An inverse to the antisymmetrization map of Cartan \& Eilenberg

October 7, 2013

1 A contracting homotopy for the Chevalley-Eilenberg resolution

1.1 Convolution, Cofree coalgebras and coderivations

Definition 1.1.1. Let (A, μ) be an algebra object and (C, Δ) be a coalgebra object in some monoidal category (\mathcal{M}, \otimes). The set $\operatorname{Hom}_{\mathcal{M}}(C, A)$ can be endowed with an associative composition product \star, called convolution product, defined by

$$
f \star g:=\mu \circ(f \otimes g) \circ \Delta
$$

for all f and g in $\operatorname{Hom}_{\mathcal{M}}(C, A)$.
Let R be a commutative ring, (C, ϵ) be a cocommutative counital coalgebra in the category of graded R-modules, and V a graded R-submodule of C. Denote by $\Delta: C \rightarrow C \otimes_{R} C$ the coproduct of $C, \epsilon: C \rightarrow R$ its counit.

Definition 1.1.2. C is said to be connected if there exists morphism of coalgebras $\eta: R \rightarrow C$ such that $\epsilon \eta=\operatorname{Id}_{R}$ and $\bar{C}:=C / \operatorname{Im} \eta$ is a conilpotent coalgebra.

Assume that C is connected. C is said to be cofreely generated by V if there exists a morphism of graded R-modules $p: C \rightarrow V$ such that for every connected graded R-coalgebra D and every morphism of graded R-modules $\bar{f}: D \rightarrow V$, there exists a unique morphism of coalgebras $f: D \rightarrow C$ such that the following diagramm

commutes.
Denote by $|x|$ the degree of an homogenous element in V.
Proposition 1.1.3. Let V be a graded R-module.

- Two cofree connected cocommutative coalgebras cogenerated by V are isomorphic.
- Moreover, one of them is given by the connected cocommutative coalgebra proj: $S_{*} V \rightarrow V$, where $S_{*} V$ is the quotient of the (graded) tensor algebra $T_{*} V:=\oplus_{n \geq 0} V^{\otimes_{R} n}$ by the ideal generated by relations of the form $x \otimes y-(-1)^{|x||y|} y \otimes x . S_{*} V$ is a graded commutative algebra and can be equipped with a graded cocommutative coproduct $\Delta: S_{*} V \rightarrow S_{*} V \otimes_{R} S_{*} V$ turning it into a Hopf algebra such that every element in $V \subset S_{*} V$ is primitive. The projection morphism proj : $S_{*} V \rightarrow$ V is induced by the canonical projection of $T V$ on its length 1 term.
- In particular, the unique morphism of coalgebras $f: D \rightarrow C$ lifting a given linear map $\bar{f}: D \rightarrow V$, where D is any connected cocommutative coalgebra, can be defined thanks to convolution in $\operatorname{Hom}_{R}\left(D, S_{*} V\right)$ (see 1.1.1) via

$$
f:=\exp _{\star}(\bar{f}):=\sum_{n \geq 0} \frac{1}{n!} \bar{f}^{\star n}
$$

with $\bar{f}^{\star 0}:=\eta \epsilon$.

Definition 1.1.4. Let (C, Δ) be a coalgebra in some monoidal category, and $\phi: C \rightarrow C$ be an endomorphism of coalgebra. A coderivation of C along ϕ is a morphism $d: C \rightarrow C$ such that

$$
\Delta \circ d=(\phi \otimes d+d \otimes \phi) \circ \Delta
$$

When $\phi=\mathrm{Id}_{C}$, we simply say that d is a coderivation.
Proposition 1.1.5. Let $\bar{d}: S_{*} V \rightarrow V$ be a graded R-linear map. Then

- There exists a unique coderivation $d: S_{*} V \rightarrow S_{*} V$ along ϕ such that $\bar{d}=\operatorname{proj} \circ d$.
- d is given by $d:=\bar{d} \star \phi$.

Proposition 1.1.6. Let $\phi: C \rightarrow C$ and $\psi: C \rightarrow C$ be two coalgebra endomorphisms of a given coalgebra C in the category of graded R-modules, and d (resp. D) be a coderivation of C along ϕ (resp. along ψ). Then

- $\psi \circ d$ is a coderivation of C along $\psi \circ \phi$.
- Suppose that $\phi \circ \psi=\psi \circ \phi$. Then the graded bracket

$$
[d, D]:=d \circ D-(-1)^{|d||D|} D \circ d
$$

is a coderivation of C along $\phi \circ \psi$.

1.2 The Chevalley-Eilenberg resolution

Let L be a Lie algebra over some commmutative ring R of characteristic 0 with Lie bracket $[-,-]: L \wedge_{R} L \rightarrow L$ (Here Λ_{R} stands for the exterior product of R-modules). Denote by $U L$ its universal enveloping algebra, that is the algebra obtained by quotienting the tensor algebra $T L:=\oplus_{n \geq 0} L^{\otimes n}$ by the ideal generated by relations of the form $g \otimes g^{\prime}-g^{\prime} \otimes g-\left[g, g^{\prime}\right]$ when g and g^{\prime} run over L. The product of two elements x and y of $U L$ will be written $x y$. Recall that $U L$ can be endowed with

- a comultiplication $\Delta: U L \rightarrow U L \otimes_{R} U L$ determined by saying that every element of $L \subset U L$ is primitive,
- a counit $\epsilon: U L \rightarrow R$ and a unit $\eta: R \rightarrow U L$, both induced by the canonical ones of $T L$,
- an antipode $S: U L \rightarrow U L$ which is the only algebra antimorphism such that $S(g)=-g$ for all g in L,
turning it into Hopf algebra.
Following 1.1.1, this Hopf algebra structure gives rise to a convolution product \star on $\operatorname{End}_{R}(U L)$, the R-module of linear endomorphism of $U L$, such that

$$
f \star h:=\mu(f \otimes h) \Delta
$$

for all f and h in $\operatorname{End}_{R}(U L)$, where μ denotes the associative product of $U L$.
Definition 1.2.1. The first eulerian idempotent of L is the R-linear endomorphism pr $: U L \rightarrow U L$ defined by

$$
\operatorname{pr}:=\sum_{i \geq 0} \frac{(-1)^{i}}{i+1}(\operatorname{Id}-\eta \epsilon)^{\star i+1}
$$

Theorem 1.2.2. [PBW] The first eulerian idempotent pr takes its values in L. Moreover, pr : UL $\rightarrow L$ is a cofree connected cocommutative coalgebra cogenerated by the R-module L.

