A very good triple of operads

Salim RIVIERE

December 2013
\mathbb{K} is a field of characteristic 0 , and \otimes stands for $\otimes_{\mathbb{K}} . \Sigma_{n}$ denotes the symmetric group, that is the group of permutations of the ordered set $\{1<2<\cdot<n\}$. Given a vector space $V, V^{\otimes n}$ is a representation of Σ_{n} via

$$
\begin{aligned}
\phi: \Sigma_{n} & \rightarrow \operatorname{Aut}_{\mathbb{K}}\left(V^{\otimes n}\right) \\
\sigma & \mapsto\left(v_{1} \otimes \cdots \otimes v_{n} \mapsto v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
\end{aligned}
$$

and $\phi(\sigma)$ will always be replaced by σ in our formulas. $\bar{T} V$ will stand for the reduced tensor vector space

$$
\bar{T} V:=\bigoplus_{n \geqslant 1} V^{\otimes n}
$$

Every operad A will be assumed to verify $A(0)=0$ and $A(1)=\mathbb{K}$ Id. As, Com, Leib, and Zinb will stand respectively for the operads encoding associative algebras, commutative algebras, right Leibniz algebras, and left Zinbiel algebras.

1 The triple (Zinb, Leib, Vect)

In [Petit Livre Bleu], J-L Loday explores the notion of generalized bialgebra, and gives several examples of such bialgebras. A type of bialgebra is the datum of

- Two operads C and A,
- A compatibility relation \oint between each generating operation of A and each generating cooperation of C^{c}, the cooperad associated to C.
A $\left(C^{c}, A, \emptyset\right)$-bialgebra is then a \mathbb{K}-module H, endowed with a C-coalgebra structure, an A-algebra structure, and such that the compatibility relation between any n-ary operation and any m-ary cooperation holds when applied to any n-uple of elements of H.

Examples 1.0.1.

- Non-unital associative and coassociative Hopf algebras are bialgebras of type $\left(A s^{c}, A s, \emptyset_{n u H o p f}\right)$ with $\emptyset_{\text {nuHopf }}$ given by
$\delta \circ \mu=\operatorname{Id} \otimes \mathrm{Id}+(12)+(\mathrm{Id} \otimes \mu) \circ(\delta \otimes \mathrm{Id})+(\mu \otimes \mathrm{Id}) \circ(23) \circ(\delta \otimes \mathrm{Id})+(\mu \otimes \mathrm{Id}) \circ(\mathrm{Id} \otimes \delta)+(\mathrm{Id} \otimes \mu) \circ(12) \circ(\mathrm{Id} \otimes \delta)+(\mu \otimes \mu) \circ(23) \circ(\delta \otimes \delta)$
where δ is the generating binary cooperation of $C o m^{c}$ and μ is the generating binary operation of As.
Remark that any unital and counital Hopf algebra $(H, \mu, \Delta, \eta: \mathbb{K} \rightarrow H, \varepsilon: H \rightarrow \mathbb{K})$ for which the compatibility relation takes the usual form

$$
\Delta \circ \mu=(\mu \otimes \mu) \circ(23) \circ(\Delta \otimes \Delta)
$$

gives rise to a non-unital one by considering its augmentation ideal $\operatorname{Ker}(\varepsilon)$ equipped with the reduced coproduct δ defined by $\delta(x):=\Delta(x)-x \otimes 1-1 \otimes x$, for all x in $\operatorname{Ker}(\varepsilon)$.

- Cocommutative associative Hopf algebras, coassociative commutative Hopf algebras, and cocommutative commutatives Hopf algebras are respectively bialgebras of type (Com $\left.{ }^{c}, A s\right),\left(A s^{c}, C o m\right)$ and $\left(C o m^{c}, C o m\right)$, when one chooses as compatibility relation the non-unital Hopf relation cited above.
- $A\left(Z_{i n b}{ }^{c}, A s, \varnothing_{\text {nus } H \text { opf }}\right)$-bialgebra is a \mathbb{K}-module H equipped with an associative multiplication $m u: H \otimes$ $H \rightarrow H$ and a Zinbiel coproduct $\delta: H \rightarrow H \otimes H$ such that the following non-unital semi Hopf relation holds $\emptyset_{\text {nusHopf }}$:
$\delta \circ \mu=(12)+(\mu \otimes \mathrm{Id}) \circ \otimes(\operatorname{Id} \otimes \delta)+(\mu \otimes \mathrm{Id}) \circ(23) \circ\left(\delta^{c o m} \otimes \mathrm{Id}\right)+(\operatorname{Id} \otimes \mu) \circ(12) \circ(\mathrm{Id} \otimes \delta)+(\mu \otimes \mu) \circ(23) \circ\left(\delta^{c o m} \otimes \delta\right)$
where $\delta^{\text {com }}$ is the symmetrized coproduct defined by $\delta^{\text {com }}=\delta+(12) \circ \delta$.
This example is due to E. Burgunder [E. Burgunder, A symmetric version of Kontsevich graph complex and Leibniz homology, ArXiv : mathQA/0804.2052] and, to our knowledge, is the only one involving the operad Zinb present in the litterature.

