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K is a field of characteristic 0, and ⊗ stands for ⊗K. Σn denotes the symmetric group, that is the group of
permutations of the ordered set {1 < 2 < · < n}. Given a vector space V , V ⊗n is a representation of Σn via

φ : Σn → AutK(V ⊗n)
σ 7→ (v1 ⊗ · · · ⊗ vn 7→ vσ(1) ⊗ · · · ⊗ vσ(n))

and φ(σ) will always be replaced by σ in our formulas. T̄ V will stand for the reduced tensor vector space

T̄ V :=
⊕
n>1

V ⊗n

Every operad A will be assumed to verify A(0) = 0 and A(1) = KId. As, Com, Leib, and Zinb will stand
respectively for the operads encoding associative algebras, commutative algebras, right Leibniz algebras, and
left Zinbiel algebras.

1 The triple (Zinb, Leib, V ect)
In [Petit Livre Bleu], J-L Loday explores the notion of generalized bialgebra, and gives several examples of

such bialgebras. A type of bialgebra is the datum of
– Two operads C and A,
– A compatibility relation )( between each generating operation of A and each generating cooperation of Cc,

the cooperad associated to C.
A (Cc, A, )( )-bialgebra is then a K-module H, endowed with a C-coalgebra structure, an A-algebra structure,
and such that the compatibility relation between any n-ary operation and any m-ary cooperation holds when
applied to any n-uple of elements of H.

Examples 1.0.1.
– Non-unital associative and coassociative Hopf algebras are bialgebras of type (Asc, As, )(nuHopf ) with

)(nuHopf given by

δ◦µ = Id⊗Id+(12)+(Id⊗µ)◦(δ⊗Id)+(µ⊗Id)◦(23)◦(δ⊗Id)+(µ⊗Id)◦(Id⊗δ)+(Id⊗µ)◦(12)◦(Id⊗δ)+(µ⊗µ)◦(23)◦(δ⊗δ)

where δ is the generating binary cooperation of Comc and µ is the generating binary operation of As.
Remark that any unital and counital Hopf algebra (H,µ,∆, η : K → H, ε : H → K) for which the
compatibility relation takes the usual form

∆ ◦ µ = (µ⊗ µ) ◦ (23) ◦ (∆⊗∆)

gives rise to a non-unital one by considering its augmentation ideal Ker(ε) equipped with the reduced
coproduct δ defined by δ(x) := ∆(x)− x⊗ 1− 1⊗ x, for all x in Ker(ε).

– Cocommutative associative Hopf algebras, coassociative commutative Hopf algebras, and cocommutative
commutatives Hopf algebras are respectively bialgebras of type (Comc, As), (Asc, Com) and (Comc, Com),
when one chooses as compatibility relation the non-unital Hopf relation cited above.

– A (Zinbc, As, )(nusHopf )-bialgebra is a K-module H equipped with an associative multiplication mu : H ⊗
H → H and a Zinbiel coproduct δ : H → H ⊗ H such that the following non-unital semi Hopf relation
holds )(nusHopf :

δ◦µ = (12)+(µ⊗Id)◦⊗(Id⊗δ)+(µ⊗Id)◦(23)◦(δcom⊗Id)+(Id⊗µ)◦(12)◦(Id⊗δ)+(µ⊗µ)◦(23)◦(δcom⊗δ)
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where δcom is the symmetrized coproduct defined by δcom = δ + (12) ◦ δ.
This example is due to E. Burgunder [E. Burgunder, A symmetric version of Kontsevich graph complex
and Leibniz homology, ArXiv : mathQA/0804.2052] and, to our knowledge, is the only one involving the
operad Zinb present in the litterature.

Definition 1.0.2. [Petit Livre Bleu] Let H be a (Cc, A, )()-bialgebra.
1. Its primitive part, denoted by PrimH is the submodule of elements x of H such that

δ(x) = 0

for any cooperation δ in Cc(n), n > 2.
2. Let FrH be defined by FrH := {x ∈ H, δ(x) = 0, δ ∈ Cc(n), n > r}. H is said to be connected if

H = ∪r>1FrH

3. The compatibility relation )( is distributive if for any m-ary cooperation δ in Cc(m), and any n-ary
operation µ in A(n), it takes the form

δ ◦ µ =
∑
i∈I

(µi1 ⊗ · · · ⊗ µim) ◦ ωi ◦ (δr1 ⊗ · · · ⊗ δin

where I is a finite set of indices, and for any i in I
µi1 ∈ A(k1), · · · , µim ∈ A(km)
δi1 ∈ Cc(l1), · · · , δin ∈ Cc(ln)
k1 + · · ·+ km = l1 + · · ·+ ln = ri
ωi ∈ K[Σri

]

It is well known that connected (Comc, Com, )(nuHopf )-bialgebras are both free and cofree over their primitive
part : this is Hopf-Borel’s theorem. This result can be seen as a particular case of the following rigidity theorem :

Theorem 1.0.3. [Loday, Petit livre bleu] Let (Cc, A, )( ) be a type of generalized bialgebra and suppose that the
following hypothesis hold
(H0) For any operation µ and any cooperation δ, there is a distributive compatibility relation,
(H1) For any K-module V , the free A-algebra A(V ) is naturally equipped with a (Cc, A, )( )-bialgebra structure,

(H2iso) The natural Cc-coalgebra map ϕ : A(V ) → Cc(V ) lifting the projection on the length one summand
A(V )→ V = A(1)⊗ V is an isomorphism.

