

Statistique Bayesienne appliquée à la datation en Archéologie

Anne Philippe

Travail en collaboration avec

- Marie-Anne Vibet (Univ. Nantes)
- Philippe Lanos (CNRS, Bordeaux)

Bayesian approach

Plan

Bayesian approach

Bayesian Central age model

Chronologies

Bayesian analysis to Interpreting Archaeological Data

The statistical modelling within the Bayesian framework is widely used by archaeologists :

- ▶ 1988 Naylor , J . C. and Smith, A. F. M.
- ▶ 1990 Buck C.E.
- 1994 Christen, J. A.
- etc

Examples

- Bayesian interpretation of 14C results , calibration of radiocarbon results :
- Constructing a calibration curve. to convert a measurement into calendar date
- Constructing a Age-Depth relationship to relate the sediment depth with its age.
- Bayesian models for relative archaeological chronology building.

Bayesian approach

Parametric model : $X_1, ... X_n \sim P_{\theta}^{(n)}$ with $\theta \in \Theta$

Principle : θ is a random variable with probability distribution π .

 \rightsquigarrow uncertainty to the unknown parameter θ .

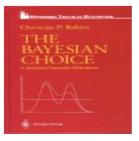
 Choice of π : the prior distribution π corresponds to our previous knowledge or belief about θ before observing the dataset

Bayesian Model :

- 1. Prior distribution : $\theta \sim \pi$
- 2. Conditionally on θ : $\mathbb{X} = (X_1, ... X_n) \sim P_{\theta}^{(n)} = P^{(n)}(\cdot | \theta)$
- \rightsquigarrow The posterior distribution of heta

$$\pi(\theta|x_1,...,x_n) \propto p^{(n)}(x_1,...,x_n|\theta)\pi(\theta)$$

The Bayesian Choice (1994,2001) X'ian Robert



Bayesian inference

Bayes estimate :

Under weak assumptions of regularity on the model :

- If θ_0 is the true parameter, then we have
 - $E(\theta|\mathbb{X}) \rightarrow \theta_0$ almost surely.
 - ▶ rate of convergence : $\sqrt{n}(E(\theta|\mathbb{X}) \theta_0) \rightarrow N(0, I^{-1}(\theta_0))$ (in distribution)

Confidence region :

Fix $\alpha \in (0, 1)$. Confidence region *I* such that

$$P(\theta \in I | X_1, ..., X_n) = 1 - \alpha.$$

where I is

- the smallest interval
- or the highest probability density (HPD) region

$$I = \{\theta | \pi(\theta | x, ..., x_n) > C(\alpha)\}$$

Observations

Each dating method provides a measurement M, which may represent :

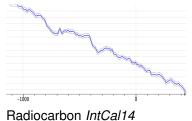
- a 14C age,
- a paleodose measurement in TL/OSL,
- an inclination, a declination or an intensity of the geomagnetic field

Relation with calendar date

$$M = g(\theta) + \epsilon$$

where

- θ is the calendar time
- g is a calibration function which relates the measurement to θ



Archaeological information

After the archaeological excavations, prior information is available on the dates.

Examples :

- Dated archaeological artefacts are contemporary, and so they define an archaeological event
- Stratigraphic Information which induces an order on the dates.
- the differences between two dates is known (possibly with an uncertainty).
- etc

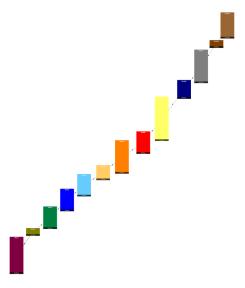
Bayesian approach

Example : Volcano in Equador

► Event :

Eruptive period with flow deposits down to the base of the volcano.