Proposition 1.2.3. [Eulerian idempotents] For all k and l in \mathbb{N}

$$
\frac{1}{k!l!} \mathrm{pr}^{\star k} \circ \mathrm{pr}^{\star l}=\left\{\begin{array}{cc}
\frac{1}{k!} \mathrm{p}^{\star k} & \text { if } k=l \\
0 & \text { if } k \neq l
\end{array}\right.
$$

Notice that L can be seen as a graded R-module concentrated in degree 0 . When $V=\left\{V_{i}\right\}_{i \geq 0}$ is a graded module, denote by $V[1]$ the shifted module whose degree i component is $V[1]_{i}:=V_{i-1}$.

Definition 1.2.4. The Chevalley-Eilenberg resolution of L is the chain complex of R-modules $C_{*}(L):=U L \otimes_{R} S L[1]$ with differential d: $C_{*}(L) \rightarrow C_{*-1}(L)$ of degree -1 defined by

$$
\begin{aligned}
d\left(x \otimes g_{1} \wedge \cdots \wedge g_{n}\right):= & \sum_{i=1}^{n}(-1)^{i+1} x g_{i} \otimes g_{1} \wedge \cdots \wedge \hat{g}_{i} \wedge \cdots \wedge g_{n} \\
& +\sum_{i<j}(-1)^{j+1} x \otimes g_{1} \wedge \cdots \wedge\left[g_{i}, g_{j}\right] \wedge \cdots \wedge \hat{g}_{j} \wedge \cdots \wedge g_{n}
\end{aligned}
$$

for all x in $U L$ and g_{1}, \ldots, g_{n} in L, where \hat{g}_{i} means that g_{i} has been omitted.
Remark 1.2.5. When $V=\left\{V_{n}\right\}_{n \geq 0}$ is a graded module concentrated in degree 1 , we will always identify $S_{n} V$ with the n-th exterior power $\Lambda^{n} V_{1}$.

Proposition 1.2.6. Define $\mathrm{PR}: C_{*}(L) \rightarrow L \otimes_{R} R \oplus R \otimes_{R} L[1] \cong L \oplus L[1]$ by

$$
\mathrm{PR}:=\operatorname{pr} \otimes \epsilon+\epsilon \otimes \text { proj }
$$

Then $\left(C_{*}(L), \mathrm{PR}\right)$ is a cofree cocommutative connected (graded) coalgebra generated by $L \oplus L[1]$. Moreover, the differential d is the unique coderivation generated by

$$
\begin{aligned}
\bar{d}: C_{*}(L) & \rightarrow L \oplus L[1] \\
x \otimes y & \mapsto
\end{aligned} \operatorname{pr}(x \operatorname{proj} y)+\epsilon(x) B(y)
$$

for all x in $U L$ and y in $S_{*} L[1]$, where $B: S_{*} L[1] \rightarrow L[1]$ coincides with the Lie bracket in degree 2 and is zero elsewhere.
Let \mathfrak{g} be a Lie algebra over a commutative ring \mathbb{K} containing \mathbb{Q}, and denote by $\mathfrak{g}[t]$ the $\mathbb{K}[t]$-Lie algebra $\mathfrak{g} \otimes_{\mathbb{K}} \mathbb{K}[t]$. An element of $\mathfrak{g}[t]$ is just a polynomial expression in t with coefficients in \mathfrak{g}. We have obvious isomorphisms

$$
U(\mathfrak{g}[t]) \cong U \mathfrak{g}[t]:=U \mathfrak{g} \otimes_{\mathbb{K}} \mathbb{K}[t]
$$

and

$$
C_{*}(\mathfrak{g}[t]) \cong C_{*}(\mathfrak{g})[t]:=C_{*}(\mathfrak{g}) \otimes_{\mathbb{K}} \mathbb{K}[t]
$$

Moreover, "formal integration on $[0,1]$ " gives a \mathbb{K}-linear map $I_{[0,1]}: \mathbb{K}[t] \rightarrow \mathbb{K}$, sending each t^{n} to $\frac{1}{n+1}$, providing a morphism of chain complexes

$$
I:=\operatorname{Id} \otimes I_{[0,1]}: C_{*}(\mathfrak{g})[t] \rightarrow C_{*}(\mathfrak{g})
$$

which behaves with respect to "formal derivation" $\frac{d}{d t}: t^{n} \mapsto n t^{n-1}$ as in the usual real case. The inclusion $\mathbb{K} \subset \mathbb{K}[t]$ induces an inclusion of chain complexes

$$
C_{*}(\mathfrak{g}) \hookrightarrow C_{*}(\mathfrak{g})[t]
$$

Given a \mathbb{K}-module $V, V[t]$ will always denote the $\mathbb{K}[t]$-module $V \otimes \mathbb{K}[t]$, and $\mathbb{K}[t]$-linear morphism from $V[t]$ to some other $\mathbb{K}[t]$-module will always be defined on V and extended to $V[t]$ by linearity. Note that all previous considerations can be easily generalized to the case when one replaces $\mathbb{K}[t]$ by $\mathbb{K}\left[t_{1}, t_{2}, \cdots, t_{n}\right]$, the algebra of polynomials in n indeterminates $t_{1}, t_{2}, \ldots, t_{n}$. From sequel, \otimes will always mean $\otimes_{\mathbb{K}}$.

Notation 1.2.7. We'll make an intensive use of Sweedler's notation to write iterated comultiplications in cocommutative coalgebras:

$$
\sum_{(x)} x^{(1)} \otimes x^{(2)} \otimes \cdots \otimes x^{(n)}
$$

will stand for

$$
\left(\Delta \otimes \operatorname{Id}^{\otimes(n-2)}\right) \circ\left(\Delta \otimes \operatorname{Id}^{\otimes(n-3)}\right) \circ \cdots \circ(\Delta \otimes \mathrm{Id}) \circ \Delta(x)
$$

Definition 1.2.8. Define two $\mathbb{K}[t]$-linear maps $\phi_{t}: U \mathfrak{g}[t] \rightarrow U \mathfrak{g}[t]$ and $A_{t}: U \mathfrak{g} \otimes \mathfrak{g}[t] \rightarrow U \mathfrak{g}[t]$ by

$$
\phi_{t}:=\sum_{k \geq 0} \frac{t^{k}}{k!} \operatorname{pr}^{\star k}
$$

and

$$
A_{t}(x, g):=A_{t}(x \otimes g) \sum_{(x)} \phi_{-t}\left(x^{(1)}\right) \phi_{t}\left(x^{(2)} g\right)
$$

for all x in $U \mathfrak{g}$ and g in \mathfrak{g}.