Then any connected (Cc, A, )( )-bialgebra H is both free and cofree over its primitive part i.e.

A(PrimH) ∼= H ∼= Cc(PrimH)

where the first isomorphism is an isomorphism of A-algebras and the second one is an isomorphism of Cc-
coalgebras.

Examples 1.0.4. (Comc, Com, )(nuHopf ) and (Zinbc, As, )(nusHopf ) both satisfy hypotheses (H0), (H1) and
(H2iso).

We are now going to introduce a new type of bialgebras involving the Zinbiel operad.

Definition 1.0.5. A (Zinbc, Leib, )(ZL )-bialgebra is a K-vector space H endowed with a Zinbiel coproduct
δ : H ⊗H ⊗H and a right Leibniz bracket ν : H ⊗H → H such that the following compatibility relation

δ ◦ ν = Id⊗ Id + (Id⊗ ν) ◦ (δ ⊗ Id) + (ν ⊗ Id) ◦ (23) ◦ (δ ⊗ Id)− Id⊗ (ν ◦ δ) )(ZL

holds.

Proposition 1.0.6. The free Leibniz algebra Leib(V ) is naturally equipped with a (Zinbc, Leib, )(ZL )-bialgebra
structure.
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Proof. Clearly, Leib(V ) = T̄ V = Zinbc(V ) as vector spaces which shows that Leib(V ) is endowed with a Zinbiel
coalgebra structure δ : Leib(V )→ Leib(V )⊗Leib(V ). So all we have to check is whether relation )(ZL is indeed
satisfied. Denote by [a, b] the Leibniz bracket ν(a⊗b) of two elements a and b of Leib(V ). In Sweedler’s notation,
relation )(ZL reads

δ[a, b] = a⊗ b+ [a(1), b]⊗ a(2) + a(1) ⊗ [a(2), b]− a⊗ [b(2), b(1)] (1)
Let’s proove that this relation holds by induction on |b|, the length and b :
– For |b| = 1, i.e. b ∈ V , (1) holds by definition of the cofree half-shuffle zinbiel coproduct δ and because the

last term a⊗ [b(2), b(1)] vanishes since δ(b) = 0.
– For |b| > 1. Assume that )(ZL holds for any b′ of length strictly lower than |b| and for any a. We can

suppose that b is of the form
b = [b′, v] , : |b′| = |b| − 1, v ∈ V

Thus

δ[a, b] =δ([a, [b′, v]])
=δ([[a, b′], v])− δ([[a, v], b′])
=[[a, b′](1), v]⊗ [a, b′](2) + [a, b′](1) ⊗ [[a, b′](2), v] + [a, b′]⊗ v − δ([[a, v], b′])

But the induction hypothesis allows us to express [a, b′](1)⊗ [a, b′](2) = δ([a, b′]) and δ[[a, v], b′] respectively
as

[a, b′](1) ⊗ [a, b′](2) = a⊗ b′ + [a(1), b
′]⊗ a(2) + a(1) ⊗ [a(2), b

′]− a⊗ [b′(2), b
′
(1)]

and, using again )(ZL to rewrite δ[a, v],

δ([[a, v], b′]) =[a, v]⊗ b′ + [[a, v](1), b
′]⊗ [a, v](2) + [a, v](1) ⊗ [[a, v]2, b′]− [a, v]⊗ [b′(2), b

′
(1)]

=[a, v]⊗ b′ + [[a(1), v], b′]⊗ a,(2) +[a(1), b
′]⊗ [a(2), v] + [a, b′]⊗ v

+ [a(1), v]⊗ [a(2), b
′] + a(1) ⊗ [[a(2), v], b′] + a⊗ [v, b′]− [a, v]⊗ [b′(2), b

′
(1)]

so that δ[a, b] takes the form

δ[a, b] =[a, v]⊗ b′ + [[a(1), b
′], v]⊗ a(2) + [a(1), v]⊗ [a(2), b

′]− [a, v]⊗ [b′(2), b
′
(1)]

+ a⊗ [b′, v] + [a(1), b
′]⊗ [a(2), v] + a(1) ⊗ [[a(2), b

′], v]− a⊗ [[b′(2), b
′
(1)], v] + [a, b′]⊗ v

− [a, v]⊗ b′ − [[a(1), v], b′]⊗ a,(2)−[a(1), b
′]⊗ [a(2), v]− [a, b′]⊗ v

− [a(1), v]⊗ [a(2), b
′]− a(1) ⊗ [[a(2), v], b′]− a⊗ [v, b′] + [a, v]⊗ [b′(2), b

′
(1)]

=a⊗ [b′, v] +
A︷ ︸︸ ︷

[[a(1), b
′], v]⊗ a(2) − [[a(1), v], b′]⊗ a(2) +

B︷ ︸︸ ︷
a(1) ⊗ [[a(2), b

′], v]− a(1) ⊗ [[a(2), v], b′]
− a⊗ [[b′(2), b

′
(1)], v]− a⊗ [v, b′]

using the right Leibniz relation satisfied by [−,−] to simplify terms A and B in the above expression, and
remembering that [b′, v] = b leads to

