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Introduction

Introduction : OSL dating

Problem Construction of a statistical model to estimate the age of a sample from

OSL signals.

e Age equation:
palaeodose
Age= ————
dose rate
For fixed sample i
@ The parameter of interest is the age of the sample ¢ denoted A;
@ The palaeodose of the sample i (denoted D; ) is not observed

~~ estimation step is requided

@ d; + ; dose rate of the sample and its estimation error.
Errors on dose rate come from

@ measurement error
o calibration error
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Introduction

Classical approach for an individual Age

© We estimate the palacodose of the sample using a Bayesian or frequentist

method ~» D; £+ op,
@ the dose rate is known with an uncertainty d; + &;
© We approximate the age by

, o, \°  [&i\°
with error AA\/( >+<d>

An Alternative approach is based on the Monte Carlo simulations [See
Huntriss et al ]

We sample the distribution of age A; under the assumption that both
variables D; and d; are Gaussian.

i -

RS

Q & + 04, can be included in chronological modelling. (e.g. models
implemented to Oxcal ; Chronomodel ... )
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Introduction

Motivations for Bayesian modelling

@ Joint estimation of a sequence of ages

@ Take into account the systematic and the individual errors in the dose rate
term.

@ Include additional information (statigraphy) : temporal ordering between ages
o Combine different dating methods : add 14C age.

Solution implemented in BayLum a multivariate model with multiplicative
Gaussian errors in a Bayesian framework.

Reference :

Benoit Combes and Anne Philippe
In Quaternary Geochronology, Volume 39, 2017, Pages 24-34
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Bayesian Modelling

Bayesian modelling

@ Observations : OSL signal of each grain of each sample L, /T,

o Parameters of interest : Age A = (A™"); of each sample

o Additional variables : the Palaeodose D = (D;); of each sample
The hierarchical structure is

A ’ prior distribution ‘

s o]

D
J Bayesian model for SAR protocol.

Combes et al. 2015.

L,/T,

Probability distribution is of the form :

P(A, L, /T, D) = P(Ln/T,|D)P(D|A)P(A)
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Bayesian Modelling

Bayesian modelling

© Using Bayes Formula, we get the posterior density of A :
PAIL/T) o p(4) [ P(La/TID)P(DIA) D

@ No explicit form of the posterior distribution

@ MCMC algorithms are required to evaluate the posterior distribution.

Simulation of Markov Chains Estimation of the posterior density

/N
/' A

s
-
=
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Bayesian Modelling

Age model

The statistical model is _
= A,(d; +e4 + Ec)
where
o ¢; ~N(0,0, ) =individual error (depends on the sample)
e . ~ N(0,0.) = systematic error (common for all samples)

@ «o; > 0 : weight of systematic error for sample .
~ correlations between the palaeodoses D
Conditionnally to the ages A
~N ((Aqidi)i,z>
where the covariance matrix ¥ satisfies:

21‘71' = Aiz (UdiQ + 20'(;2) Ei,j = A,AJ 0(52
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Bayesian Modelling

Prior distribution on the ages A

We assume that all ages belong to the time interval [amin, Gmaz]-
This is the study period.

@ Non informative prior on the ages [Jeffreys prior]

N
p(A17 "'7AN) = HP(A
=1

|
x H Xi]l[aminyamaz](Ai)
=1
© temporal ordering on the sequence or subsequence of ages
A < Ay <. < An
p(Ay, ..., An) H 5(AL, ..., Ay)

where B={4; < Ay < ... < Ax}N [amm,amaz]N
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Bayesian Modelling

Additionnal observations

We can integrate measurements coming from different chronometric techniques
Let M* be the measurement and A* the unknown age.

The model becomes

A A* © The measurements M™* and OSL signals are independent
’ conditionnally to the ages.

D
!

L,/T, M*

@ The prior is given by
N
p(Aq, ..., Ay, A¥) H 5(A1, .y Ap, AY)

where B defines the temporal ordering on A, A*

Philippe et al. BayLum LED 2017 9 /11



Bayesian Modelling

Example : Radiocarbon dating.
The distribution of M* conditionnally to A* is
N(g(A%),s* + a5(A"))

where

@ g is the calibration curve and 03 the calibration curve error

@ 52 is the laboratory error

Outlier model can be added for instance using a mixture distribution

(1= )N (g(A7), 5> + 05 (A)) + PN (g(A"), a(s* + 05 (A")))

@ p is the probabiliy that M is an outlier.

@ « is estimated if M is detected as an outlier.

Philippe et al. BayLum LED 2017

10 / 11



Bayesian Modelling

[llustration and conclusion
We consider five samples and three settings:

o five samples without any stratigraphic constraints, all affected by the
systematic error term

@ the same five samples with stratigraphic constraints

@ two of them are not affected by the systematic-error term (14C or OSL done
in different labs)
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Box plots of the estimation error the age 3 (estimation is based on 100 datasets)
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