Definition 1.0.2. [Petit Livre Bleu] Let H be a ($\left.C^{c}, A, \Upsilon\right)$-bialgebra.

1. Its primitive part, denoted by Prim H is the submodule of elements x of H such that

$$
\delta(x)=0
$$

for any cooperation δ in $C^{c}(n), n \geqslant 2$.
2. Let $F_{r} H$ be defined by $F_{r} H:=\left\{x \in H, \delta(x)=0, \delta \in C^{c}(n), n>r\right\}$. H is said to be connected if

$$
H=\cup_{r \geqslant 1} F_{r} H
$$

3. The compatibility relation ℓ is distributive if for any m-ary cooperation δ in $C^{c}(m)$, and any n-ary operation μ in $A(n)$, it takes the form

$$
\delta \circ \mu=\sum_{i \in I}\left(\mu_{1}^{i} \otimes \cdots \otimes \mu_{m}^{i}\right) \circ \omega^{i} \circ\left(\delta_{1}^{r} \otimes \cdots \otimes \delta_{n}^{i}\right.
$$

where I is a finite set of indices, and for any i in I

$$
\left\{\begin{array}{l}
\mu_{1}^{i} \in A\left(k_{1}\right), \cdots, \mu_{m}^{i} \in A\left(k_{m}\right) \\
\delta_{1}^{i} \in C^{c}\left(l_{1}\right), \cdots, \delta_{n}^{i} \in C^{c}\left(l_{n}\right) \\
k_{1}+\cdots+k_{m}=l_{1}+\cdots+l_{n}=r_{i} \\
\omega^{i} \in \mathbb{K}\left[\Sigma_{r_{i}}\right]
\end{array}\right.
$$

It is well known that connected $\left(C o m^{c}, C o m, \chi_{\text {nu }}\right.$ Hopf $)$-bialgebras are both free and cofree over their primitive part : this is Hopf-Borel's theorem. This result can be seen as a particular case of the following rigidity theorem :

Theorem 1.0.3. [Loday, Petit livre bleu] Let $\left(C^{c}, A, \varnothing\right)$ be a type of generalized bialgebra and suppose that the following hypothesis hold
(H0) For any operation μ and any cooperation δ, there is a distributive compatibility relation,
(H1) For any \mathbb{K}-module V, the free A-algebra $A(V)$ is naturally equipped with a $\left(C^{c}, A, \emptyset\right)$-bialgebra structure,
(H2iso) The natural C^{c}-coalgebra map $\varphi: A(V) \rightarrow C^{c}(V)$ lifting the projection on the length one summand $A(V) \rightarrow V=A(1) \otimes V$ is an isomorphism.
Then any connected $\left(C^{c}, A, \varnothing\right)$-bialgebra H is both free and cofree over its primitive part i.e.

$$
A(\operatorname{Prim} H) \cong H \cong C^{c}(\operatorname{Prim} H)
$$

where the first isomorphism is an isomorphism of A-algebras and the second one is an isomorphism of C^{c} coalgebras.

Examples 1.0.4. $\left(\right.$ Com $\left.^{c}, C o m, \chi_{n u H o p f}\right)$ and $\left(Z_{i n b}{ }^{c}, A s, \ell_{n u s H o p f}\right)$ both satisfy hypotheses (H0), (H1) and (H2iso).

We are now going to introduce a new type of bialgebras involving the Zinbiel operad.
Definition 1.0.5. A (Zinb $\left.{ }^{c}, L e i b, \chi_{L}\right)$-bialgebra is a \mathbb{K}-vector space H endowed with a Zinbiel coproduct $\delta: H \otimes H \otimes H$ and a right Leibniz bracket $\nu: H \otimes H \rightarrow H$ such that the following compatibility relation

$$
\delta \circ \nu=\operatorname{Id} \otimes \operatorname{Id}+(\operatorname{Id} \otimes \nu) \circ(\delta \otimes \mathrm{Id})+(\nu \otimes \mathrm{Id}) \circ(23) \circ(\delta \otimes \mathrm{Id})-\mathrm{Id} \otimes(\nu \circ \delta) \quad \ell_{z L}
$$

holds.
Proposition 1.0.6. The free Leibniz algebra Leib (V) is naturally equipped with a (Zinb $\left.{ }^{c}, L_{\text {Leib, }}{ }_{Z L L}\right)$-bialgebra structure.