δ[a, b] = a⊗ b+ [a(1), b]⊗ a(2) + a(1) ⊗ [a(2), b]− a⊗ [[b′(2), b
′
(1)], v]− a⊗ [v, b′] (2)

Now remark that, applying once again the induction hypothesis gives

b(1) ⊗ b(2) = δ(b) = δ[b′, v] = b′ ⊗ v + [b′(1), v]⊗ b′(2) + b′(1) ⊗ [b′(2), v]

Thus, using the Leibniz relation to get the second equality,

[b(2), b(1)] = [v, b′] + [b′(2), [b′(1), v]] + [[b′(2), v], b′(1)] = [v, b′] + [[b′(2), b
′
(1)], v]

Which enables us to rewrite equation (2) as

δ[a, b] = a⊗ b+ [a(1), b]⊗ a(2) + a(1) ⊗ [a(2), b]− a⊗ [b(2), b(1)]

i.e. (1) is satisfied by a and b.
This shows that if )(ZL holds for any b′ such that |b′| < |b| and any a, it holds also for b and any a. Thus
)(ZL has to hold any elements a and b of Leib(V ).
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As a direct consequence of this proposition, we have the following

Theorem 1.0.7. The type of bialgebra (Zinbc, Leib, )(ZL ) satisfies hypotheses (H0), (H1) and (H2iso) of the
rigidity theorem 1.0.3. Thus any connected (Zinbc, Leib, )(ZL )-bialgebra is both free and cofree over its primitive
part.

Proof. It’s clear that )(ZL is a distributive compatibility relation so (H0) is fulfilled. The fact that (H1) holds is
exactly the content of proposition 1.0.6, and hypothesis (H2) is obviously satisfied since the Zinbiel coproduct
defined on Leib(V ) = T̄ V is by definition the cofree one.

2 Leibniz dialgebras and the triple (Zinb, Leib2, Leib)
Definition 2.0.8. A Leibniz dialgebra (or Leib2-algebra) is a K-module L endowed with two linear brackets
(−,−) : L⊗ L→ L and {−,−} : L⊗ L→ L such that

a) (−,−) is a right Leibniz bracket i.e.

((a, b), c) = ((a, c), b) + (a, (b, c))

b) {−,−} is a left Leibniz bracket i.e.

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}}

c) {−,−} is a left derivation of (−,−) i.e.

{a, (b, c)} = ({a, b}, c) + (b, {a, c})

d) (−,−) is a right derivation for {−,−} i.e.

({a, b}, c) = {(a, c), b}+ {a, (b, c)}

for all a, b and c in A.

Proposition 2.0.9. Let (L, (−,−), {−,−}) be a Leibniz dialgebra. Then the linear map [−,−] : L ⊗ L → L
defined by

[a, b] := (a, b)− {b, a}
for all a and b in L is a right Leibniz bracket.

Proof. Let a b and c be three elements of L. Then,

[[a, b], c] =([a, b], c)− {c, [a, b]}
=((a, b), c)− ({b, a}, c)− {c, (a, b)}+ {c, {b, a}}
∗=((a, c), b) + (a, (b, c))− {(b, c), a} − {b, (a, c)} − ({c, a}, b)− (a, {c, b}) + {{c, b}, a}+ {b, {c, a}}
=([a, c], b) + (a, [b, c])− {[b, c], a} − {b, [a, c]}
=[[a, c], b] + [a, [b, c]]

where the equality ∗ is a direct consequence of relations a), b), c) and d) of definition 2.0.8.

Leibniz dialgebras are algebras over an operad we denote by Leib2. This operad is the quotient of Free(`,a),
the free operad on two binary generators ` and a, by the operadic ideal (R) generated the following four relators

(R1) ` ◦1 ` − ` ◦1 ` (23)− ` ◦2 `,
(R2) a ◦2 a − a ◦1 a − a ◦2 a (12),
(R3) ` ◦1 a − a ◦1 ` (23)− a ◦2 `,
(R4) a ◦2 ` − ` ◦1 a − ` ◦2 a (12).
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Theorem 2.0.10. Let V be a K-module and denote by Leib2(V ) the free Leibniz dialgebra generated by V .
Then

Leib2(V ) ∼= T̄ T̄ V

as a K-module.

Proof. First, notice that the operadic ideal (R) genreated by the four relators (R1), (R2), (R3) and (R4) is also
generated by the four following ones

(R1) ` ◦1 ` − ` ◦1 ` (23)− ` ◦2 `,
(R2) a ◦2 a − a ◦1 a − a ◦2 a (12),

(R3′) a ◦1 ` + ` ◦2 a (123).
(R4) a ◦2 ` − ` ◦1 a − ` ◦2 a (12).