Proposition 1.2.9. - As endomorphisms of $U \mathfrak{g}\left[t_{1}, t_{2}\right]:=U \mathfrak{g} \otimes_{\mathbb{K}} \mathbb{K}\left[t_{1}, t_{2}\right]$:

$$
\phi_{t_{1}} \circ \phi_{t_{2}}=\phi_{t_{1} t_{2}}
$$

and

$$
\phi_{t_{1}} \star \phi_{t_{2}}=\phi_{t_{1}+t_{2}}
$$

- A_{t} takes its values in $\mathfrak{g}[t]$ i.e.

$$
A_{t}(x, g) \in \mathfrak{g}[t]
$$

for all x in $U \mathfrak{g}$ and g in \mathfrak{g}.

- $\frac{d \phi_{t}}{d t}=\phi_{t} \star \operatorname{pr}$ as a $\mathbb{K}[t]$-linear endomorphism of $U \mathfrak{g}[t]$.

Definition 1.2.10. Define $\mathbb{K}[t]$-linear morphisms of graded modules $a_{t}: C_{*}(\mathfrak{g})[t] \rightarrow C_{*}(\mathfrak{g})[t]$ and $b_{t}: C_{*}(\mathfrak{g})[t] \rightarrow C_{*+1}(\mathfrak{g})[t]$ by

$$
a_{t}\left(x \otimes g_{1} \wedge \cdots \wedge g_{n}\right):=\sum_{(x)} \phi_{t}\left(x^{(1)}\right) \otimes A_{t}\left(x^{(2)}, g_{1}\right) \wedge \cdots \wedge A_{t}\left(x^{(n+1)}, g_{n}\right)
$$

and

$$
b_{t}\left(x \otimes g_{1} \wedge \cdots \wedge g_{n}\right):=\sum_{(x)} \phi_{t}\left(x^{(1)}\right) \otimes \operatorname{pr}\left(x^{(2)}\right) \wedge A_{t}\left(x^{(3)}, g_{1}\right) \wedge \cdots \wedge A_{t}\left(x^{(n+2)}, g_{n}\right)
$$

Proposition 1.2.11. a_{t} is an endomorphism of coalgebra and b_{t} is a degree +1 coderivation of $C_{*}(\mathfrak{g})[t]$ along a_{t}.
The following theorem implies that the Chevalley-Eilenberg resolution is indeed a resolution:
Theorem 1.2.12. The degree $1 \mathbb{K}$-linear map $s: C_{*}(\mathfrak{g}) \rightarrow C_{*+1}(\mathfrak{g})$ defined by

$$
s:=I \circ b_{t}
$$

is a contracting homotopy of the chain complex $\left(C_{*}(\mathfrak{g}), d\right)$.
Proof. The theorem is a direct consequence of the three following facts:

- $\frac{d}{d t} a_{t}$ is a coderivation along a_{t} : Proposition 1.2.11 asserts that a_{t} is a coalgebra endomorphism i.e.

$$
\Delta a_{t}=\left(a_{t} \otimes a_{t}\right) \Delta
$$

Thus

$$
\Delta \frac{d}{d t} a_{t}=\frac{d}{d t} \Delta a_{t}=\frac{d}{d t}\left(a_{t} \otimes a_{t}\right) \Delta=\left(\frac{d}{d t} a_{t} \otimes a_{t}+a_{t} \otimes \frac{d}{d t} a_{t}\right) \Delta
$$

which exactely means that $\frac{d}{d t} a_{t}$ is a coderivation along a_{t}.

- Proposition 1.2 .11 (resp. 1.2.6) tells us that b_{t} (resp. d) is a coderivation along a_{t} (resp. the identity map of $C_{*}(\mathfrak{g})[t]$). By proposition 1.1.6, since the identity map obviously commutes with a_{t}, the graded bracket $\left[d, b_{t}\right]=d b_{t}+b_{t} d$ is a coderivation along a_{t}.
- The two preceeding coderivations are equal:

$$
\begin{equation*}
d b_{t}+b_{t} d=\frac{d}{d t} a_{t} \tag{1}
\end{equation*}
$$

As both sides of this equation are coderivations along a_{t}, propositions 1.1.5 and 1.2.6 imply that all we need to check is wether their postcompositioms by PR are equal. Since PR vanishes on $U \mathfrak{g} \otimes S_{\geq 2} \mathfrak{g}[1]$, we can restrict to length lower than 2 . Let x be an element of $U \mathfrak{g}$ and g be in \mathfrak{g} :

$$
\left(d b_{t}+b_{t} d\right)(x)=\sum_{(x)} \phi_{t}\left(x^{(1)}\right) \operatorname{pr}\left(x^{(2)}\right)=\phi_{t} \star \operatorname{pr}(x)
$$

But the last point of proposition 1.2.9 tells us that $\frac{d}{d t} \phi_{t}=\phi_{t} \star$ pr so that

$$
\operatorname{PR}\left(d b_{t}+b_{t} d\right)(x)=\operatorname{pr}\left(\frac{d}{d t} \phi_{t}(x)\right)=\operatorname{PR} \frac{d}{d t} a_{t}(x)
$$

which proves that (1) holds in length 0 . For length 1, we have, thanks to the cocommutativity of the coproduct and the properties of ϕ_{t} listed in proposition 1.2.9:

$$
\begin{aligned}
\left(d b_{t}+b_{t} d\right)(x \otimes g)= & \sum_{(x)} \phi_{t}\left(x^{(1)}\right) \operatorname{pr}\left(x^{(2)}\right) \otimes A_{t}\left(x^{(3)}, g\right)-\phi_{t}\left(x^{(1)}\right) A_{t}\left(x^{(2)}, g\right) \otimes \operatorname{pr}\left(x^{(3)}\right) \\
& -\phi_{t}\left(x^{(1)}\right) \otimes\left[\operatorname{pr}\left(x^{(2)}\right), A_{t}\left(x^{(3)}, g\right)\right]+\sum_{(x g)} \phi_{t}\left((x g)^{(1)}\right) \otimes \operatorname{pr}\left((x g)^{(2)}\right) \\
= & \sum_{(x)} \frac{d}{d t} \phi_{t}\left(x^{(1)}\right) \otimes A_{t}\left(x^{(2)}, g\right)+\phi_{t}\left(x^{(1)}\right) \otimes \operatorname{pr}\left(x^{(2)} g\right)-\sum_{(x)} \phi_{t}\left(x^{(1)}\right) \otimes\left[\operatorname{pr}\left(x^{(2)}\right), A_{t}\left(x^{(3)}, g\right)\right]
\end{aligned}
$$