Proof. Clearly, $\operatorname{Leib}(V)=\bar{T} V=\operatorname{Zinb}^{c}(V)$ as vector spaces which shows that $\operatorname{Leib}(V)$ is endowed with a Zinbiel coalgebra structure $\delta: \operatorname{Leib}(V) \rightarrow \operatorname{Leib}(V) \otimes \operatorname{Leib}(V)$. So all we have to check is whether relation $\ell_{Z L}$ is indeed satisfied. Denote by $[a, b]$ the Leibniz bracket $\nu(a \otimes b)$ of two elements a and b of $\operatorname{Leib}(V)$. In Sweedler's notation, relation $\ell_{z L}$ reads

$$
\begin{equation*}
\delta[a, b]=a \otimes b+\left[a_{(1)}, b\right] \otimes a_{(2)}+a_{(1)} \otimes\left[a_{(2)}, b\right]-a \otimes\left[b_{(2)}, b_{(1)}\right] \tag{1}
\end{equation*}
$$

Let's proove that this relation holds by induction on $|b|$, the length and b :

- For $|b|=1$, i.e. $b \in V,(1)$ holds by definition of the cofree half-shuffle zinbiel coproduct δ and because the last term $a \otimes\left[b_{(2)}, b_{(1)}\right]$ vanishes since $\delta(b)=0$.
- For $|b|>1$. Assume that $\chi_{z L}$ holds for any b^{\prime} of length strictly lower than $|b|$ and for any a. We can suppose that b is of the form

$$
b=\left[b^{\prime}, v\right] \quad,:\left|b^{\prime}\right|=|b|-1, v \in V
$$

Thus

$$
\begin{aligned}
\delta[a, b] & =\delta\left(\left[a,\left[b^{\prime}, v\right]\right]\right) \\
& =\delta\left(\left[\left[a, b^{\prime}\right], v\right]\right)-\delta\left(\left[[a, v], b^{\prime}\right]\right) \\
& =\left[\left[a, b^{\prime}\right]_{(1)}, v\right] \otimes\left[a, b^{\prime}\right]_{(2)}+\left[a, b^{\prime}\right]_{(1)} \otimes\left[\left[a, b^{\prime}\right]_{(2)}, v\right]+\left[a, b^{\prime}\right] \otimes v-\delta\left(\left[[a, v], b^{\prime}\right]\right)
\end{aligned}
$$

But the induction hypothesis allows us to express $\left[a, b^{\prime}\right]_{(1)} \otimes\left[a, b^{\prime}\right]_{(2)}=\delta\left(\left[a, b^{\prime}\right]\right)$ and $\delta\left[[a, v], b^{\prime}\right]$ respectively as

$$
\left[a, b^{\prime}\right]_{(1)} \otimes\left[a, b^{\prime}\right]_{(2)}=a \otimes b^{\prime}+\left[a_{(1)}, b^{\prime}\right] \otimes a_{(2)}+a_{(1)} \otimes\left[a_{(2)}, b^{\prime}\right]-a \otimes\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right]
$$

and, using again $\ell_{Z L}$ to rewrite $\delta[a, v]$,

$$
\begin{aligned}
\delta\left(\left[[a, v], b^{\prime}\right]\right)= & {[a, v] \otimes b^{\prime}+\left[[a, v]_{(1)}, b^{\prime}\right] \otimes[a, v]_{(2)}+[a, v]_{(1)} \otimes\left[[a, v]_{2}, b^{\prime}\right]-[a, v] \otimes\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right] } \\
= & {[a, v] \otimes b^{\prime}+\left[\left[a_{(1)}, v\right], b^{\prime}\right] \otimes a,_{(2)}+\left[a_{(1)}, b^{\prime}\right] \otimes\left[a_{(2)}, v\right]+\left[a, b^{\prime}\right] \otimes v } \\
& \left.+\left[a_{(1)}, v\right] \otimes\left[a_{(2)}, b^{\prime}\right]+a_{(1)} \otimes\left[a_{(2)}, v\right], b^{\prime}\right]+a \otimes\left[v, b^{\prime}\right]-[a, v] \otimes\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right]
\end{aligned}
$$