Choosing as leading terms respectively ` ◦2 `, a ◦1 a, a ◦1 ` and a ◦2 ` leads to the four following rewritting
rules :

(R1) ` ◦2 ` 7−→ ` ◦1 ` − ` ◦1 ` (23),
(R2) a ◦1 a 7−→ a ◦2 a − a ◦2 a (12),

(R3′) a ◦1 ` 7−→ − ` ◦2 a (123).
(R4) a ◦2 ` 7−→ ` ◦1 a + ` ◦2 a (12).

One has to check that any critical monomial is confluent.

Corollary 2.0.11. Leib2 is a Koszul operad.

Definition 2.0.12. A (Zinbc, Leib2, )(ZL2 )-bialgebra is a vector space H endowed with a Zinbiel coproduct
δ : H → H ⊗H and a Leib2-algebra structure given by brackets (−,−) : L ⊗ L → L and {−,−} : L ⊗ L → L
such that

– (H, δ, (−,−)) is a (Zinbc, Leib, )(ZL2 )-bialgebra i.e. δ and (−,−) satisfy relation )(ZL of definition 1.0.5,
– (H, δ, {−,−} ◦ (12)) is also a (Zinbc, Leib, )(ZL2 )-bialgebra.

Proposition 2.0.13. The free Leibniz dialgebra Leib2(V ) generated by a vector space V is naturally equipped
with a Zinbiel coproduct δ : Leib2(V )→ Leib2(V )⊗2 which turns it into a (Zinbc, Leib2, )(ZL2 )-bialgebra.

Proof. Set δ(v) = 0 for any v in V and note that δ is then fully determined by induction on the length
of monomials since if it exists, it has to satisfy )(ZL2 . Moreover, )(ZL2 indeed well-defines a linear map δ on
Leib2(V ), because proposition 2.0.10 implies that we have a PBW basis of Leib2(V ) consisting of monomials of
the form

({v1
1 , · · · , v1

i1}, {v
2
1 , · · · , v2

i2}, · · · , {v
n
1 , · · · , vnin})

where n ranges over all positive numbers and the vkj run over some fixed basis of V , where (a1, · · · , an) stands
for the right-iterated bracket

(((· · · (a1, a2), a3), · · · ), an)

and {v1, · · · , vk} for the iterated left-bracket

{v1, {v2, {· · · , {vk−1, vk} · · · }}}

Obviously, the naturality of δ comes from the fact that its definition doesn’t depend on the choice of basis
of V we are using.

Let us prove that δ is a left-Zinbiel coproduct, i.e. that it satisfies

(δ ⊗ Id)δ = (Id⊗ δcom) ◦ δ (3)

where, as usual, δcom := δ + (12) ◦ δ.
This we do one more time by induction on length, using the natural grading of Leib2(V ) given by the PBW

basis for which ({v1
1 , · · · , v1

i1
}, {v2

1 , · · · , v2
i2
}, · · · , {vn1 , · · · , vnin}) has length i1 + · · ·+ in.
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– Clearly, (3) holds on elements of V .
– Assume that (3) holds on any monomial of length strictly lower than n. Any PBW-monomial a of length
n is of the form

a = (a′, w) , |a′| = n− p < n− 1, w = {v1, · · · , vp}, v1, · · · , vp ∈ V

or of the form
b = {v, b′} , b′ = {v1, · · · , vn−1}, v, v1, · · · , vn−1 ∈ V

But, since δ is defined so that it satisfies )(ZL2 on (a′, w) and on {v, b′},

δ(a′, w) = a′ ⊗ w + (a′(1), w)⊗ a′(2) + a′(1) ⊗ (a′(2), w)− a′ ⊗ (w(2), w(1))

and
δ{v, b′} = b′ ⊗ v + {v, b′(1)} ⊗ b

′
(2) + b′(1) ⊗ {v, b

′
(2)}

Applying δ ⊗ Id to both equations and using relation )(ZL2 again gives respectively

(δ ⊗ Id) ◦ δ(a′, w) =a′(1) ⊗ a
′
(2) ⊗ w + (a′(1), w)(1) ⊗ (a′(1), w)(2) ⊗ a′(2)

+ a′(1)(1)
⊗ a′(1)(2)

⊗ (a′(2), w)− a′(1) ⊗ a
′
(2) ⊗ (w(2), w(1))

=a′(1) ⊗ a
′
(2) ⊗ w + a′(1) ⊗ w ⊗ a

′
(2) + (a′(1)(1)

, w)⊗ a′(1)(2)
⊗ a′(2) + a′(1)(1)

⊗ (a′(1)(2)
, w)⊗ a′(2)

− a′(1) ⊗ (w(2), w(1))⊗ a′(2) + a′(1)(1)
⊗ a′(1)(2)

⊗ (a′(2), w)− a′(1) ⊗ a
′
(2) ⊗ (w(2), w(1))

and

(δ ⊗ Id) ◦ δ{v, b′} =b′(1) ⊗ b
′
(2) ⊗ v + {v, b′(1)}(1) ⊗ {v, b′(1)}(2)} ⊗ b′(2) + b′(1)(1)

⊗ b′(1)(2)
⊗ {v, b′(2)}

=b′(1) ⊗ b
′
(2) ⊗ v + b′(1) ⊗ v ⊗ b

′
(2) + {v, b′(1)(1)

} ⊗ b′(1)(2)
⊗ b′(2) + b′(1)(1)

