

# Bayesian Chronological Models implemented to the R Package BayLum

Anne Philippe, Guillaume Guerin and Claire Christophe

15th International Conference on Luminescence and Electron Spin Resonance 11 - 15 September 2017, Cape Town, South Africa

### Introduction : OSL dating

Problem Construction of a statistical model to estimate the age of a sample from OSL signals.

• Age equation:

$$\mathsf{Age} = \frac{\mathsf{palaeodose}}{\mathsf{dose rate}}$$

#### For fixed sample $\boldsymbol{i}$

- The parameter of interest is the age of the sample i denoted  $A_i$
- The palaeodose of the sample *i* (denoted *D<sub>i</sub>*) is not observed
   →→ estimation step is requided
- $\dot{d}_i \pm \dot{\sigma}_i$  dose rate of the sample and its estimation error. Errors on dose rate come from
  - measurement error
  - calibration error

#### Introduction

#### Classical approach for an individual Age

- $\textbf{O} \ \text{We estimate the palaeodose of the sample using a Bayesian or frequentist} \\ \text{method} \rightsquigarrow \widehat{\mathcal{D}}_i \pm \widehat{\sigma}_{\mathcal{D}_i}$
- (2) the dose rate is known with an uncertainty  $\dot{d}_i \pm \dot{\sigma}_i$
- We approximate the age by

$$\widehat{A}_i = rac{\widehat{\mathcal{D}}_i}{\dot{d}_i}$$
 with error  $\sigma_{A_i} = \widehat{A}_i \sqrt{\left(rac{\widehat{\sigma}_{\mathcal{D}_i}}{\widehat{\mathcal{D}}_i}\right)^2 + \left(rac{\dot{\sigma}_i}{\dot{d}_i}\right)^2}$ 

An Alternative approach is based on the Monte Carlo simulations [See Huntriss et al ] We sample the distribution of age  $A_i$  under the assumption that both variables  $D_i$  and  $\dot{d}_i$  are Gaussian.

•  $\widehat{A}_i \pm \sigma_{A_i}$  can be included in chronological modelling. (e.g. models implemented to Oxcal ; Chronomodel ... )

Philippe et al.

BayLum

#### Introduction

### Motivations for Bayesian modelling

- Joint estimation of a sequence of ages
- Take into account the systematic and the individual errors in the dose rate term.
- Include additional information (statigraphy) : temporal ordering between ages
- Combine different dating methods : add 14C age.

**Solution implemented in BayLum** a multivariate model with multiplicative Gaussian errors in a Bayesian framework.

Reference :

Benoit Combes and Anne Philippe In Quaternary Geochronology, Volume 39, 2017, Pages 24-34

## Bayesian modelling

- $\bullet\,$  Observations : OSL signal of each grain of each sample  $L_n/T_n$
- Parameters of interest : Age  $\mathcal{A} = (A^{(i)})_i$  of each sample
- Additional variables : the Palaeodose  $\mathcal{D} = (\mathcal{D}_i)_i$  of each sample

The hierarchical structure is



Probability distribution is of the form :

 $P(\mathcal{A}, L_n/T_n, \mathcal{D}) = P(L_n/T_n|\mathcal{D})P(\mathcal{D}|\mathcal{A})P(\mathcal{A})$ 

Philippe et al.

BayLum

#### **Bayesian Modelling**

#### Bayesian modelling

 $\textbf{O} \ \ \text{Using Bayes Formula, we get the posterior density of } \mathcal{A}:$ 

$$p(A|L_n/T_n) \propto p(A) \int P(L_n/T_n|D)P(D|A) \mathsf{d} D$$

- O No explicit form of the posterior distribution
- MCMC algorithms are required to evaluate the posterior distribution.



Simulation of Markov Chains





#### **Bayesian Modelling**

#### Age model

The statistical model is

$$\mathcal{D}_{i} = A_{i}(\dot{d}_{i} + \varepsilon_{\dot{d}_{i}} + \alpha_{i}\varepsilon_{c})$$

where

•  $\varepsilon_{\dot{d}_i} \sim \mathcal{N}(0, \sigma_{\dot{d}_i}) = \text{individual error (depends on the sample)}$ 

- $\varepsilon_c \sim \mathcal{N}(0, \sigma_c) = \text{systematic error (common for all samples)}$
- $\alpha_i > 0$ : weight of systematic error for sample *i*.

 $\rightsquigarrow$  correlations between the palaeodoses  $\mathcal D$ 

Conditionnally to the ages  ${\mathcal A}$ 

$$(\mathcal{D}_i)_i \sim \mathcal{N}\left((A_i \dot{d}_i)_i, \Sigma\right)$$

where the covariance matrix  $\boldsymbol{\Sigma}$  satisfies:

$$\Sigma_{i,i} = A_i^2 \left( \sigma_{\dot{d}_i}^2 + \frac{\alpha_i^2 \sigma_c^2}{\sigma_c^2} \right) \qquad \Sigma_{i,j} = A_i A_j \alpha_i \alpha_j \sigma_c^2$$

Philippe et al.

### Prior distribution on the ages $\mathcal{A}$

We assume that all ages belong to the time interval  $[a_{min}, a_{max}]$ . This is the study period.

Non informative prior on the ages [Jeffreys prior]

$$p(A_1, \dots, A_N) = \prod_{i=1}^N p(A_i)$$
$$\propto \prod_{i=1}^N \frac{1}{A_i} \mathbb{1}_{[a_{min}, a_{max}]}(A_i)$$

2 temporal ordering on the sequence or subsequence of ages

$$A_{1} \leq A_{2} \leq \dots \leq A_{N}$$

$$p(A_{1}, \dots, A_{N}) \propto \prod_{i=1}^{N} \frac{1}{(A_{i})} \mathbb{1}_{\mathcal{B}}(A_{1}, \dots, A_{n})$$

$$\{A_{1} \leq A_{2} \leq \dots \leq A_{N}\} \cap [a_{\min}, a_{\max}]^{N}$$

where  $\mathcal{B} = \{A_1 \leq A_2 \leq \dots \leq A_N\} \cap [a_{min},$ 

Philippe et al.

### Additionnal observations

We can integrate measurements coming from different chronometric techniques Let  $M^*$  be the measurement and  $A^*$  the unknown age.



### Example : Radiocarbon dating.

The distribution of  $M^\ast$  conditionnally to  $A^\ast$  is

#### $\mathcal{N}(g(A^*), s^2 + \sigma_g^2(A^*))$

where

- g is the calibration curve and  $\sigma_q^2$  the calibration curve error
- $s^2$  is the laboratory error

Outlier model can be added for instance using a mixture distribution

$$(1-p)\mathcal{N}(g(A^*), s^2 + \sigma_g^2(A^*)) + p\mathcal{N}(g(A^*), \alpha(s^2 + \sigma_g^2(A^*)))$$

• p is the probabiliy that M is an outlier.

•  $\pmb{\alpha}$  is estimated if M is detected as an outlier.

Philippe et al.

BayLum

## Illustration and conclusion

We consider five samples and three settings:

- five samples without any stratigraphic constraints, all affected by the systematic error term
- the same five samples with stratigraphic constraints
- two of them are not affected by the systematic-error term (14C or OSL done in different labs)



Box plots of the estimation error the age 3 (estimation is based on 100 datasets)

Philippe et al.