so that $\delta[a, b]$ takes the form

$$
\begin{aligned}
\delta[a, b]= & {[a, v] \otimes b^{\prime}+\left[\left[a_{(1)}, b^{\prime}\right], v\right] \otimes a_{(2)}+\left[a_{(1)}, v\right] \otimes\left[a_{(2)}, b^{\prime}\right]-[a, v] \otimes\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right] } \\
& +a \otimes\left[b^{\prime}, v\right]+\left[a_{(1)}, b^{\prime}\right] \otimes\left[a_{(2)}, v\right]+a_{(1)} \otimes\left[\left[a_{(2)}, b^{\prime}\right], v\right]-a \otimes\left[\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right], v\right]+\left[a, b^{\prime}\right] \otimes v \\
& -[a, v] \otimes b^{\prime}-\left[\left[a_{(1)}, v\right], b^{\prime}\right] \otimes a,,_{(2)}-\left[a_{(1)}, b^{\prime}\right] \otimes\left[a_{(2)}, v\right]-\left[a, b^{\prime}\right] \otimes v \\
& -\left[a_{(1)}, v\right] \otimes\left[a_{(2)}, b^{\prime}\right]-a_{(1)} \otimes\left[\left[a_{(2)}, v\right], b^{\prime}\right]-a \otimes\left[v, b^{\prime}\right]+[a, v] \otimes\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right] \\
= & a \otimes\left[b^{\prime}, v\right]+\overbrace{\left[\left[a_{(1)}, b^{\prime}\right], v\right] \otimes a_{(2)}-\left[\left[a_{(1)}, v\right], b^{\prime}\right] \otimes a_{(2)}}^{A}+\overbrace{a_{(1)} \otimes\left[\left[a_{(2)}, b^{\prime}\right], v\right]-a_{(1)} \otimes\left[\left[a_{(2)}, v\right], b^{\prime}\right]}^{B} \\
& -a \otimes\left[\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right], v\right]-a \otimes\left[v, b^{\prime}\right]
\end{aligned}
$$

using the right Leibniz relation satisfied by $[-,-]$ to simplify terms A and B in the above expression, and remembering that $\left[b^{\prime}, v\right]=b$ leads to

$$
\begin{equation*}
\delta[a, b]=a \otimes b+\left[a_{(1)}, b\right] \otimes a_{(2)}+a_{(1)} \otimes\left[a_{(2)}, b\right]-a \otimes\left[\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right], v\right]-a \otimes\left[v, b^{\prime}\right] \tag{2}
\end{equation*}
$$

Now remark that, applying once again the induction hypothesis gives

$$
b_{(1)} \otimes b_{(2)}=\delta(b)=\delta\left[b^{\prime}, v\right]=b^{\prime} \otimes v+\left[b_{(1)}^{\prime}, v\right] \otimes b_{(2)}^{\prime}+b_{(1)}^{\prime} \otimes\left[b_{(2)}^{\prime}, v\right]
$$

Thus, using the Leibniz relation to get the second equality,

$$
\left[b_{(2)}, b_{(1)}\right]=\left[v, b^{\prime}\right]+\left[b_{(2)}^{\prime},\left[b_{(1)}^{\prime}, v\right]\right]+\left[\left[b_{(2)}^{\prime}, v\right], b_{(1)}^{\prime}\right]=\left[v, b^{\prime}\right]+\left[\left[b_{(2)}^{\prime}, b_{(1)}^{\prime}\right], v\right]
$$

Which enables us to rewrite equation (2) as

$$
\delta[a, b]=a \otimes b+\left[a_{(1)}, b\right] \otimes a_{(2)}+a_{(1)} \otimes\left[a_{(2)}, b\right]-a \otimes\left[b_{(2)}, b_{(1)}\right]
$$

i.e. (1) is satisfied by a and b.

This shows that if $\chi_{z_{L}}$ holds for any b^{\prime} such that $\left|b^{\prime}\right|<|b|$ and any a, it holds also for b and any a. Thus ℓ_{L} has to hold any elements a and b of $\operatorname{Leib}(V)$.

As a direct consequence of this proposition, we have the following
Theorem 1.0.7. The type of bialgebra (Zinb $\left.{ }^{c}, L_{\text {Leib, }} \chi_{z L}\right)$ satisfies hypotheses (H0), (H1) and (H2iso) of the rigidity theorem 1.0.3. Thus any connected (Zinb ${ }^{c}$, Leib, $\left.{ }_{Z} Z_{L}\right)$-bialgebra is both free and cofree over its primitive part.
Proof. It's clear that $\ell_{Z_{L}}$ is a distributive compatibility relation so $(H 0)$ is fulfilled. The fact that $(H 1)$ holds is exactly the content of proposition 1.0.6, and hypothesis ($H 2$) is obviously satisfied since the Zinbiel coproduct defined on $\operatorname{Leib}(V)=\bar{T} V$ is by definition the cofree one.