But for any y in $U \mathfrak{g}$

$$
\begin{aligned}
\frac{d}{d t} A_{t}(y, g) & =-\sum_{(y)} \operatorname{pr}\left(y^{(1)}\right) A_{t}\left(y^{(2)}, g\right)+\sum_{(y)} \phi_{-t}\left(y^{(1)}\right) \phi_{t}\left((y g)^{(2)}\right) \operatorname{pr}\left((y g)^{(3)}\right) \\
& =-\sum_{(y)}\left[\operatorname{pr}\left(y^{(1)}\right), A_{t}\left(y^{(2)}, g\right)\right]+\operatorname{pr}(y g)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(d b_{t}+b_{t} d\right)(x \otimes g) & =\sum_{(x)} \frac{d}{d t} \phi_{t}\left(x^{(1)}\right) \otimes A_{t}\left(x^{(2)}, g\right)+\phi_{t}\left(x^{(1)}\right) \otimes \frac{d}{d t} A_{t}\left(x^{(2)}, g\right) \\
& =\frac{d}{d t} a_{t}(x \otimes g)
\end{aligned}
$$

which obviously implies the desired equality by applying PR .
Finally, we have

$$
s d+d s=I\left(b_{t} d+d b_{t}\right)=I \frac{d}{d t} a_{t}=a_{1}-a_{0}=\operatorname{Id}_{C_{*}(\mathfrak{g})}
$$

on $C_{*}(\mathfrak{g}) \subset C_{*}(\mathfrak{g})[t]$.

1.3 The Koszul resolution

The Chevalley-Eilenberg resolution of $U \mathfrak{g}$ enables one to build a new chain-complex, this time consisting of $U \mathfrak{g}$-bimodules:
Definition 1.3.1. The Koszul resolution of $U \mathfrak{g}$ is the complex of $U \mathfrak{g}$-bimodules $C K_{*}(\mathfrak{g})$ defined by

$$
C K_{*}(\mathfrak{g}):=U \mathfrak{g} \otimes S_{*} \mathfrak{g}[1] \otimes U \mathfrak{g}
$$

with differential $d^{K}: C K_{*}(\mathfrak{g}) \rightarrow C K_{*-1}(\mathfrak{g})$ defined by

$$
\begin{aligned}
d^{K}\left(1 \otimes g_{1} \wedge \cdots \wedge g_{n} \otimes 1\right):= & \sum_{i=1}^{n}(-1)^{i+1}\left(g_{i} \otimes g_{1} \wedge \cdots \wedge \widehat{g_{i}} \wedge \cdots \wedge g_{n} \otimes 1-1 \otimes g_{1} \wedge \cdots \wedge \widehat{g_{i}} \wedge \cdots \wedge g_{n} \otimes g_{i}\right) \\
& +\sum_{1 \leq i<j \leq n}(-1)^{j+1} 1 \otimes g_{1} \wedge \cdots \wedge\left[g_{i}, g_{j}\right] \wedge \cdots \wedge \widehat{g_{j}} \wedge \cdots \wedge g_{n} \otimes 1
\end{aligned}
$$

for all $g_{1}, g_{1}, \ldots, g_{n}$ in \mathfrak{g}.
Proposition 1.3.2. The degree +1 map $h: C K_{*}(\mathfrak{g}) \rightarrow C K_{*+1}(\mathfrak{g})$ defined in degree n by

$$
h\left(x \otimes g_{1} \wedge \cdots \wedge g_{n} \otimes y\right):=\sum_{(x)} \int_{0}^{1} d t \phi_{t}\left(x^{(1)}\right) \otimes \operatorname{pr}\left(x^{(2)}\right) \wedge A_{t}\left(x^{(3)}, g_{1}\right) \wedge \cdots \wedge A_{t}\left(x^{(n+2)}, g_{n}\right) \otimes \phi_{1-t}\left(x^{(n+3)}\right) y
$$

for all x, y in $U \mathfrak{g}$ and $g_{1}, g_{1}, \ldots, g_{n}$ in \mathfrak{g}, is a contracting homotopy.
As a corollary, we recover the well known following fact (at least when \mathfrak{g} is free over \mathbb{K}):
Corollary 1.3.3. If \mathfrak{g} is projective over \mathbb{K}, the Koszul resolution of $U \mathfrak{g}$ is a projective resolution of the Ug-bimodule Ug via the product map

$$
\begin{aligned}
C K_{0}(\mathfrak{g})=U \mathfrak{g}^{\otimes 2} & \rightarrow U \mathfrak{g} \\
x \otimes y & \mapsto
\end{aligned}
$$

2 An inverse to the antisymmetrization map

In this section, we drop the symbol $\sum_{(x)}$ in Sweedler's notation of iterated coproducts so that

$$
x^{(1)} \otimes \cdots \otimes x^{(n)}
$$

will stand for

$$
\sum_{x} x^{(1)} \otimes \cdots \otimes x^{(n)}
$$

2.1 The antisymmetrization morphism F_{*}

Definition 2.1.1. The bar resolution of $U \mathfrak{g}$ is the complex of $U \mathfrak{g}$-bimodules $B_{*}(U \mathfrak{g})$ defined in degree n by

$$
B_{n}(U \mathfrak{g}):=U \mathfrak{g} \otimes U \mathfrak{g}^{\otimes n} \otimes U \mathfrak{g}
$$

with differential d ${ }^{B}: B_{*}(U \mathfrak{g}) \rightarrow B_{*-1}(U \mathfrak{g})$ defined by

$$
\begin{aligned}
d^{B}\left(a<x_{1}|\cdots| x_{n}>b\right):= & a x_{1}<x_{2}|\cdots| x_{n}>b+\sum_{i=1}^{n-1}(-1)^{i} a<x_{1}|\cdots| x_{i} x_{i+1}|\cdots| x_{n}>b \\
& +(-1)^{n} a<x_{1}|\cdots| x_{n-1}>x_{n} b
\end{aligned}
$$

for all $a, b, x_{1}, \ldots, x_{n}$ in $U \mathfrak{g}$. The notation $a<x_{1}|\cdots| x_{n}>b$ stands for the element $a \otimes x_{1} \otimes \cdots \otimes x_{n} \otimes b$ in $B_{n}(U \mathfrak{g})=U \mathfrak{g} \otimes(n+2)$ and $1<x_{1}|\cdots| x_{n}>1$ will be abbreviated in $<x_{1}|\cdots| x_{n}>$ in the sequel.