⊗ {v, b′(1)(2)
} ⊗ b′(2)

+ b′(1)(1)
⊗ b′(1)(2)

⊗ {v, b′(2)}

Now notice that the coZinbiel relation reads

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) + c(1) ⊗ c(2)(2) ⊗ c(2)(1)

in Sweedler’s notation. Applying it taking c = a′ and c = b′ in the two preceeding equations, and using
)(ZL2 to simplify the terms leads to

(δ ⊗ Id) ◦ δ(a′, w) =a′(1) ⊗ a
′
(2) ⊗ w + a′(1) ⊗ w ⊗ a

′
(2) − a

′
(1) ⊗ (w(2), w(1))⊗ a′(2) − a

′
(1) ⊗ a

′
(2) ⊗ (w(2), w(1))

+ (a′(1), w)⊗ a′(2)(1)
⊗ a′(2)(2)

+ (a′(1), w)⊗ a′(2)(2)
⊗ a′(2)(1)

+ a′(1) ⊗ (a′(2)(1)
, w)⊗ a′(2)(2)

+ a′(1) ⊗ (a′(2)(2)
, w)⊗ a′(2)(1)

+ a′(1) ⊗ a
′
(2)(1)

⊗ (a′(2)(2)
, w) + a′(1) ⊗ a

′
(2)(2)

⊗ (a′(2)(1)
, w)

=(a′(1), w)⊗ δcoma′(2) + a′(1) ⊗ δ
com(a′(2), w)

=(Id⊗ δcom)((a′(1), w)⊗ a′(2) + a′(1) ⊗ (a′(2), w))
=(Id⊗ δcom) ◦ δ(a′, w) = (Id⊗ δcom) ◦ δ(a)

and similarly, since δ(v) = 0, to

(δ ⊗ Id) ◦ δ{v, b′} =b′(1) ⊗ b
′
(2) ⊗ v + b′(1) ⊗ v ⊗ b

′
(2)

+ {v, b′(1)} ⊗ b
′
(2)(1)

⊗ b′(2)(2)
+ {v, b′(1)} ⊗ b

′
(2)(2)

⊗ b′(2)(1)

+ b′(1) ⊗ {v, b
′
(2)(1)

} ⊗ b′(2)(2)
+ b′(1) ⊗ {v, b

′
(2)(2)

} ⊗ b′(2)(1)

+ b′(1) ⊗ b
′
(2)(1)

⊗ {v, b′(2)(2)
}+ b′(1) ⊗ b

′
(2)(2)

⊗ {v, b′(2)(1)
}

=(Id⊗ δcom)({v, b′(1)} ⊗ b
′
(2) + b′(1) ⊗ {v, b

′
(2)})

=(Id⊗ δcom) ◦ δ({v, b′}) = (Id⊗ δcom) ◦ δ(b)

which proves that if (3) holds on words of length strictly lower than n, it holds for words of length n. By
induction on n, this shows that δ is a coZinbiel coproduct.
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Now notice that we have defined δ so that it satisfies )(ZL2 a priori only on PBW monomials, so it remains
to prove that the compatibility relation holds on arbitrary brackets, that is on brackets of PBW monomials.
The fact that (−,−) and δ satisfy )(ZL2 can be proved performing exactly the same computation that the one
we gave in the proof of proposition 1.0.6, so we only check here that {−,−} also satisfies )(ZL2 .

Let a and b be PBW monomials.
– If b is of the form {v1, · · · , vn}, )(ZL2 holds because (a, b) is also a PBW monomial.
– If not, b can be written as b = (b′, w), with b′ a PBW-monomial, i.e. an iterated bracket (−,−, · · · ,−),

with necessarily one less entry than b and on which we can assume that )(ZL2 holds, and where w is of the
form w = {v1, · · · , vn}.

δ(a, b) =δ(a, (b′, w))
=δ((a, b′), w)− δ((a,w), b′)
=(a, b′)⊗ w + ((a, b′)(1), w)⊗ (a, b′)(2) + (a, b′)(1) ⊗ ((a, b′)(2), w)− (a, b′)⊗ (w(2), w(1))
− (a,w)⊗ b′ − ((a,w)(1), b

′)⊗ (a,w)(2) − (a,w)(1) ⊗ ((a,w)(2), b
′) + (a,w)⊗ (b′(2), b

′
(1))

We know determine the primitive operad PrimZinbc(Leib2). The method we us is the one employed by Loday
in [Petit Livre Bleu] to show that the primitive operad of the type (Asc, Dup) is Mag.

Proposition 2.0.14. Let g be a right Leibniz algebra with bracket [−,−]g, and define three linear maps (−,−) :
T̄g⊗ T̄g→ T̄g, {−,−} : T̄g⊗ T̄g→ T̄g and δ : T̄g→ T̄g⊗ T̄g by setting :

– δ is the cofree conZinbiel coproduct obtained by identifying T̄g with Zinbc(g), the cofree coZinbiel coalgebra
cogenerated by the vector space g,

– (−,−) is the free right Leibniz bracket obtained by identifying T̄g with Leib(g), the free Leibniz algebra
generated g.

