−zx) +O

(
e|<(
√
−z)|x

√
−z

)
,

(A.10)

and 

c1(x, z, q) = cosh(
√
−z(1− x)) +O

(
e|<(
√
−z)|(1−x)
√
−z

)
,

c′1(x, z, q) = −
√
−z sinh(

√
−z(1− x)) +O

(
e|<(
√
−z)|(1−x)

)
,

s1(x, z, q) = − sinh(
√
−z(1−x))√
−z +O

(
e|<(
√
−z)|(1−x)

z

)
,

s′1(x, z, q) = cosh(
√
−z(1− x)) +O

(
e|<(
√
−z)|(1−x)
√
−z

)
.

(A.11)

Proof. These asymptotics are classical and can be found in [19] (Theorem 3, p. 13).
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Corollary A.1. 1. For each fixed x ∈ [0, 1], the fundamental systems of solutions {c0(x, z, q), s0(x, z, q)}
and {c1(x, z, q), s1(x, z, q)} are entire functions of order 1

2 with respect to the variable z.
2. The characteristic function ∆q(z) and the functions Dq(z) and Eq(z) are entire functions of
order 1

2 with respect to the variable z.
3. We have the following asymptotics in the complex plane C:

∆q(z) = sinh
√
−z√
−z +O

(
e|<(
√
−z)|

z

)
,

Dq(z) = cosh(
√
−z) +O

(
e|<(
√
−z)|

√
−z

)
,

Eq(z) = cosh(
√
−z) +O

(
e|<(
√
−z)|

√
−z

)
.

Proof. The proof of 1., 2. and 3. follows directly from (A.4), (A.6) and Lemma A.3.

Corollary A.2. The characteristic function ∆(z) and the functions D(z) and E(z) can be
written as

∆q(z) = ∆q(0)
∞∏
k=1

(
1− z

αk

)
,

Dq(z) = Dq(0)
∞∏
k=1

(
1− z

βk

)
,

Eq(z) = Eq(0)
∞∏
k=1

(
1− z

γk

)
,

(A.12)

where (αk)k≥1, (βk)k≥1 and (γk)k≥1 are the zeros of the entire functions ∆q(z), Dq(z) and Eq(z)
respectively.

Proof. This is a direct consequence of Hadamard’s factorization Theorem (see [3, 16]) for the
entire functions ∆q(z), Dq(z) and EQ(z) of order 1

2 .

We now recall some important facts about the Weyl-Titchmarsh function M = Mq obtained
by B. Simon in [10, 22].

Theorem A.1. There exists a function A ∈ L1
loc(R+) such that for k ∈ N∗ and a < 2k

M(−κ2) = −κ−
∫ a

0
A(α)e−2καdα−2

k∑
j=1

(κ+j
∫ 1

0
q(x)dx)e−2jκ+Õ(e−2aκ) as κ→ +∞. (A.13)

Moreover, A− q is continuous on [0, 1] and obeys for all α ∈ [0, 1]

|A(α)− q(α)| ≤ Q(α)2eαQ(α), Q(α) =
∫ α

0
|q(s)|ds. (A.14)

We also have
|A(α, q)−A(α, q̃)| ≤ ‖q − q̃‖L1 [Q(α) + Q̃(α)]eα[Q(α)+Q̃(α)]. (A.15)

At last, B. Simon showed that the potential q on [0, a] is a function of A on [0, a]. More precisely,
if q and q̃ are two potentials, let A and Ã be their A-functions. Then

A(α) = Ã(α), ∀α ∈ [0, a] ⇐⇒ q(x) = q̃(x), ∀x ∈ [0, a].
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As a consequence, B. Simon proved the following theorem.
Theorem A.2 (local Borg-Marchenko). Let q and q̃ two potentials in L1(0, 1). Then q(x) = q̃(x)
for all x ∈ [0, a] if and only if M(−κ2) = M̃(−κ2) + Õ(e−2aκ) as κ→ +∞.
Theorem A.3 (Asymptotics of M). If q ∈ L1(0, 1), then

M(−κ2) = −κ−
∫ 1

0
q(x)e−2xdx+ o

(1
κ

)
as κ→ +∞.