Proposition 2.1.2. If \mathfrak{g} is projective over \mathbb{K}, the bar resolution defined above is a projective resolution of the Ug-bimodule $U \mathfrak{g}$ via the same map as $C K_{*}(\mathfrak{g})$.
Definition 2.1.3. The antisymmetrization map $F_{*}: C K_{*}(\mathfrak{g}) \rightarrow B_{*}(U \mathfrak{g})$ is the morphism of graded Ug-bimodules defined in degree n by

$$
F_{n}\left(1 \otimes g_{1} \wedge \cdots \wedge g_{n} \otimes 1\right):=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma)<g_{\sigma(1)}|\cdots| g_{\sigma(n)}>
$$

for all g_{1}, \ldots, g_{n} in \mathfrak{g}, where Σ_{n} denotes the n-th symmetric group and $\operatorname{sgn}(\sigma)$ stands for the signature of a permutation σ.
Theorem 2.1.4. [Cartan-Eilenberg] Suppose that \mathfrak{g} is projective over \mathbb{K}. Then, the antisymmetrization map $F_{*}: C K_{*}(\mathfrak{g}) \rightarrow$ $B_{*}(U \mathfrak{g})$ defined above is a morphism of projective resolutions of the Ug-bimodule $U \mathfrak{g}$ over the identity map $\operatorname{Id}_{U \mathfrak{g}}: U \mathfrak{g} \rightarrow U \mathfrak{g}$.

Denoting by $U \mathfrak{g}^{o p}$ the opposite algebra of $U \mathfrak{g}$, this implies that
Corollary 2.1.5. For any Ug-bimodule M, the map $\operatorname{Id}_{M} \otimes F_{*}: M \otimes_{U \mathfrak{g} \otimes U \mathfrak{g}^{o p}} C K_{*}(\mathfrak{g}) \rightarrow M \otimes_{U \mathfrak{g} \otimes U \mathfrak{g}^{o p}} B_{*}(U \mathfrak{g})$ is an homotopy equivalence of chain complexes.

2.2 Building a quasi-inverse to F_{*}

Definition 2.2.1. Let $G_{*}: B_{*}(U \mathfrak{g}) \rightarrow C K_{*}(\mathfrak{g})$ be the unique Ug-bimodule map defined by induction on the homological degree via

$$
G_{0}:=\operatorname{Id}: B_{0}(U \mathfrak{g})=U \mathfrak{g}^{\otimes 2} \rightarrow C K_{0}(\mathfrak{g})=U \mathfrak{g}^{\otimes 2}
$$

and

$$
\begin{equation*}
G_{n}\left(1<x_{1}|\cdots| x_{n}>1\right):=h G_{n-1} d^{B}\left(1<x_{1}|\cdots| x_{n}>1\right) \quad, \quad n>0 \tag{2}
\end{equation*}
$$

for all x_{1}, \ldots, x_{n} in $U \mathfrak{g}$.
Proposition 2.2.2. The map $G_{*}: B_{*}(U \mathfrak{g}) \rightarrow C K_{*}(\mathfrak{g})$ defined above is a morphism of resolutions of $U \mathfrak{g}$ over the identity map $\operatorname{Id}_{U \mathfrak{g}}: U \mathfrak{g} \rightarrow U \mathfrak{g}$.

Thanks to the explicit formula defining h, one can get rid of the induction in definition 2.2.1:

Theorem 2.2.3. The morphism of resolutions $G_{*}: B_{*}(U \mathfrak{g}) \rightarrow C K_{*}(\mathfrak{g})$ defined above satisfies
$G_{n}\left(\left\langle x_{1}\right| \cdots\left|x_{n}\right\rangle\right)=\int_{[0,1]^{n}} d t_{1} \cdots d t_{n} \Gamma_{n}\left(x_{1}^{(1)}, \cdots, x_{n}^{(1)}\right) \otimes B_{n}^{1}\left(x_{1}^{(2)}, \cdots, x_{n}^{(2)}\right) \wedge \cdots \wedge B_{n}^{n}\left(x_{1}^{(n+1)}, x_{n}^{(n+1)}\right) \otimes S \Gamma_{n}\left(x_{1}^{(n+2)},{ }^{(n+2)}, x_{n}^{(n+2)}\right) x_{1}^{(n+3)} x_{n}^{(n+3)}$
for all x_{1}, \ldots, x_{n} in $U \mathfrak{g}$. Here, $\Gamma_{n}: U \mathfrak{g}^{\otimes n} \rightarrow U \mathfrak{g}\left[t_{1}, \cdots, t_{n}\right]$ and $B_{n}^{i}: U \mathfrak{g}^{\otimes n} \rightarrow U \mathfrak{g}\left[t_{1}, \cdots, t_{n}\right], 1 \leq i \leq n$ are the operators defined by

$$
\Gamma_{n}\left(y_{1}, \cdots, y_{n}\right):=\phi_{t_{1}}\left(y_{1} \phi_{t_{2}}\left(y_{2} \phi_{t_{3}}\left(y_{3} \cdots \phi_{t_{n}}\left(y_{n}\right) \cdots\right)\right)\right)
$$

and

$$
B_{n}^{i}:=\Gamma_{n}\left(y_{1}^{(1)}, \cdots, y_{n}^{(1)}\right) \frac{d \Gamma_{n}}{d t_{i}}\left(y_{1}^{(2)}, \cdots, y_{n}^{(2)}\right)
$$

for all y_{1}, \ldots, y_{n} in $U \mathfrak{g}$.
Proof. Define \tilde{G}_{n} to be the $\mathbb{K}\left[t_{1}, \cdots, t_{n}\right]$-linear map equal to the integrand under $\int_{[0,1] n} d t_{1} \cdots d t_{n}$ of the right-hand side of (3). We have to proove that for all $n, G_{n}=\int_{[0,1]^{n}} d t_{1} \cdots, d t_{n} \tilde{G}_{n}$. Since both are bimodule maps that coincide in degree zero, we only have to check that the $\int_{[0,1]^{n}} d t_{1} \cdots d t_{n} \tilde{G}_{n}$'s satisfy the induction relation (2) on elementary tensors of the form $<x_{1}|\cdots| x_{n}>$.
Lemma 2.2.4. For every $n \geq 0$ and y_{1}, \ldots, y_{n}, y in $U \mathfrak{g}$,

$$
h \tilde{G}_{n}\left(<y_{1}|\cdots| y_{n}>y\right)=0
$$

where it's undersood that h has been extended to $C_{n}(\mathfrak{g})\left[t_{1}, \cdots, t_{n}\right]$ by $\mathbb{K}\left[t_{1}, \cdots, t_{n}\right]$-linearity.
Proof. Proof of lemma 2.2.4. Let $h_{t}: C_{*}(\mathfrak{g})\left[t_{1}, \cdots, t_{n}\right] \rightarrow C_{*}(\mathfrak{g})\left[t, t_{1}, \cdots, t_{n}\right]$ be the $\mathbb{K}\left[t_{1}, \cdots, t_{n}\right]$ linear map defined by

$$
h_{t}\left(a \otimes g_{1} \wedge \cdots \wedge g_{n} \otimes b\right):=\phi_{t}\left(a^{(1)}\right) \otimes \operatorname{pr}\left(a^{(2)}\right) \wedge A_{t}\left(a^{(3)}, g_{1}\right) \wedge \cdots \wedge A_{t}\left(a^{(n+2)}, g_{n}\right) \otimes \phi_{1-t}\left(a^{(n+3)}\right) b
$$