– {a, b} := (b, a)− [b, a] for all a and b in T̄g,
where [−,−] is the unique bracket defined inductively by

– [g, h] = [g, h]g if g and h are in g,
– [(a, g), b] = ([a, b], g) + (a, [g, b]) for all a, b in T̄g and g in g,
– [g, (b, h)] = (a, (b, h)) + (a, (h, b))− (a, [h, b]) for all b in T̄g and g, h in g.

Then (T̄g, (−,−), {−,−}, δ) is a (Zinbc, Leib2, )(ZL2 )-bialgebra.

Applying the preceeding proposition to the case g = Leib(V ), we get the following :

Theorem 2.0.15. The unique map of Leibniz dialgebras ψ : Leib2(V )→ T̄Leib(V ) lifting the canonical inclu-
sion V → T̄Leib(V ) is an isomorphism of coZinbiel coalgebras.

Corollary 2.0.16.
PrimZinbc(Leib2) = Leib

Definition 2.0.17. – An ideal of a Leibniz dialgebra (L, (−,−), {−,−}) is a linear subspace I such that
(I, L), (L, I), {I, L)} and {L, I} are all contained in I.

– Let (g, [−,−]g) be a Leibniz algebra. The universal enveloping Leibniz dialgebra of g, denoted ULD(g),
is the quotient of the free Leibniz dialgebra generated by g by the ideal I generated by elements of the form
(g, h)− {h, g} − [g, h]g, i.e.

ULD(g) := Leib2(g)/< (g, h)− {h, g} − [g, h]g , g, h ∈ g >

Theorem 2.0.18. The triple (Zinb, Leib2, Leib) is a good triple of operads.

3 Homology of Leibniz dialgebras
Definition 3.0.19. A Zinbiel dialgebra (or Zinb2-algebra) is a vector space Z equipped with two products
�: Z ⊗ Z → Z and ≺: Z ⊗ Z → Z satisfying the four following relations

1. (a ≺ b) ≺ c = a ≺ (b ≺ c+ c ≺ b),
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2. a � (b � c) = (a � b+ b � a) � c,
3. (a ≺ b) � c = a ≺ (b � c) + a � (c ≺ b),
4. a � (b ≺ c) = (a � b) ≺ c+ (b ≺ a) � c,

for all a, b and c in Z.
Zinbiel dialgebras are encoded by an algebraic operad we denote Zinb2.

Proposition 3.0.20. Zinb2 is the Koszul dual of Leib2, i.e.

(Leib2)! = Zinb2

The knowledge of the Koszul dual of Leib2 enables us to determine the operadic homology theory of Leibniz
dialgebras :

Definition 3.0.21. Let (L, (−,−), {−,−}) be a Leibniz dialgebra. The Leibniz dialgebra chain complex of
L, denoted by CLD∗(L), is the graded vector space defined in degree n by

CLDn(L) := K[{0, 1}n−1]⊗ L⊗n

equipped with the differential dLD : CLD∗(L)→ CLD∗−1(L) defined in degree n by

dLD
(
(ε2, · · · , εn) < x1| · · · |xn >

)
:=

∑
16i<j6n

(−1)j(ε2, · · · , ε̂j , · · · , εn) < x1| · · · |xi−1|(xi, xj)εj | · · · |x̂j | · · · |xn >

for all ε2, ..., εn in {0, 1}, and x1, ..., xn in L, where the bracket (x, y)ε is defined by

(x, y)ε :=
{

(x, y) if ε = 1,
{y, x} if ε = 0.

and where the notation (ε2, · · · , εn) < x1| · · · |xn > stands for the length n elementary tensor (ε2, · · · , εn)⊗x1⊗
x2 ⊗ · · · ⊗ xn and the symbol x̂j means as usual that xj has been omitted.

Proposition 3.0.22. The graded vector space CLD∗(L) equipped with the degree −1 map dLD defined above is
indeed a chain complex, i.e.

dLD ◦ dLD = 0

Moreover, its homology, that we denote HLD∗(L) := H∗(CLD∗(L), dLD), is the operadic homology of the L
prescribed by the theory of operads, meaning that it can obtained as the homology of the (graded) cofree Zinb2-
coalgebra cogenerated by L[1] endowed with the unique coderivation extending the canonical twisting cochain
κ : (Zinb2)c(L[1])→ L[1].

The canonical morphism of operads Leib→ Leib2 induces a morphism of operads (Leib2)! → Leib! and thus,
for any Leibniz dialgebra (L, (−,−), {−,−}) , a morphism of chain complexes

CL∗(LLeib)→ CLD∗(L)

where LLeib denotes the underlying Leibniz algebra obtained from L by only remembering the Leibniz bracket
[−,−] := (−,−)− {−,−} ◦ (12).

Taking L = ULD(g) for some Leibniz algebra g and precomposing this morphism with the one induced at
the level of chin complexes by the inclusion of Leibniz algebras g ↪→ (ULD(g))Leib, we get a morphisms of chain
complexes

φ : CL∗(g)→ CLD∗(ULD(g)) (4)

Proposition 3.0.23. The morphism of chain complexes φ : CL∗(g)→ CLD∗(ULD(g)) defined above is given in
degree n by the following explicit formula :

φ(< g1| · · · |gn >) =
∑

ε∈{0,1}n−1

(−1)c(ε)ε < g1| · · · |gn >

where the integer c(ε) is the number of 0’s in the multi-index ε.