2 Leibniz dialgebras and the triple (Zinb, Leib², Leib)

Definition 2.0.8. A Leibniz dialgebra (or Leib²-algebra) is a \mathbb{K}-module L endowed with two linear brackets $(-,-): L \otimes L \rightarrow L$ and $\{-,-\}: L \otimes L \rightarrow L$ such that
a) $(-,-)$ is a right Leibniz bracket i.e.

$$
((a, b), c)=((a, c), b)+(a,(b, c))
$$

b) $\{-,-\}$ is a left Leibniz bracket i.e.

$$
\{a,\{b, c\}\}=\{\{a, b\}, c\}+\{b,\{a, c\}\}
$$

c) $\{-,-\}$ is a left derivation of $(-,-)$ i.e.

$$
\{a,(b, c)\}=(\{a, b\}, c)+(b,\{a, c\})
$$

d) (,--$)$ is a right derivation for $\{-,-\}$ i.e.

$$
(\{a, b\}, c)=\{(a, c), b\}+\{a,(b, c)\}
$$

for all a, b and c in A.
Proposition 2.0.9. Let $(L,(-,-),\{-,-\})$ be a Leibniz dialgebra. Then the linear map $[-,-]: L \otimes L \rightarrow L$ defined by

$$
[a, b]:=(a, b)-\{b, a\}
$$

for all a and b in L is a right Leibniz bracket.
Proof. Let $a b$ and c be three elements of L. Then,

$$
\begin{aligned}
{[[a, b], c] } & =([a, b], c)-\{c,[a, b]\} \\
& =((a, b), c)-(\{b, a\}, c)-\{c,(a, b)\}+\{c,\{b, a\}\} \\
& \stackrel{*}{=}((a, c), b)+(a,(b, c))-\{(b, c), a\}-\{b,(a, c)\}-(\{c, a\}, b)-(a,\{c, b\})+\{\{c, b\}, a\}+\{b,\{c, a\}\} \\
& =([a, c], b)+(a,[b, c])-\{[b, c], a\}-\{b,[a, c]\} \\
& =[[a, c], b]+[a,[b, c]]
\end{aligned}
$$

where the equality $*$ is a direct consequence of relations $a), b), c$) and d) of definition 2.0.8.

Leibniz dialgebras are algebras over an operad we denote by $L e i b^{2}$. This operad is the quotient of $\operatorname{Free}(\vdash, \dashv)$, the free operad on two binary generators \vdash and \dashv, by the operadic ideal (R) generated the following four relators

$$
\begin{array}{ll}
(R 1) & \vdash \circ_{1} \vdash-\vdash \circ_{1} \vdash(23)-\vdash o_{2} \vdash, \\
(R 2) & \dashv o_{2} \dashv-\dashv o_{1} \dashv-\dashv o_{2} \dashv(12), \\
(R 3) & \vdash o_{1} \dashv-\dashv o_{1} \vdash(23)-\dashv o_{2} \vdash, \\
(R 4) & \dashv o_{2} \vdash-\vdash \circ_{1} \dashv-\vdash o_{2} \dashv(12) .
\end{array}
$$

Theorem 2.0.10. Let V be a \mathbb{K}-module and denote by $\operatorname{Leib}^{2}(V)$ the free Leibniz dialgebra generated by V. Then

$$
\operatorname{Leib}^{2}(V) \cong \bar{T} \bar{T} V
$$

as $a \mathbb{K}$-module.
Proof. First, notice that the operadic ideal (R) genreated by the four relators $(R 1),(R 2),(R 3)$ and (R4) is also generated by the four following ones

$$
\begin{array}{ll}
(R 1) & \vdash o_{1} \vdash-\vdash \circ_{1} \vdash(23)-\vdash o_{2} \vdash, \\
(R 2) & \dashv \mathrm{o}_{2} \dashv-\dashv \circ_{1} \dashv-\dashv o_{2} \dashv(12), \\
\left(R 3^{\prime}\right) & \dashv \mathrm{o}_{1} \vdash+\vdash \circ_{2} \dashv(123) . \\
(R 4) & \dashv \mathrm{o}_{2} \vdash-\vdash \circ_{1} \dashv-\vdash o_{2} \dashv(12) .
\end{array}
$$

Choosing as leading terms respectively $\vdash \circ_{2} \vdash, \dashv \circ_{1} \dashv, \dashv \circ_{1} \vdash$ and $\dashv \circ_{2} \vdash$ leads to the four following rewritting rules :

$$
\begin{aligned}
& (R 1) \quad \vdash \circ_{2} \vdash \longmapsto \vdash \circ_{1} \vdash-\vdash \circ_{1} \vdash(23) \text {, } \\
& (R 2) \quad \dashv \circ_{1} \dashv \longmapsto \dashv \circ_{2} \dashv-\dashv \circ_{2} \dashv(12) \text {, } \\
& \left(R 3^{\prime}\right) \quad \dashv \circ_{1} \vdash \longmapsto \quad-\vdash \mathrm{o}_{2} \dashv(123) \text {. } \\
& (R 4) \quad \dashv \mathrm{o}_{2} \vdash \longmapsto \vdash \circ_{1} \dashv+\vdash \mathrm{o}_{2} \dashv(12) \text {. }
\end{aligned}
$$

