Chronological Modelling : some examples with ChronoModel

Marie-Anne Vibet Anne Philippe Philippe Lanos

Laboratoire de Mathémariques Jean Leray

ChronoModel software

- Tools for constructing chronologies
- Based on the Event model¹
- Several dating methods : 14C, TL/OSL, Archaeomagnetism, typo-chronology, ...
- A user-friendly interface
- Free and open-source cross-platform software (Mac, Windows, Linux)

www.chronomodel.fr

¹ Lanos and Philippe, 2016 to appear

The Event Model

The example of Lezoux

Medieval kiln of the potter's workshop in Lezoux (Auvergne, France) 2

Aim : Dating the last firing of the kiln

² Menessier-Jouannet et al. 1995

Lezoux - Modelling

• **Prior information** about the date of the last firing (θ) : any date between 0 and 2 000

> Prior distribution, $\theta \sim U_{[0,2000]}$

• Material found :

- baked clays dated by AM > Estimation of the last time the temperature exceeded a critical point TL > Estimation of the last firing
- a charcoal

14C > Estimation of the felling of the tree

=> Assumption of contemporaneity (Event model)

Lezoux - Calibration process

t1 Inclination (AM)

Calibration process :

Lezoux - Posterior densities

Posterior densities : Event (θ) and dates (t_i)

Individual std (σ_i)

- Combination of data from different dating techniques using **different** calibration curves
- Assumption of contemporaneity of the dates related to the target event
- Individual standard deviations (σ_i) allow for dating errors human mistakes, equipment malfunction or unknown and uncontrolled factors

Outlier data

The side effect of individual standard deviations (σ_i)

A toy example - Modelling

• **Prior information** about θ : Any date between 0 and 2 000

• Data included : 4 Gaussian distributed measurements M_i +/- s_i :

• $t_1 = 800 + -30$

•
$$t_2 = 850 + -30$$

- $t_3 = 900 + -30$
- $t_4 = 1500 + -30$

=> Assumption of contemporaneity

A toy example - Posterior densities

- θ is not affected by the outlying date t4 ($M_4 = 1500$)
- σ_1 to σ_3 have a mean value about 40 whereas the mean of σ_4 reaches 500

=> Robustness of the Event model

• No detection and no modelling of outlier dates but there is no need for it !

Temporal order constraint between events

The example of stratification

The example of Tungurahua

Ecuador's Tungurahua volcano³

Aim : Dating the succession of eruptions using a stratigraphic sequence of ashes deposits

³ Collaboration with Jean-Luc Le Pennec (IRD, Université de Clermont-Ferrand)

Tungurahua - Modelling

θ : date of one eruption

Prior information about θs : Any date between -2 000 to 2 000
+
13 layers with stratigraphic constraints
+

Time elapsed during each eruption neglected

=> Assumption of contemporaneity within each layer (Event model)

• Material found :

Several organic samples dated by ^{14}C

Tungurahua - Posterior densities

Tungurahua - Posterior densities without constraints

Tungurahua - Focus on layer 10

Dota : 72

Data : 73

Dota : 77

Data : 90

Marginal posterior densities of the event (θ) and the dates (t_i)

HPD Region (95%) in BC/AD Layer 11 : [967, 1047] Layer 10 : [706, 809] Layer 9 : [690, 777]

HPD Region (95%) in BC/AD Layer 11 : [973, 1049] Layer 10 : [654, 782] Layer 9 : [711, 853]

Without constraints

Stratigraphic constraints or temporal order constraints

- Strong prior information
- Events are constraint, data are not
- > Even if data does not satisfy the constraints, the posterior result for the events will still verifies them
- > The opposite is not true

Groups of events or Phases

The example of Palynozones

Lateglacial pollen zones in the Paris basin⁴

Aim : Defining chronological transitions between 4 phases

Tgl 7 : the younger Dryas **Tgl 6** : the second part of Allerød

Tgl 5 : the first part of Allerød **Tgl 4** : the older Dryas

⁴ Leroyer et al. 2011, 2014

Palynozones - Modelling (1)

Prior information about θs : Any date between -18 000 and -5 000 +
Stratigraphic constraints if any

• Material found : 28 bulk sediment samples dated by C14

> One date per Event

Palynozones - Modelling (2)

• **Prior information** about Phases : Temporal order constraints But no overlapping

> One Event belongs to only one Phase

• Marginal posterior information about a phase : Beginning : $\alpha = \min(\theta_{j,j=1...r})$ End : $\beta = \max(\theta_{j,j=1...r})$ Duration : $\tau = \beta - \alpha$

Palynozones - Posterior densities of the Phases

Palynozones - More information

Phase time range

The shortest interval that covers α and β at 95%

The $100(1 - \gamma)\%$ Phase time range is the shortest interval $[a, b] \subset T$ such that

$$P(a \le \alpha \le \beta \le b \,|\, \mathcal{M}) = 1 - \gamma \tag{1}$$

• Transition between two successive phases (for P_1 older than P_2): The shortest interval that covers β_1 and α_2

The $100(1 - \gamma)\%$ Phase transition is the shortest interval $[a, b] \subset T$ such that

$$P(a \le \beta_1 \le \alpha_2 \le b \,|\, \mathcal{M}) = 1 - \gamma \tag{2}$$

• Test for existence of a Gap between successive two phases : If it exists, the longest interval included in β_1 and α_2 .

The $100(1-\gamma)\%$ gap is the longest interval $[a,b] \subset T$ such that

$$P(\beta_1 \le a \le b \le \alpha_2 \,|\, \mathcal{M}) = 1 - \gamma \tag{3}$$

Palynozones - RChronoModel

Phases marginal posterior densities

Phases - Comments

Phases

- Groups of Events on the basis of some criteria
- Reflect the information given by the Events included in it
- No prior information about the distribution of Events in a Phase
- => No modelling of the Phase

Posterior information

- Phase : Beginning / End, Duration, Time range
- Succession of phases : Phases Gap, Phases Transition

Softwares

- ChronoModel version 1.5 but no Time range/ Phase Gap/ Phase Transition
- RChronoModel package available on CRAN for R users

www.chronomodel.fr

RChronoModel