for all a, b in $U \mathfrak{g}$ and g_{1}, \ldots, g_{n} in \mathfrak{g}, so that

$$
h \tilde{G}_{n}=\int_{0}^{1} d t h_{t} \tilde{G}_{n}
$$

on $C_{*}(\mathfrak{g})\left[t_{1}, \cdots, t_{n}\right]$. We have

$$
\begin{aligned}
& h_{t} \tilde{G}_{n}\left(<y_{1}|\cdots| y_{n}>y\right)\left.=h_{t}\left(\Gamma_{n}\left(y_{1}^{(1)}\right) \cdots, y_{n}^{(1)}\right) \otimes B_{n}^{1}\left(y_{1}^{(2)}, \cdots, y_{n}^{(2)}\right) \wedge \cdots \wedge B_{n}^{n}\left(y_{1}^{(n+1)}, \cdot,, y_{n}^{(n+1)}\right) \otimes S \Gamma_{n}\left(y_{1}^{(n+2)}, \cdot, y_{n}^{(n+2)}\right) y_{1}^{(n+3)} \cdot y_{n}^{(n+3)}\right) \\
&=\phi_{t} \Gamma_{n}\left(y_{1}^{(1)} \cdots, y_{n}^{(1)}\right) \otimes \operatorname{pr}\left(\Gamma_{n}\left(y_{1}^{(2)}, \cdots, y_{n}^{(2)}\right)\right) \wedge A_{t}\left(\Gamma_{n}\left(y_{1}^{(3)}, \cdots, y_{n}^{(3)}\right), B_{n}^{1}\left(y_{1}^{(4)}, \cdots, y_{n}^{(4)}\right)\right) \wedge \cdots \\
& \cdots \wedge A_{t}\left(\Gamma_{n}\left(y_{1}^{(2 n+1)}, \cdots, y_{n}^{(2 n+1)}\right), B_{n}^{n}\left(y_{1}^{(2 n+2)}, \cdot, y_{n}^{(2 n+2)}\right)\right) \otimes \phi_{1-t}\left(\Gamma_{n}\left(y_{1}^{(2 n+3)}, \cdot, y_{n}^{(2 n+3)}\right)\right) S \Gamma_{n}\left(y_{1}^{(2 n+4)}, \cdot, y_{n}^{(2 n+4)}\right) y_{1}^{(2 n+5)} \cdots y_{n}^{(2 n+5)}
\end{aligned}
$$

But for all z_{1}, \ldots, z_{n} in $U \mathfrak{g}$, the identities of proposition 1.2.9 imply that

$$
\begin{aligned}
A_{t}\left(\Gamma_{n}\left(z_{1}^{(1)}, \cdots, z_{n}^{(1)}\right), B_{n}^{1}\left(z_{1}^{(2)}, \cdots, z_{n}^{(2)}\right)\right. & =\phi_{-t}\left(\Gamma_{n}\left(z_{1}^{(1)}, \cdots, z_{n}^{(1)}\right)\right) \phi_{t}\left(\frac{\partial \Gamma_{n}}{\partial t_{1}}\left(z_{1}^{(2)}, \cdots, z_{n}^{(2)}\right)\right) \\
& =t_{1} \operatorname{pr}\left(\Gamma_{n}\left(z_{1}, \cdots, z_{n}\right)\right)
\end{aligned}
$$

Thus, we see that by cocommutativity of the coproduct of $U \mathfrak{g}, h_{t} \tilde{G}_{n}\left(<y_{1}|\cdots| y_{n}>y\right)$ is invariant under the transposition that exchanges its first and second wedge factors, which implies that it must be zero.

We are now ready to proove that the $\int_{[0,1]^{n}} d t_{1} \cdots d t_{n} \tilde{G}_{n}$'s satisfy the induction relation (2). Indeed, the preceeding lemma implies that all terms but the first of $d^{B}\left(<x_{1}, \cdots, x_{n}>\right)=x_{1}<x_{2}|\cdots| x_{n}>+\cdots$ are sent to zero under $h_{t} \tilde{G}_{n-1}$. Writing $\tilde{G}_{n-1}^{\prime}, \Gamma_{n-1}^{\prime}$ and $B_{n-1}^{\prime i}$ for the operators $\tilde{G}_{n-1}, \Gamma_{n-1}$ and B_{n-1}^{i} where the variables t_{1}, \ldots, t_{n-1} have been changed to t_{2}, \ldots, t_{n}, one gets

$$
\begin{aligned}
h_{t_{1}} \tilde{G}_{n-1}^{\prime} d^{B}\left(<x_{1}|\cdots| x_{n}>\right)= & h_{t_{1}} \tilde{G}_{n-1}^{\prime}\left(x_{1}<x_{2}|\cdots| x_{n}>\right) \\
=\phi_{t_{1}}\left(x _ { 1 } ^ { (1) } \Gamma _ { n - 1 } ^ { \prime } \left(x_{2}^{(1)}, \cdots,\right.\right. & \left.\left.x_{n}^{(1)}\right)\right) \otimes \operatorname{pr}\left(x_{1}^{(2)} \Gamma_{n-1}^{\prime}\left(x_{2}^{(2)}, \cdots, x_{n}^{(2)}\right)\right) \wedge A_{t_{1}}\left(x_{1}^{(3)} \Gamma_{n-1}^{\prime}\left(x_{2}^{(3)}, \cdots, x_{n}^{(3)}\right), B_{n-1}^{\prime 1}\left(x_{2}^{(4)}, \cdots, x_{n}^{(4)}\right)\right) \wedge \cdots \\
& \cdots \wedge A_{t_{1}}\left(x_{1}^{(n+2)} \Gamma_{n-1}^{\prime}\left(x_{2}^{(2 n++1)}, x_{n}^{(2 n+1)}\right), B_{n-1}^{\prime n-1}\left(x_{2}^{(2 n+2)}, \cdots, x_{n}^{(2 n+2)}\right)\right) \otimes \\
& \otimes \phi_{1-t_{1}}\left(x_{1}^{(n+3)} \Gamma_{n-1}^{\prime}\left(x_{2}^{(2 n+\cdots)}, x_{n}^{(2 n+3)}\right)\right) S \Gamma_{n-1}^{\prime}\left(x_{2}^{(2 n+4)}, x_{n}^{(2 n+4)}\right) x_{2}^{(2 n+5)} x_{n}^{(2 n+5)}
\end{aligned}
$$

Since, for all z_{1}, \ldots, z_{n} in $U \mathfrak{g}$ and i in $\{1, \cdots, n-1\}$ the following identities hold