One has to check that any critical monomial is confluent.
Corollary 2.0.11. Leib ${ }^{2}$ is a Koszul operad.
Definition 2.0.12. $A\left(Z_{i n b}{ }^{c}, L^{2} b^{2}, \ell_{L^{2}}\right)$-bialgebra is a vector space H endowed with a Zinbiel coproduct $\delta: H \rightarrow H \otimes H$ and a Leib ${ }^{2}$-algebra structure given by brackets $(-,-): L \otimes L \rightarrow L$ and $\{-,-\}: L \otimes L \rightarrow L$ such that

- (H, $\delta,\{-,-\} \circ(12))$ is also a $\left(Z_{i n b}{ }^{c}, L e i b, \chi_{z L^{2}}\right)$-bialgebra.

Proposition 2.0.13. The free Leibniz dialgebra $\operatorname{Leib}^{2}(V)$ generated by a vector space V is naturally equipped with a Zinbiel coproduct $\delta: \operatorname{Leib}^{2}(V) \rightarrow$ Leib $^{2}(V)^{\otimes 2}$ which turns it into a $\left(Z_{i n b}{ }^{c}\right.$, Leib $\left.^{2}, \ell_{Z L^{2}}\right)$-bialgebra.

Proof. Set $\delta(v)=0$ for any v in V and note that δ is then fully determined by induction on the length of monomials since if it exists, it has to satisfy $\ell_{Z L^{2}}$. Moreover, $\ell_{Z L^{2}}$ indeed well-defines a linear map δ on $\operatorname{Leib}^{2}(V)$, because proposition 2.0.10 implies that we have a PBW basis of $\operatorname{Leib}^{2}(V)$ consisting of monomials of the form

$$
\left(\left\{v_{1}^{1}, \cdots, v_{i_{1}}^{1}\right\},\left\{v_{1}^{2}, \cdots, v_{i_{2}}^{2}\right\}, \cdots,\left\{v_{1}^{n}, \cdots, v_{i_{n}}^{n}\right\}\right)
$$

where n ranges over all positive numbers and the v_{j}^{k} run over some fixed basis of V, where $\left(a_{1}, \cdots, a_{n}\right)$ stands for the right-iterated bracket

$$
\left(\left(\left(\cdots\left(a_{1}, a_{2}\right), a_{3}\right), \cdots\right), a_{n}\right)
$$

and $\left\{v_{1}, \cdots, v_{k}\right\}$ for the iterated left-bracket

$$
\left\{v_{1},\left\{v_{2},\left\{\cdots,\left\{v_{k-1}, v_{k}\right\} \cdots\right\}\right\}\right\}
$$

Obviously, the naturality of δ comes from the fact that its definition doesn't depend on the choice of basis of V we are using.

Let us prove that δ is a left-Zinbiel coproduct, i.e. that it satisfies

$$
\begin{equation*}
(\delta \otimes \mathrm{Id}) \delta=\left(\operatorname{Id} \otimes \delta^{c o m}\right) \circ \delta \tag{3}
\end{equation*}
$$

where, as usual, $\delta^{\text {com }}:=\delta+(12) \circ \delta$.
This we do one more time by induction on length, using the natural grading of Leib ${ }^{2}(V)$ given by the PBW basis for which $\left(\left\{v_{1}^{1}, \cdots, v_{i_{1}}^{1}\right\},\left\{v_{1}^{2}, \cdots, v_{i_{2}}^{2}\right\}, \cdots,\left\{v_{1}^{n}, \cdots, v_{i_{n}}^{n}\right\}\right)$ has length $i_{1}+\cdots+i_{n}$.

- Clearly, (3) holds on elements of V.
- Assume that (3) holds on any monomial of length strictly lower than n. Any PBW-monomial a of length n is of the form

$$
a=\left(a^{\prime}, w\right) \quad,\left|a^{\prime}\right|=n-p<n-1, w=\left\{v_{1}, \cdots, v_{p}\right\}, v_{1}, \cdots, v_{p} \in V
$$

or of the form

$$
b=\left\{v, b^{\prime}\right\} \quad, b^{\prime}=\left\{v_{1}, \cdots, v_{n-1}\right\}, v, v_{1}, \cdots, v_{n-1} \in V
$$

But, since δ is defined so that it satisfies $\chi_{z L^{2}}$ on $\left(a^{\prime}, w\right)$ and on $\left\{v, b^{\prime}\right\}$,

$$
\delta\left(a^{\prime}, w\right)=a^{\prime} \otimes w+\left(a_{(1)}^{\prime}, w\right) \otimes a_{(2)}^{\prime}+a_{(1)}^{\prime} \otimes\left(a_{(2)}^{\prime}, w\right)-a^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right)
$$

and

$$
\delta\left\{v, b^{\prime}\right\}=b^{\prime} \otimes v+\left\{v, b_{(1)}^{\prime}\right\} \otimes b_{(2)}^{\prime}+b_{(1)}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}\right\}
$$