 Stratigraphic constraint on deposits



Bayesian Central age model

Plan

Bayesian approach

Bayesian Central age model

Chronologies

Medieval kiln of the potters in Lezoux (Auvergne)

- 1. Aim : Dating the last firing of the kiln
- 2. Prior information : any date between 0 and 2 000
- 3. Material found :
 - baked clays dated by
 - > AM : Estimation of the last time the temperature exceeded a critical point
 - TL : Estimation of the last firing
 - a charcoal
 - 14C : Estimation of the felling of the tree

Event Model

Lanos & Philippe (2016)

- ▶ For each i = 1,...,n : the measurement M_i is done on archaeological artefact with unknown calendar date t_i
- It is assumed that all archaeological artefacts are contemporary θ.

$$egin{aligned} & M_i = g_i(t_i) + \epsilon_i \ & t_i = heta + \lambda_i \ & heta & \sim & \mathsf{Uniform} \ (T) \ \mathsf{the study period} \end{aligned}$$

Assumptions on λ_i :

 λ_i represents the error between t_i and θ due to sampling problems external to the laboratory

 $\lambda_i \sim_{ind} \mathcal{N}(0, \sigma_i^2) \quad \quad \rightsquigarrow \text{Individual effects}$

Assumptions on ϵ_i :

 ϵ_i represents the experimental error with variance provided by the labora tory s_i^2 and the calibration error

A. Philippe

Prior on the individual variance : Non informative approach

- Jeffreys prior does not provide suitable solution.
- The prior distribution is improper and the posterior is not defined.
- Alternative : shrinkage Daniels (1999).

 $s_0^2/(\sigma_i^2+s_0^2)\sim \mathcal{U}(0,1)$ s₀ is fixed

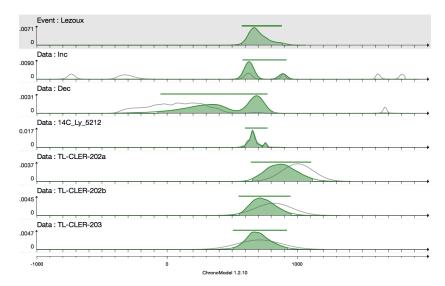
The density is of the form

$$p(\sigma_1^2, ..., \sigma_n^2) = \prod_{i=1}^n \frac{s_0^2}{(s_0^2 + \sigma_i^2)^2}.$$

Choice of s₀

- We fix s_0^2 as an estimate of the magnitude of error on the measurements.
- As s₀² is the median of the uniform shrinkage prior : this choice ensures that the parameter σ_i² has the same prior probability to be smaller or larger than s₀².

Illustration : Dating the last firing of the kiln Lezoux



Plan

Bayesian approach

Bayesian Central age model

Chronologies

Chronologies

- ► We want to build the chronology of *K* events
 - \rightsquigarrow a joint estimation of $\theta_1, ..., \theta_K$ the calendar dates of the events.
- An event is defined by a collection of dated artifacts.

Prior information

- 1. The stratigraphic constraints. They imply a partial order on $(\theta_1, ... \theta_K) := \vartheta$ $\rightsquigarrow S \subset T^K$
- 2. Duration information : Let $J \subset \{1, ..., K\}$

$$\max_{j\in J}\theta_j - \min_{j\in J}\theta_j \le \tau$$

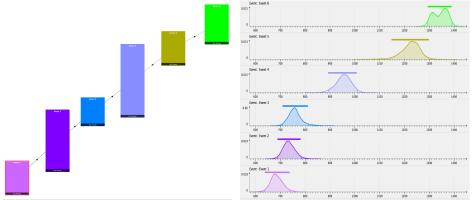
 τ is known

3. Hiatus information : Let $J_1, J_2 \subset \{1, ..., K\}$, $J_1 \cap J_2 = \emptyset$

$$\min_{j\in J_2}\theta_j - \max_{j\in J_1}\theta_j \ge \gamma$$

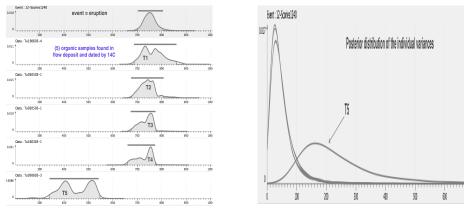
volcano : pyroclastic flows

6 pyroclastic flows from volcano (Ecuador) dated by 14C \rightsquigarrow 6 ordered events $S = \{\vartheta : \theta_1 \leq ... \leq \theta_6\}$



Robustness of event model

Focus on one pyroclastic flow



- Event posterior density remains almost insensitive to the outlier.
- Event model appears to be a robust statistics for calculating posterior mean of the date θ.

