$TD \ n^{\circ} 1$ Tribus et fonctions mesurables

Dans tous les exercices, Ω , Ω_1 , Ω_2 et Ω_3 sont des ensembles.

Exercice 1 Soit $(A_i)_{i\in I}$ une famille quelconque de parties de Ω . Montrer que

$$(\underset{i \in I}{\cap} A_i)^c = \underset{i \in I}{\cup} A_i^c \quad \text{et} \quad (\underset{i \in I}{\cup} A_i)^c = \underset{i \in I}{\cap} A_i^c$$

Exercice 2 Dans chacuns des exemples suivants, determiner les ensembles $\bigcup_{n\in\mathbb{N}} A_n$ et $\bigcap_{n\in\mathbb{N}} A_n$:

- $-\ An:=[0,\tfrac{1}{n+1}]\ ,\quad \forall n\in\mathbb{N}$

- $-An := [x, y \frac{1}{n+1}], \quad \forall n \in \mathbb{N}$ $-An := [x, y \frac{1}{n+1}], \quad \forall n \in \mathbb{N}$ $-An := [x, y \frac{1}{n+1}], \quad \forall n \in \mathbb{N}$ $-An := [x + \frac{1}{n+1}, y], \quad \forall n \in \mathbb{N}$ $-A_n := B(O, \frac{1}{n+1}) \subset \mathbb{R}^2, \quad \forall n \in \mathbb{N}$ $-A_n := n\mathbb{Z}, \quad \forall n \in \mathbb{N}$

Exercice 3 Supposons que $\Omega = \{a, b, c\}$ est un ensemble à trois éléments. Donner les différentes tribus possibles sur Ω .

Exercice 4 Soit $S \subset \mathbb{R}$ un sous-ensemble dense dans \mathbb{R} . On note $\mathcal{C} \subset \mathcal{P}(\mathbb{R})$ l'ensemble de parties $de \mathbb{R} défini par$

$$\mathcal{C} := \{ [a, +\infty[, a \in S] \}$$

et $\sigma(\mathcal{C})$ la tribu engendrée par \mathcal{C} . Montrer que $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R})$.

Exercice 5 Si Ω est muni d'une partition, décrire la tribu engendrée par cette partition.

Exercice 6 Soit f une bijection de Ω dans lui même. Montrer que l'ensemble des parties A de Ω telles que

$$x \in A \Leftrightarrow f(x) \in A \text{ et } f^{-1}(x) \in A$$

est une tribu sur Ω

Exercice 7 Supposons que Ω est un ensemble infini et notons \mathcal{A} l'ensemble des parties de Ω qui sont finies ou de complementaire fini. Montrer que \mathcal{A} est une algèbre mais pas une tribu.

Exercice 8 Soit $(\mathcal{F}_{\alpha})_{\alpha \in A}$ une famille quelconque de tribus sur Ω . Montrer que $\mathcal{B} := \bigcap_{\alpha \in A} \mathcal{F}_{\alpha}$ est aussi une tribu. Donner un contre exemple dans le cas où on remplace l'intersection par une union.

Exercice 9 Montrer que $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2)$

Exercice 10 Soient $f: \Omega_1 \to \Omega_2$ et $g: \Omega_2 \to \Omega_3$ deux applications, A une partie de Ω_3 et B une partie de Ω_1 .

1. Comparer $g(g^{-1}(A))$ et A ansi que $f^{-1}(f(B))$ et B. Préciser les cas d'égalité.

2. Prouver que $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ et en déduire que la composée de deux fonctions mesurables est mesurable.

Exercice 11 Soient $f:\mathbb{R}\to\mathbb{R}$ et $g:\mathbb{R}\to\mathbb{R}$ deux fonctions mesurables. Montrer que les fonctions suivantes sont mesurables :

- $\max(f, g)$
- $-\min(f,g)$ $-\lambda f + \mu g \text{ avec } \lambda \text{ et } \mu \text{ dans } \mathbb{R}.$ $-f \cdot g.$

Expliquer pour quoi f^+ et f^- sont mesurables.