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Introduction

Introduction : OSL dating

Problem Construction of a statistical model to estimate the age of a sample from
OSL signals.

• Age equation:

Age =
palaeodose
dose rate

For fixed sample i
The parameter of interest is the age of the sample i denoted Ai

The palaeodose of the sample i (denoted Di ) is not observed
 estimation step is requided

ḋi ± σ̇i dose rate of the sample and its estimation error.
Errors on dose rate come from

measurement error
calibration error
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Introduction

Classical approach for an individual Age
1 We estimate the palaeodose of the sample using a Bayesian or frequentist

method  D̂i ± σ̂Di

2 the dose rate is known with an uncertainty ḋi ± σ̇i
3 We approximate the age by

Âi =
D̂i

ḋi
with error σAi = Âi

√(
σ̂Di

D̂i

)2

+

(
σ̇i

ḋi

)2

An Alternative approach is based on the Monte Carlo simulations [See
Huntriss et al ]
We sample the distribution of age Ai under the assumption that both
variables Di and ḋi are Gaussian.

4 Âi ± σAi
can be included in chronological modelling. (e.g. models

implemented to Oxcal ; Chronomodel ... )
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Introduction

Motivations for Bayesian modelling

Joint estimation of a sequence of ages
Take into account the systematic and the individual errors in the dose rate
term.
Include additional information (statigraphy) : temporal ordering between ages
Combine different dating methods : add 14C age.

Solution implemented in BayLum a multivariate model with multiplicative
Gaussian errors in a Bayesian framework.

Reference :

Benoit Combes and Anne Philippe
In Quaternary Geochronology, Volume 39, 2017, Pages 24-34
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Bayesian Modelling

Bayesian modelling
Observations : OSL signal of each grain of each sample Ln/Tn
Parameters of interest : Age A = (A(i))i of each sample
Additional variables : the Palaeodose D = (Di)i of each sample

The hierarchical structure is

A

Age model

prior distribution

D

Ln/Tn

Bayesian model for SAR protocol.
Combes et al. 2015.

Probability distribution is of the form :

P (A, Ln/Tn,D) = P (Ln/Tn|D)P (D|A)P (A)
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Bayesian Modelling

Bayesian modelling

1 Using Bayes Formula, we get the posterior density of A :

p(A|Ln/Tn) ∝ p(A)

∫
P (Ln/Tn|D)P (D|A)d D

2 No explicit form of the posterior distribution
3 MCMC algorithms are required to evaluate the posterior distribution.

Simulation of Markov Chains Estimation of the posterior density
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Bayesian Modelling

Age model
The statistical model is

Di = Ai(ḋi + εḋi
+ αiεc)

where
εḋi
∼ N (0, σḋi

) =individual error (depends on the sample)
εc ∼ N (0, σc) = systematic error (common for all samples)
αi > 0 : weight of systematic error for sample i.

 correlations between the palaeodoses D

Conditionnally to the ages A

(Di)i ∼ N
(

(Aiḋi)i,Σ
)

where the covariance matrix Σ satisfies:

Σi,i = Ai
2
(
σḋi

2 + αi
2σc

2
)

Σi,j = AiAjαiαjσc
2
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Bayesian Modelling

Prior distribution on the ages A
We assume that all ages belong to the time interval [amin, amax].
This is the study period.

1 Non informative prior on the ages [Jeffreys prior]

p(A1, ..., AN ) =

N∏
i=1

p(Ai)

∝
N∏
i=1

1

Ai
1[amin,amax](Ai)

2 temporal ordering on the sequence or subsequence of ages

A1 ≤ A2 ≤ ... ≤ AN

p(A1, ..., AN ) ∝
N∏
i=1

1

(Ai)
1B(A1, ..., An)

where B = {A1 ≤ A2 ≤ ... ≤ AN} ∩ [amin, amax]N

Philippe et al. BayLum LED 2017 8 / 11



Bayesian Modelling

Additionnal observations

We can integrate measurements coming from different chronometric techniques
Let M∗ be the measurement and A∗ the unknown age.

The model becomes

A, A∗

D

Ln/Tn M∗

1 The measurements M∗ and OSL signals are independent
conditionnally to the ages.

2 The prior is given by

p(A1, ..., AN , A
∗) ∝

N∏
i=1

1

Ai
p(A∗) 1B̃(A1, ..., An, A

∗)

where B̃ defines the temporal ordering on A, A∗
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Bayesian Modelling

Example : Radiocarbon dating.

The distribution of M∗ conditionnally to A∗ is

N (g(A∗), s2 + σ2
g(A∗))

where
g is the calibration curve and σ2

g the calibration curve error
s2 is the laboratory error

Outlier model can be added for instance using a mixture distribution

(1− p)N (g(A∗), s2 + σ2
g(A∗)) + pN (g(A∗), α(s2 + σ2

g(A∗)))

p is the probabiliy that M is an outlier.
α is estimated if M is detected as an outlier.
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Bayesian Modelling

Illustration and conclusion
We consider five samples and three settings:

five samples without any stratigraphic constraints, all affected by the
systematic error term
the same five samples with stratigraphic constraints
two of them are not affected by the systematic-error term (14C or OSL done
in different labs)

Box plots of the estimation error the age 3 (estimation is based on 100 datasets)
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