Applying $\delta \otimes$ Id to both equations and using relation $\emptyset_{Z L^{2}}$ again gives respectively

$$
\begin{aligned}
(\delta \otimes \mathrm{Id}) \circ \delta\left(a^{\prime}, w\right)= & a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes w+\left(a_{(1)}^{\prime}, w\right)_{(1)} \otimes\left(a_{(1)}^{\prime}, w\right)_{(2)} \otimes a_{(2)}^{\prime} \\
& +a_{(1)_{(1)}^{\prime}}^{\prime} \otimes a_{(1){ }_{(2)}}^{\prime} \otimes\left(a_{(2)}^{\prime}, w\right)-a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right) \\
= & a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes w+a_{(1)}^{\prime} \otimes w \otimes a_{(2)}^{\prime}+\left(a_{(1){ }_{(1)}}^{\prime}, w\right) \otimes a_{(1){ }_{(2)}^{\prime}}^{\prime} \otimes a_{(2)}^{\prime}+a_{(1)(1)}^{\prime} \otimes\left(a_{(1)(2)}^{\prime}, w\right) \otimes a_{(2)}^{\prime} \\
& -a_{(1)}^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right) \otimes a_{(2)}^{\prime}+a_{(1)(1)}^{\prime} \otimes a_{(1)(2)}^{\prime} \otimes\left(a_{(2)}^{\prime}, w\right)-a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(\delta \otimes \mathrm{Id}) \circ \delta\left\{v, b^{\prime}\right\}= & \left.b_{(1)}^{\prime} \otimes b_{(2)}^{\prime} \otimes v+\left\{v, b_{(1)}^{\prime}\right\}_{(1)} \otimes\left\{v, b_{(1)}^{\prime}\right\}_{(2)}\right\} \otimes b_{(2)}^{\prime}+b_{(1){ }_{(1)}}^{\prime} \otimes b_{(1){ }_{(2)}}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}\right\} \\
= & b_{(1)}^{\prime} \otimes b_{(2)}^{\prime} \otimes v+b_{(1)}^{\prime} \otimes v \otimes b_{(2)}^{\prime}+\left\{v, b_{(1){ }_{(1)}}^{\prime}\right\} \otimes b_{(1)(2)}^{\prime} \otimes b_{(2)}^{\prime}+b_{(1){ }_{(1)}}^{\prime} \otimes\left\{v, b_{(1){ }_{(2)}}^{\prime}\right\} \otimes b_{(2)}^{\prime} \\
& +b_{(1){ }_{(1)}^{\prime}}^{\prime} \otimes b_{(1)(2)}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}\right\}
\end{aligned}
$$

Now notice that the coZinbiel relation reads

$$
c_{(1)_{(1)}} \otimes c_{(1)_{(2)}} \otimes c_{(2)}=c_{(1)} \otimes c_{(2)_{(1)}} \otimes c_{(2)_{(2)}}+c_{(1)} \otimes c_{(2)(2)} \otimes c_{(2)_{(1)}}
$$

in Sweedler's notation. Applying it taking $c=a^{\prime}$ and $c=b^{\prime}$ in the two preceeding equations, and using ${ }_{\ell L} L^{2}$ to simplify the terms leads to
$(\delta \otimes \mathrm{Id}) \circ \delta\left(a^{\prime}, w\right)=a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes w+a_{(1)}^{\prime} \otimes w \otimes a_{(2)}^{\prime}-a_{(1)}^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right) \otimes a_{(2)}^{\prime}-a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes\left(w_{(2)}, w_{(1)}\right)$

$$
\begin{aligned}
& +\left(a_{(1)}^{\prime}, w\right) \otimes a_{(2)_{(1)}}^{\prime} \otimes a_{(2)_{(2)}}^{\prime}+\left(a_{(1)}^{\prime}, w\right) \otimes a_{(2)_{(2)}^{\prime}}^{\prime} \otimes a_{(2)_{(1)}}^{\prime} \\
& +a_{(1)}^{\prime} \otimes\left(a_{(2)_{(1)}}^{\prime}, w\right) \otimes a_{(2)_{(2)}}^{\prime}+a_{(1)}^{\prime} \otimes\left(a_{(2){ }_{(2)}}^{\prime}, w\right) \otimes a_{(2){ }_{(1)}}^{\prime} \\
& +a_{(1)}^{\prime} \otimes a_{(2){ }_{(1)}}^{\prime} \otimes\left(a_{(2){ }_{(2)}}^{\prime}, w\right)+a_{(1)}^{\prime} \otimes a_{(2){ }_{(2)}}^{\prime} \otimes\left(a_{(2){ }_{(1)}}^{\prime}, w\right) \\
& =\left(a_{(1)}^{\prime}, w\right) \otimes \delta^{c o m} a_{(2)}^{\prime}+a_{(1)}^{\prime} \otimes \delta^{c o m}\left(a_{(2)}^{\prime}, w\right) \\
& =\left(\operatorname{Id} \otimes \delta^{c o m}\right)\left(\left(a_{(1)}^{\prime}, w\right) \otimes a_{(2)}^{\prime}+a_{(1)}^{\prime} \otimes\left(a_{(2)}^{\prime}, w\right)\right) \\
& =\left(\operatorname{Id} \otimes \delta^{c o m}\right) \circ \delta\left(a^{\prime}, w\right)=\left(\operatorname{Id} \otimes \delta^{c o m}\right) \circ \delta(a)
\end{aligned}
$$

