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Bayesian approach

Bayesian analysis to Interpreting Archaeological Data
The statistical modelling within the Bayesian framework is widely used by
archaeologists :

I 1988 Naylor , J . C. and Smith, A. F. M.
I 1990 Buck C.E.
I 1994 Christen, J. A.
I etc

Examples

I Bayesian interpretation of 14C results , calibration of radiocarbon results :
I Constructing a calibration curve.

to convert a measurement into calendar date
I Constructing a Age-Depth relationship

to relate the sediment depth with its age.
I Bayesian models for relative archaeological chronology building.
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Bayesian approach

Bayesian approach

Parametric model : X1, ...Xn ∼ P(n)
θ with θ ∈ Θ

Principle : θ is a random variable with probability
distribution π.

 uncertainty to the unknown parameter θ.
I Choice of π : the prior distribution π corresponds

to our previous knowledge or belief about θ before
observing the dataset

The Bayesian Choice
(1994,2001)
X’ian Robert

Bayesian Model :
1. Prior distribution : θ ∼ π
2. Conditionally on θ : X = (X1, ...Xn) ∼ P(n)

θ = P(n)(·|θ)
 The posterior distribution of θ

π(θ|x1, ...., xn) ∝ p(n)(x1, ...., xn|θ)π(θ)
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Bayesian approach

Bayesian inference

Bayes estimate :

Under weak assumptions of regularity on the model :
I If θ0 is the true parameter, then we have

I E(θ|X)→ θ0 almost surely.
I rate of convergence :

√
n(E(θ|X)− θ0)→ N(0, I−1(θ0)) (in distribution)

Confidence region :
I Fix α ∈ (0, 1). Confidence region I such that

P(θ ∈ I|X1, ...,Xn) = 1− α.

where I is
I the smallest interval
I or the highest probability density (HPD) region

I = {θ|π(θ|x,..., xn) > C(α)}
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Bayesian approach

Observations

Each dating method provides a measurement M, which may represent :
I a 14C age,
I a paleodose measurement in TL/OSL,
I an inclination, a declination or an intensity of the geomagnetic field

Relation with calendar date

M = g(θ) + ε

where
I θ is the calendar time
I g is a calibration function which relates the

measurement to θ Radiocarbon IntCal14
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Bayesian approach

Archaeological information

After the archaeological excavations, prior information is available on the
dates.

Examples :

I Dated archaeological artefacts are contemporary, and so they define an
archaeological event

I Stratigraphic Information which induces an order on the dates.
I the differences between two dates is known (possibly with an

uncertainty).
I etc
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Bayesian approach

Example : Volcano in Equador

I Event :
Eruptive period with flow
deposits down to the base of the
volcano.

I Stratigraphic constraint on
deposits
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Bayesian Central age model

Medieval kiln of the potters in Lezoux (Auvergne)

1. Aim : Dating the last firing of the kiln

2. Prior information : any date between 0 and 2 000

3. Material found :
I baked clays dated by

I AM : Estimation of the last time the temperature exceeded a critical point
I TL : Estimation of the last firing

I a charcoal
I 14C : Estimation of the felling of the tree
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Bayesian Central age model

Event Model Lanos & Philippe (2016)

I For each i = 1, ..., n : the measurement Mi is done on archaeological
artefact with unknown calendar date ti

I It is assumed that all archaeological artefacts are contemporary θ.

Mi =gi(ti) + εi

ti =θ + λi

θ ∼ Uniform (T) the study period

Assumptions on λi :
λi represents the error between ti and θ due to sampling problems external to
the laboratory

λi ∼ind N (0, σ2
i )  Individual effects

Assumptions on εi :
εi represents the experimental error with variance provided by the labora tory
s2

i and the calibration error
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Bayesian Central age model

Prior on the individual variance : Non informative
approach

I Jeffreys prior does not provide suitable solution.
I The prior distribution is improper and the posterior is not defined.
I Alternative : shrinkage Daniels (1999).

s2
0/(σ

2
i + s2

0) ∼ U(0, 1) s0 is fixed

The density is of the form

p(σ2
1 , ..., σ

2
n) =

n∏
i=1

s2
0

(s2
0 + σ2

i )2 .

Choice of s0

I We fix s2
0 as an estimate of the magnitude of error on the measurements.

I As s2
0 is the median of the uniform shrinkage prior :

this choice ensures that the parameter σ2
i has the same prior probability

to be smaller or larger than s2
0.
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Bayesian Central age model

Illustration : Dating the last firing of the kiln Lezoux
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Chronologies

Chronologies
I We want to build the chronology of K events
 a joint estimation of θ1, ...θK the calendar dates of the events.

I An event is defined by a collection of dated artifacts.

Prior information

1. The stratigraphic constraints. They imply a partial order on (θ1, ...θK) := ϑ
 S ⊂ TK

2. Duration information : Let J ⊂ {1, ...,K}

max
j∈J

θj −min
j∈J

θj ≤ τ

τ is known
3. Hiatus information : Let J1, J2 ⊂ {1, ...,K} , J1 ∩ J2 = ∅

min
j∈J2

θj −max
j∈J1

θj ≥ γ
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Chronologies

volcano : pyroclastic flows

6 pyroclastic flows from volcano (Ecuador) dated by 14C 6 ordered events
S = {ϑ : θ1 ≤ ... ≤ θ6}
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Chronologies

Robustness of event model
Focus on one pyroclastic flow

I Event posterior density remains almost insensitive to the outlier.
I Event model appears to be a robust statistics for calculating posterior

mean of the date θ.
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Chronologies

Phases
Definition
A phase is a group of Events defined on the basis of objective criteria such as
archaeological, geological or environmental criteria.

Estimation of the phase θj, j ∈ J ⊂ {1, ...,K}

1. posterior distribution of α = minj∈J θj  
Estimation of the beginning

2. posterior distribution of β = maxj∈J θj

 Estimation of the end

3. Phase time range The shortest interval that covers α and β at
100(1− γ)% i.e. the shortest interval [a, b] ⊂ T such that

P(a ≤ α ≤ β ≤ b|M) = 1− γ
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Chronologies

Hiatus

Detection of a hiatus between two phases θj, j ∈ J1 and θj, j ∈ J2

1. β1 = maxj∈J1 θj and α2 = minj∈J2 θj

2. Fix γ(= 95%). Can we find [b, a] such that

P(β1 < b < a < α2|observations) = γ?
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Chronologies

Applications : Palynozones
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Chronologies

Tardiglaciare
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Chronologies

Estimation

Posterior distribution of posterior distribution of duration
α (beginning) and β (end)

Detection of hiatus
there is no gap between two successive phases.
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Chronologies

To summarise
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