- $\phi_{t_{1}}\left(z_{1} \Gamma_{n-1}^{\prime}\left(z_{2}, \cdots, z_{n}\right)\right)=\Gamma_{n}\left(z_{1}, \cdots, z_{n}\right)$,
- $\operatorname{pr}\left(z_{1} \Gamma_{n-1}^{\prime}\left(z_{2}, \cdots, z_{n}\right)\right)=B_{n}^{1}\left(z_{1}, \cdots, z_{n}\right)$,
- $A_{t_{1}}\left(z_{1} \Gamma_{n-1}^{\prime}\left(z_{2}^{(1)}, \cdots, z_{n}^{(1)}\right), B_{n-1}^{i}\left(z_{2}^{(2)}, \cdots, z_{n}^{(2)}\right)\right)=B_{n}^{i+1}\left(z_{1}, \cdots, z_{n}\right)$,
- $\phi_{1-t_{1}}\left(z_{1} \Gamma_{n-1}^{\prime}\left(z_{2}^{(1)}, \cdots, z_{n}^{(1)}\right)\right) S \Gamma_{n-1}^{\prime}\left(z_{2}^{(2)}, \cdots, z_{n}^{(2)}\right)=S \Gamma_{n}\left(z_{1}^{(1)}, z_{2}, \cdots, z_{n}\right) z_{1}^{(2)}$,
this leads to

$$
h_{t_{1}} \tilde{G}_{n-1}^{\prime} d^{B}\left(<x_{1}|\cdots| x_{n}>\right)=\tilde{G}_{n}\left(<x_{1}|\cdots| x_{n}>\right)
$$

Thus, by an obvious change of variables, we get that

$$
\begin{aligned}
\int_{[0,1]^{n}} d t_{1} \cdots d t_{n} \tilde{G}_{n}\left(<x_{1}|\cdots| x_{n}>\right) & \left.=\int_{[0,1]^{n}} d t_{1} \cdots d t_{n} h_{t_{1}} \tilde{G}_{n-1}^{\prime} d^{B}\left(<x_{1}|\cdots| x_{n}\right\rangle\right) \\
& \left.=h \int_{[0,1]^{n-1}} d t_{1} \cdots d t_{n-1} \tilde{G}_{n-1} d^{B}\left(<x_{1}|\cdots| x_{n}\right\rangle\right)
\end{aligned}
$$

which prooves that the right-hand side of (3) satifies the induction relation (2) and concludes the proof of theorem 2.2.3.

As a consequence of theorem 2.2.3 and proposition 2.2.2, we have the following
Corollary 2.2.5. For any Ug-bimodule M, the pair of maps

$$
M \otimes_{U \mathfrak{g} \otimes U \mathfrak{g}^{o p}} B_{*}(U \mathfrak{g}) \xrightarrow[\operatorname{Id}_{M} \otimes G_{*}]{\mathrm{Id}_{M} \otimes F_{*}}>M \otimes_{U \mathfrak{g} \otimes U \mathfrak{g}^{o p}} C K_{*}(\mathfrak{g})
$$

is a deformation retract of chain complexes.
Note that the preceeding corollary means that $G_{*} \circ F_{*}=\operatorname{Id}_{C K_{*}(\mathfrak{g})}$, which follows easily from the properties of the eulerian idempotent and the B_{n}^{i} 's, and that there exists a graded map of $U \mathfrak{g}$-bimodules $H_{*}: B_{*}(U \mathfrak{g}) \rightarrow B_{*+1}(U \mathfrak{g})$ of degree +1 such that

$$
H_{*} \circ d^{B}+d^{B} \circ H_{*}=F_{*} \circ G_{*}-\operatorname{Id}_{B_{*}(U \mathfrak{g})}
$$

with the convention $B_{-1}(U \mathfrak{g}):=\{0\}$.
If the existence of H_{*} is a consequence of the fundamental lemma of calculus of derived functors, one may ask for an explicit formula for it, in view of further applications. It turns out that once again, the answer relies on the knowledge of some explicit contracting homotopy. Let's first recall the following standart result:

Definition-Proposition 2.2.6.

1. The degree +1 graded \mathbb{K}-linear map $h^{B}: B_{*}(U \mathfrak{g}) \rightarrow B_{*+1}(U \mathfrak{g})$ defined in degree n by

$$
h^{B}\left(a<x_{1}|\cdots| x_{n}>b\right):=1<a\left|x_{1}\right| \cdots \mid x_{n}>b
$$

for all $a, b, x_{1}, \ldots, x_{n}$ in $U \mathfrak{g}$, is a contracting homotopy of the bar resolution $B_{*}(U \mathfrak{g})$.
2. Moreover, the graded map $\tilde{h}: B_{*}(U \mathfrak{g}) \rightarrow B_{*+1}(U \mathfrak{g})$ defined from h^{B} by

$$
\tilde{h}:=h^{B} \circ d^{B} \circ h^{B},
$$

is still a contracting homotopy of $B_{*}(U \mathfrak{g})$, which satisfies in addition the gauge condition

$$
\tilde{h}^{2}=0
$$

Definition-Proposition 2.2.7. Let $H_{*}: B_{*}(U \mathfrak{g}) \rightarrow B_{*+1}(U \mathfrak{g})$ be the unique graded endomorphism of Ug-bimodule of degree +1 defined by induction on the degree n via

$$
H_{0}:=0: B_{0}(U \mathfrak{g}) \rightarrow B_{1}(U \mathfrak{g})
$$

and

$$
\begin{equation*}
H_{n+1}\left(<x_{1}|\cdots| x_{n+1}>\right):=\tilde{h} \circ\left(F_{n+1} G_{n+1}-\operatorname{Id}_{B_{n+1}(U \mathfrak{g})}-H_{n} d^{B}\right)\left(<x_{1}|\cdots| x_{n+1}>\right) \quad, \quad n \geq 0 \tag{4}
\end{equation*}
$$

for all x_{1}, \ldots, x_{n} in $U \mathfrak{g}$. Then H_{*} is a homotopy between $F_{*} G_{*}$ and $\operatorname{Id}_{B_{*}(U \mathfrak{g})}$.