Assume moreover, that q ∈ Ck([0, δ). Then

M(−κ2) = −κ−
k∑
j=0

βjκ
−j−1 +O(κ−k−2) as κ→ +∞. (A.16)

Here the constants βj can be computed inductively by βj = βj(0) where for all j ≥ 0

β0(x) = 1
2q(x), βj+1(x) = 1

2β
′
j(x) + 1

2

j∑
`=0

β`(x)βj−`(x).

Note that the results concerning the M function can be translated to the N function easily
thanks to Remark A.1. In particular, for smooth potential q, the asymptotics of N are given by

N(−κ2) = −κ−
k∑
j=0

γjκ
−j−1 +O(κ−k−2) as κ→ +∞. (A.17)

Here the constants γj can be computed inductively by γj = γj(0) where for all j ≥ 0

γ0(x) = 1
2 q̌(x), γj+1(x) = 1

2γ
′
j(x) + 1

2

j∑
`=0

γ`(x)γj−`(x).

Eventually, we shall need the following formula.
Proposition A.2.

Mq(z)−Nq(z) =
∫ 1

0
(q(x)− q(1− x)) Ψ(x, z, q)Φ(1− x, z, q)dx.

Proof. We compute
d

dx
W (s1(x, z, q), s0(1− x, z, q)) = − (q(x)− q(1− x)) s1(x, z, q)s0(1− x, z, q).

Integrating between 0 and 1, we get

s1(0, z, q)s′0(1, z, q) + s′1(0, z, q)s0(1, z, q) = −
∫ 1

0
(q(x)− q(1− x)) s1(x, z, q)s0(1− x, z, q)dx.

Using (A.4) and (A.7), we obtain

∆q(z)(Dq(z)− Eq(z)) = −
∫ 1

0
(q(x)− q(1− x)) s1(x, z, q)s0(1− x, z, q)dx,

which entails the formula.
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B A comparison with the flea on the elephant phenomenon for
Schrödinger operators with a double well potential.

The aim of this appendix is to present shortly (with some cheating in the presentation to
avoid technicalities) the flea on the elephant effect as initially considered by G. Jona-Lasinio, F.
Martinelli and E. Scoppola [15] and then developed more systematically in [13] and with another
approach by B. Simon in [21] who gives to this effect its evocative name.

We start from the double well symmetric situation with a potential V0, satisfying

inf V0 = 0 and lim
|x|→+∞

V0(x) = +∞ ,

and having two symmetric non degenerate minima denoted by U` and Ur. We are interested in
the description, in the limit h→ 0+, of the two first eigenvalues of the selfadjoint realization in
Rd of

Ph := −h2∆ + V0 .

For the symmetry, we assume for example that

V0(x1, . . . , xd−1, xd) = V0(x1, . . . , xd−1,−xd)

and that U` and Ur are exchanged by this symmetry. Under these assumptions we know that the
operator has compact resolvent, that its spectrum consists of a sequence λj(h) (j ≥ 1) tending
to +∞ and that the ground state energy λ1(h) (i.e. the first eigenvalue or principal eigenvalue)
is simple. Moreover the symmetry implies that the first eigenfunction is symmetric. Using an
harmonic approximation near U` and Ur we can first show that there are two eigenvalues λ1(h)
and λ2(h) which are close modulo O(h

3
2 ) (in the limit h → 0) to the first eigenvalue λ0(h) of

the Harmonic oscillator

H0(y, hDy) := −h2∆y + 1
2〈HessV0(U`)y, y〉 .

This can be explicitly computed as

λ0(h) = hγ0 with γ0 = Tr[(1
2HessV0)

1
2 ](U`) .