Notice that (Leib(V ), [−,−]), the free Leibniz algebra generated by some vector space V , can be seen as a
Leibniz dialgebra by setting (−,−) := [−,−] and {−,−} := [−,−] ◦ (12).
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Proposition 3.0.24. The universal enveloping dialgebra of a vector space V seen as abelian Leibniz algebra is
Leib(V ) endowed with the dialgebra structure defined above.

Proposition 3.0.25. For any vector space V seen as an abelian Leibniz algebra, the map φ of (4) induces an
isomorphism in homology i.e.

Hn(φ) : HLn(V ) = V ⊗n
∼=−→ HLDn(ULD(V )) = HLDn(Leib(V ))

is an isomorphism for all n > 0

Proof. Let n be a positive integer and recall that, as a vector space, Leib(V ) = T̄ V and V ⊂ Leib(V ), and that
the Leib2-brackets are given by (−,−)1 = (−,−)0 = [−,−], the free Leibniz bracket on Leib(V ).

The fact that HLDn(Leib(V )) is “smaller” than K[{0, 1}n−1]⊗ V ⊗n is a consequence of the following

Lemma 3.0.26. Any n-cycle in CLDn(Leib(V )) is homologeous to a n-cycle in K[{0, 1}n−1]⊗V ⊗n ⊂ CLDn(Leib(V ))

Before proving the lemma, let us show how to use it to establish the proposition. Fix an integer n.
First notice that Hn(φ) is clearly injective because φ takes its values in K[{0, 1}n−1]⊗ V ⊗n which is not hit

by dLD since any tensor in the image of an element under dLD has to contain a factor of length greater than 2.
Let us show that Hn(φ) is surjective, i.e. that any cycle ω in CLDn(Leib(V )) is, modulo some boundary, in

the image of φ. Thanks to lemma 3.0.26, we can restrict to the case when ω is a cycle of the form

ω =
∑
ε

ε < vε1| · · · |vεn >

where the vεi ’s are in V .

Proof of lemma 3.0.26. Let ω =
∑
ε ε < xε1| · · · , xεn > be an arbitrary element in CLDn(Leib(V )), where the ε’s

are multi-indices in {0, 1}n−1 (possibly redundant) and the xi’s are elements of Leib(V ) = T̄ V . Since for any
ε = (ε2 · · · , εn), any y in Leib(V ) and v ∈ V

dLD
(
(ε2, · · · , εn, 1) < x1| · · · |xn−1|y|v >

)
=(−1)nε < x1| · · · |xn−1|[y, v] > +

∑
ε′

ε′ < zε
′

1 | · · · zε
′

n−1|y >

+
∑
ε′′

ε′ < zε
′′

1 | · · · zε
′′

n−1|v >

where the zε′i ’s and the zε′′i ’s are elements of Leib(V ), we can assume that xεn is in V for all ε (because applying
the preceeding equality recursively to lower the degree of the last factor shows that ω is at least homologeous
to a sum of tensors having this property).

Now suppose that ω is homologeous to a cycle of the form

ω′ :=
∑
ε

ε < xε1| · · · |xεk|vεk+1| · · · |vεn >

where k < n and the vεi ’s have length 1. Then

0 = dLDω = dLDω′ =
∑
ε

∑
i<j6k

(−1)jεj < xε1| · · · |[xεi , xεj ]| · · · |x̂εj | · · · |x
ε
k|vεk+1| · · · |vεn >

+
∑
ε

∑
i6k<j

(−1)jεj < xε1| · · · |[xεi , vεj ]| · · · |xεk|vεk+1| · · · |v̂εj | · · · |v
ε
n >

+
∑
ε

∑
k<i<j

(−1)jεj < xε1| · · · |xεk|vεk+1| · · · |[vεi , vεj ]| · · · |v̂εj | · · · |v
ε
n >

where εj := (ε2, · · · , ε̂j , · · · , εn) if ε = (ε2, · · · , εn). But looking at the elements located at the k-th place and
at the i− th place of each tensor appearing in the right-hand side of the preceeding equation, we can see that
for length reasons, it implies
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(S)



∑
ε

|xε
k
|>1

∑
k<j

(−1)jεj < xε1| · · · |[xεk, vεj ]| · · · |v̂εj | · · · |v
ε
n >= 0

∑
ε

|xε
k
|>1

∑
k<i<j

(−1)jεj < xε1| · · · |xεk| · · · |[vεi , vεj ]| · · · |v̂εj | · · · |v
ε
n >= 0

Now write any xεk of length greater than 1 as a bracket of the form xεk = [yεk, vεk], with vεk in V and yεk
in Leib(V ). As the Leibniz bracket [−,−] is the free one, we can replace every xεk by yεk|vεk and any εj by
(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) in the second equation of (S) so that∑

ε

|xε
k
|>1

∑
k<i<j

(−1)j(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |yεk|vεk| · · · |[vεi , vεj ]| · · · |v̂εj | · · · |v
ε
n >= 0 (5)