Proof. Let's proove that H_{*} satisfies

$$
\begin{equation*}
H_{n-1} d^{B}+d^{B} H_{n}=F_{n} G_{n}-\operatorname{Id}_{B_{n}(U \mathfrak{g})} \quad, n \geq 0 \tag{5}
\end{equation*}
$$

by induction on n. For $n=0$ we have

$$
F_{0} G_{0}-\operatorname{Id}_{B_{0}(U \mathfrak{g})}=0=d^{B} H_{0}
$$

Assuming that (5) is true for all $0 \leq n \leq k$, using that $d^{B} \tilde{h}+\tilde{h} d^{B}=\operatorname{Id}$ in strictly positive degrees, we get

$$
\begin{aligned}
d^{B} H_{k+1}\left(<x_{1}|\cdots| x_{k+1}>\right)= & d^{B} \tilde{h}\left(F_{k+1} G_{k+1}-\operatorname{Id}_{B_{k+1}(U \mathfrak{g})}-H_{k} d^{B}\right)\left(<x_{1}|\cdots| x_{k+1}>\right) \\
= & \left(F_{k+1} G_{k+1}-\operatorname{Id}_{B_{k+1}(U \mathfrak{g})}-H_{k} d^{B}\right)\left(<x_{1}|\cdots| x_{k+1}>\right) \\
& -\tilde{h} d^{B}\left(F_{k+1} G_{k+1}-\operatorname{Id}_{B_{k+1}(U \mathfrak{g})}-H_{k} d^{B}\right)\left(<x_{1}|\cdots| x_{k+1}>\right)
\end{aligned}
$$

But, because $F_{*} G_{*}$ is an endomorphism of chain complex and thanks to the induction hypothesis:

$$
d^{B}\left(F_{k+1} G_{k+1}-\operatorname{Id}_{B_{k+1}(U \mathfrak{g})}-H_{k} d^{B}\right)=\left(F_{k} G_{k}-\operatorname{Id}_{B_{k}(U \mathfrak{g})}-d^{B} H_{k}\right) d^{B}=H_{k-1}\left(d^{B}\right)^{2}=0
$$

Thus

$$
d^{B} H_{k+1}\left(<x_{1}|\cdots| x_{k+1}>\right)=\left(F_{k+1} G_{k+1}-\operatorname{Id}_{B_{k+1}(U \mathfrak{g})}-H_{k} d^{B}\right)\left(<x_{1}|\cdots| x_{k+1}>\right)
$$

which prooves that (5) is true for $n=k+1$, when applied to tensors of the form $<x_{1}|\cdots| x_{k+1}>$. As both sides of (5) are morphisms of bimodules, this implies that they have to coincide on the whole $B_{k+1}(U \mathfrak{g})$.

One could ask why, in the preceeding proposition, we have used h^{B} instead of \tilde{h} to define the homotopy H_{*}, since the proof doesn't involve the gauge condition $\tilde{h}^{2}=0$. This choice of particular contraction is in fact motivated by the following result:

Proposition 2.2.8. Denote by $C_{*}: B_{*}(U \mathfrak{g}) \rightarrow B_{*}(U \mathfrak{g})$ the endomorphism of graded bimodule $F_{*} G_{*}-\mathrm{Id}_{B_{*}(U \mathfrak{g})}$. The homotopy H_{*} defined in 2.2.7 satisfies

$$
\begin{equation*}
H_{n}\left(<x_{1}|\cdots| x_{n}>\right)=\sum_{i=1}^{n-1}(-1)^{i+1} \tilde{h}\left(x_{1}\left(\tilde{h}\left(x_{2} \cdots \tilde{h}\left(x_{i-1} \tilde{h} C_{n-i+1}\left(<x_{i}|\cdots| x_{n}>\right)\right) \cdots\right)\right)\right) \tag{6}
\end{equation*}
$$

for all x_{1}, \ldots, x_{n} in $U \mathfrak{g}$.
Proof. Let $\tilde{H}_{*}: B_{*}(U \mathfrak{g}) \rightarrow B_{*+1}(U \mathfrak{g})$ be the degree +1 endomorphism of bimodule defined by the right hand side of (6) on tensors of the form $<x_{1}|\cdots| x_{n}>$.

As $d^{B}\left(<x_{1}|\cdots| x_{n}>\right)=x_{1}<x_{2}|\cdots| x_{n}>+R$, where R is a sum of tensors of the form $<y_{2}|\cdots| y_{n}>y_{n+1}$ on which $\tilde{h} \circ \tilde{H}_{n-1}$ vanishes because $\tilde{h}^{2}=0$, we see that

$$
\tilde{h}\left(C_{n}-\tilde{H}_{n-1} d^{B}\right)\left(<x_{1}|\cdots| x_{n}>\right)=\tilde{h} C_{n}\left(<x_{1}|\cdots| x_{n}>\right)-\tilde{h}\left(x_{1} \tilde{H}_{n-1}\left(<x_{2}|\cdots| x_{n}>\right)\right)=\tilde{H}_{n}\left(<x_{1}|\cdots| x_{n}>\right)
$$

which prooves that, as H_{*}, \tilde{H}_{*} satisfies the induction relation (4). Since $\tilde{H}_{0}=H_{0}=0$, they have to coincide on the whole $B_{*}(U \mathfrak{g})$.
Corollary 2.2.9. For all x in $U \mathfrak{g}$,

$$
H_{1}(<x>)=\int_{0}^{1} d t<\phi_{t}\left(x^{(1)}\right)\left|\operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right) \quad-<1\right| x>
$$

Proof. Let x be an element of $U \mathfrak{g}$. Then

$$
\begin{aligned}
H_{1}(<x>)= & \tilde{h} C_{1}(<x>) \\
= & h^{B} d^{B} h^{B}\left(\int_{0}^{1} d t \phi_{t}\left(x^{(1)}\right)<\operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right)-<x>\right) \\
= & h^{B}\left(\int_{0}^{1} d t \phi_{t}\left(x^{(1)}\right)<\operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right)-<\phi_{t}\left(x^{(1)}\right) \operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right)+<\phi_{t}\left(x^{(1)}\right)>\operatorname{pr}\left(x^{(2)}\right) \phi_{1-t}\left(x^{(3)}\right)\right. \\
& -<1>x) \\
= & h^{B}\left(\int_{0}^{1} d t \phi_{t}\left(x^{(1)}\right)<\operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right)-\int_{0}^{1} d t \frac{d}{d t}\left(<\phi_{t}\left(x^{(1)}\right)>\phi_{1-t}\left(x^{(2)}\right)\right)-<1>x\right) \\
= & \int_{0}^{1} d t<\phi_{t}\left(x^{(1)}\right)\left|\operatorname{pr}\left(x^{(2)}\right)>\phi_{1-t}\left(x^{(3)}\right)-<1\right| x>
\end{aligned}
$$

Remark 2.2.10. In fact, $h^{b} C_{1}=\tilde{h} C_{1}$ so choosing h^{b} instead of \tilde{h} in the definition of H_{*} would have led to the same result in degree 1. This doesn't seem to be true any longer in higher degrees, and it's not clear whether a compact formula like (6) could be obtained without the gauge condition.