Moreover one can show that there exists ε0 > 0 and h0 > 0 such that λj(h) > h(γ0 + ε0) for
j ≥ 3 and h ∈ (0, h0]. The aim is then to analyze the splitting λ2(h)− λ1(h) in the limit h→ 0.
The idea is to recover these two eigenvalues as eigenvalues of a 2× 2 matrix, which is called the
interaction matrix, corresponding to the expression of the Hamiltonian reduced to the spectral
space associated with σ(Ph) ∩ [0, (γ0 + ε0)h) in an adapted basis of this two dimensional vector
space E(h). This basis is constructed such that u` is strongly localized in U` and ur is defined as
the symmetric of u`. This localization is defined in the following sense. There is a natural notion
of distance (the Agmon distance) dV0 associated with the degenerate metric V0(x)g0 where g0 is
the Euclidean metric. Then u` has the following property for some constant C > 0

|u`(x, h)| ≤ Ch−C exp−dV0(x, U`)/h ,
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and can in addition be well approximated by a so called WKB approximation in a neighborhood
of the set Geo(U`, Ur) of the minimal geodesics (for the Agmon distance) between U` and Ur
outside a small ball around Ur.
This matrix has the form

M =
(
a b
b a

)
where a is asymptotically equivalent to the first level of the Harmonic approximation and b is
the so called tunneling interaction:

b = h−νβ(h) exp−S/h , (B.1)

where S is the Agmon distance between U` and Ur, ν > 0 and β(h) ∼ β0 6= 0.
Clearly, the eigenvalues are a ± b corresponding to the eigenvectors 1√

2(1, 1) and 1√
2(1,−1).

From this we deduce that the two first eigenfunctions are equilocalized in the neighborhood of
the minima and 1√

2(u1 + u2) is strongly localized near U` and 1√
2(u1 − u2) is strongly localized

in Ur.
We can now explain the flea of the elephant effect. We consider as new potential

Vδ(x) = V0(x) + δ w(x)

where 0 ≤ w ∈ C∞0 (Rd), and δ ≥ 0.
We assume that

0 < dV0(U`, suppw) < 1
2dV0(U`, Ur) < dV0(Ur, suppw) . (B.2)

and that
suppw ∩Geod(U`, Ur) = ∅ . (B.3)

In this situation, one can again reduce2 the analysis of the spectrum in [0, (γ0 + ε0)h) to the
analysis of the two eigenvalues of a symmetric 2 × 2 matrix M δ = (M δ

ij) where the principal
term in the off-diagonal coefficient M δ

12 is essentially unchanged

M δ
12 = b+O(e−S−η/h) for some η > 0 . (B.4)

Similarly
M δ

22 = a+O(e−S−η/h) for some η > 0 . (B.5)
But M δ

11 can be estimated from below by (for 0 < δ < δ0)

M δ
11 ≥ a+ δ exp−2dV0(U`, suppw)− ε

h
, ∀ε > 0 . (B.6)

Formally, the main term of the perturbation is indeed

δ

∫
w(x)u`(x)2 dx ,

2u` and ur are slightly modified in a very well controlled way
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and we use a lower bound for the decay of u` on the support of w.
This implies the existence of δ1 > 0 such that, for 0 < δ < δ1, we have as h→ 0,

(M δ
11 −M δ

22)2 � (M δ
12)2 . (B.7)

Actually this is still true with δ = exp−α/h for α > 0 small enough.

In this situation the eigenvalues of M δ satisfy for some arbitrarily small η > 0

λδ− = a+Oη(e−S+η/h) , (B.8)

and
λδ+ ≥ a+ δ exp−2dV0(U`, suppw)

h
(B.9)

and the corresponding eigenvectors are up to exponentially small terms are (0, 1) and (1, 0).
This shows a localization of the ground state near Ur. The ground state is actually exponentially
small near U`. The second eigenfunction will be localized near U`.

Remark B.1.

• When (B.3) is not satisfied we loose (B.4) but keep instead an upper bound similar to the
estimate we have on b (see (B.1)) in the weaker form

|M δ
12| ≤ Cε exp−(S − ε)/h , ∀ε > 0 .

Actually because δ ≥ 0 and w ≥ 0, we could replace S by Sδ > S but we do not need this
improvement. (B.5) and (B.6) are unchanged and this permits to show that (B.7) holds
also in this case. In particular in dimension 1, we can consider a perturbation w with
support between the two minima. This was actually the case initially considered in [15].

• To understand the analogy with the Steklov problem, we have to consider that the two min-
ima in the double well problem are the two components of the boundary. The perturbation
of V0 corresponds to the perturbation of f .

• More recently a numerical analysis of the effect is proposed in [2].
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