Similarly, the definition of the free bracket enables us to replace each [xεk, vεj ] = [[yεk, vεk], vεj ] by yεk|vεk|vεj and
any εj by (ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) in the first equation of (S) to get∑

ε

|xε
k
|>1

∑
k<j

(−1)j(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |yεk|vεk|vεj | · · · |v̂εj | · · · |v
ε
n >= 0 (6)

which implies both∑
ε

|xε
k
|>1

∑
k<j

(−1)j(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |yεk|[vεk, vεj ]| · · · |v̂εj | · · · |v
ε
n >= 0 (7)

and ∑
ε

|xε
k
|>1

∑
k<j

(−1)j(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |[yεk, vεj ]|vεk| · · · |v̂εj | · · · |v
ε
n >= 0 (8)

by applying respectively Id⊗k ⊗ [−,−]⊗ Id⊗n−k−1 and Id⊗k−1 ⊗ [−,−]⊗ Id⊗n−k ◦ (k k + 1) to (6).
Now define the n+ 1-chain α by

α :=
∑

ε,

|xε
k
|>1

(ε2, · · · , εk, 1, · · · , εn) < xε1| · · · |yεk|vεk| · · · |vεn >
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So that

dLD(α) =
∑

ε

|xε
k
|>1

∑
k<i<j

(−1)j+1(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |yεk|vεk| · · · |[vεi , vεj ]| · · · |v̂εj | · · · |v
ε
n >

+
∑

ε

|xε
k
|>1

∑
k<j

(−1)j+1(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |yεk|[vεk, vεj ]| · · · |v̂εj | · · · |v
ε
n >

+
∑

ε

|xε
k
|>1

∑
k<j

(−1)j+1(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |[yεk, vεj ]|vεk| · · · |v̂εj | · · · |v
ε
n >

+
∑

ε

|xε
k
|>1

∑
i<k<j

(−1)j+1(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |[xεi , vεj ]| · · · |yεk|vεk| · · · |v̂εj | · · · |v
ε
n >

+ (−1)k+1
∑

ε

|xε
k
|>1

ε < xε1| · · · |xεk|vεk+1| · · · |vεn >

+ (−1)k+1
∑

ε

|xε
k
|>1

∑
i<k

ε < xε1| · · · |[xεi , vεk] · · · |yεk|vεk+1| · · · |vεn >

+ (−1)k
∑

ε

|xε
k
|>1

∑
i<k

(ε2, · · · , εk−1, 1, · · · , εn) < xε1| · · · |[xεi , yεk]| · · · |xεk−1|vεk| · · · |vεn >

+
∑

ε

|xε
k
|>1

∑
i<j<k

(−1)j(ε2, · · · , ε̂j , · · · , εk, 1, · · · , εn) < xε1| · · · |[xεi , xεj ]| · · · |x̂εj | · · · |y
ε
k|vεk| · · · |vεn >

Equations (5), (7) and (8) imply that the first three sums in this expression have to vanish, which leads to∑
ε

|xε
k
|>1

ε < xε1| · · ·|xεk|vεk+1| · · · |vεn >= (−1)kdLD(α)

+
∑

ε

|xε
k
|>1

∑
i<k<j

(−1)j+k(ε2, · · · , εk, 1, · · · , ε̂j , · · · , εn) < xε1| · · · |[xεi , vεj ] · · · |yεk|vεk| · · · |v̂εj | · · · |v
ε
n >

+
∑

ε

|xε
k
|>1

∑
i<k

ε < xε1| · · · |[xεi , vεk] · · · |yεk|vεk+1| · · · |vεn >

−
∑

ε

|xε
k
|>1

∑
i<k

(ε2, · · · , εk−1, 1, · · · , εn) < xε1| · · · |[xεi , yεk]| · · · |xεk−1|vεk| · · · |vεn >

−
∑

ε

|xε
k
|>1

∑
i<j<k

(−1)j+k(ε2, · · · , ε̂j , · · · , εk, 1, · · · , εn) < xε1| · · · |[xεi , xεj ]| · · · |x̂εj | · · · |y
ε
k|vεk| · · · |vεn >

This proves that
∑

ε

|xk|>1
ε < xε1| · · · |xεk|vεk+1| · · · |vεn > is homologeous to a chain of the form∑

ε′

ε′ < xε
′

1 | · · · |xε
′

k |vε
′

k+1| · · · |vε
′

n >

such that
maxε′ |xε

′

k | < maxε|xεk| =: Nk(ω′)
and thus so is ω′. By decreasing induction on Nk(ω′), this proves that ω′ is homologeous to a cycle of the form∑

ε′′

ε′′ < xε
′′

1 | · · · |xε
′′

k−1|vε
′′

k | · · · vε
′′

n > , vε
′′

i ∈ V

and thus so is ω.
By decreasing induction on the integer k, this shows that ω is indeed homologeous to a cycle in elements of

V , i.e. in K[{0, 1}n−1]⊗ V ⊗ ⊂ CLDn(Leib(V )), which concludes the proof of the lemma.
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Theorem 3.0.27. For any Leibniz algebra g,

HLD∗(ULD(g)) ∼= HL∗(g)

Proof. The general case can be reduced to the abelian one by the following standard spectral sequence argument :
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