Phases

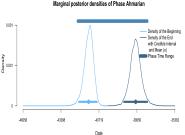
Definition

A phase is a group of Events defined on the basis of objective criteria such as archaeological, geological or environmental criteria.

Estimation of the phase θ_j , $j \in J \subset \{1, ..., K\}$

1. posterior distribution of $\alpha = \min_{j \in J} \theta_j \rightsquigarrow$ Estimation of the beginning

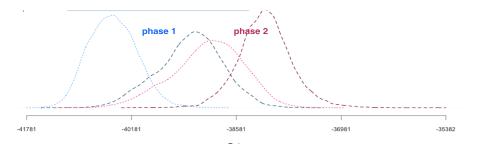
2. posterior distribution of $\beta = \max_{j \in J} \theta_j$ \rightsquigarrow Estimation of the end



3. Phase time range The shortest interval that covers α and β at $100(1 - \gamma)\%$ i.e. the shortest interval $[a, b] \subset T$ such that

$$P(a \le \alpha \le \beta \le b|M) = 1 - \gamma$$

Hiatus



Detection of a hiatus between two phases θ_j , $j \in J_1$ and θ_j , $j \in J_2$

1.
$$\beta_1 = \max_{j \in J_1} \theta_j$$
 and $\alpha_2 = \min_{j \in J_2} \theta_j$

2. Fix $\gamma(=95\%)$. Can we find [b,a] such that

$$P(\beta_1 < b < a < \alpha_2 | \text{observations}) = \gamma?$$

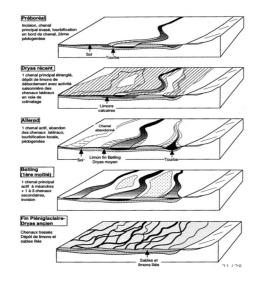
Applications : Palynozones

Lateglacial pollen zones in the Paris basin⁴

Aim : Defining chronological transitions between 4 phases

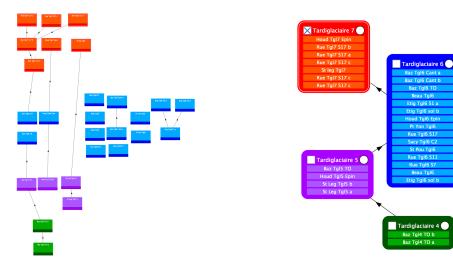
Tgl 7 : the younger Dryas Tgl 6 : the second part of Allerød Tgl 5 : the first part of Allerød

Tgl 4 : the older Dryas



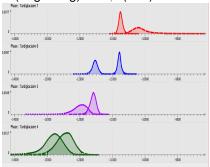
⁴ Leroyer *et al.* 2011, 2014

Tardiglaciare

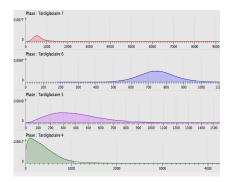


Estimation

Posterior distribution of α (beginning) and β (end)



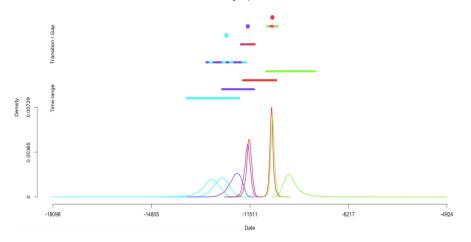
posterior distribution of duration



Detection of hiatus

there is no gap between two successive phases.

To summarise



A. Philippe

www.chronomodel.fr