and similarly, since $\delta(v)=0$, to

$$
\begin{aligned}
(\delta \otimes \mathrm{Id}) \circ \delta\left\{v, b^{\prime}\right\}= & b_{(1)}^{\prime} \otimes b_{(2)}^{\prime} \otimes v+b_{(1)}^{\prime} \otimes v \otimes b_{(2)}^{\prime} \\
& +\left\{v, b_{(1)}^{\prime}\right\} \otimes b_{(2)_{(1)}^{\prime}}^{\prime} \otimes b_{(2){ }_{(2)}^{\prime}}^{\prime}+\left\{v, b_{(1)}^{\prime}\right\} \otimes b_{(2)}^{\prime}(2) \\
& +b_{(1)}^{\prime} \otimes\left\{v, b_{(2){ }_{(1)}^{\prime}}^{\prime}\right\} \otimes b_{(2)}^{\prime}{ }_{(2)}+b_{(1)}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}{ }_{(2)}\right\} \otimes b_{(2)}^{\prime}{ }_{(1)} \\
& +b_{(1)}^{\prime} \otimes b_{(2){ }_{(1)}}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}{ }_{(2)}\right\}+b_{(1)}^{\prime} \otimes b_{(2){ }_{(2)}}^{\prime} \otimes\left\{v, b_{(2){ }_{(1)}}^{\prime}\right\} \\
= & \left(\operatorname{Id} \otimes \delta^{c o m}\right)\left(\left\{v, b_{(1)}^{\prime}\right\} \otimes b_{(2)}^{\prime}+b_{(1)}^{\prime} \otimes\left\{v, b_{(2)}^{\prime}\right\}\right) \\
= & \left(\operatorname{Id} \otimes \delta^{c o m}\right) \circ \delta\left(\left\{v, b^{\prime}\right\}\right)=\left(\operatorname{Id} \otimes \delta^{c o m}\right) \circ \delta(b)
\end{aligned}
$$

which proves that if (3) holds on words of length strictly lower than n, it holds for words of length n. By induction on n, this shows that δ is a coZinbiel coproduct.

Now notice that we have defined δ so that it satisfies $\chi_{z L^{2}}$ a priori only on PBW monomials, so it remains to prove that the compatibility relation holds on arbitrary brackets, that is on brackets of PBW monomials. The fact that $(-,-)$ and δ satisfy $\ell_{Z L^{2}}$ can be proved performing exactly the same computation that the one we gave in the proof of proposition 1.0.6, so we only check here that $\{-,-\}$ also satisfies $\chi_{Z L^{2}}$.

Let a and b be PBW monomials.

- If b is of the form $\left\{v_{1}, \cdots, v_{n}\right\}, \ell_{z L^{2}}$ holds because (a, b) is also a PBW monomial.
- If not, b can be written as $b=\left(b^{\prime}, w\right)$, with b^{\prime} a PBW-monomial, i.e. an iterated bracket $(-,-, \cdots,-)$, with necessarily one less entry than b and on which we can assume that $\ell_{z L^{2}}$ holds, and where w is of the form $w=\left\{v_{1}, \cdots, v_{n}\right\}$.

$$
\begin{aligned}
\delta(a, b)= & \delta\left(a,\left(b^{\prime}, w\right)\right) \\
= & \delta\left(\left(a, b^{\prime}\right), w\right)-\delta\left((a, w), b^{\prime}\right) \\
= & \left(a, b^{\prime}\right) \otimes w+\left(\left(a, b^{\prime}\right)_{(1)}, w\right) \otimes\left(a, b^{\prime}\right)_{(2)}+\left(a, b^{\prime}\right)_{(1)} \otimes\left(\left(a, b^{\prime}\right)_{(2)}, w\right)-\left(a, b^{\prime}\right) \otimes\left(w_{(2)}, w_{(1)}\right) \\
& \left.-(a, w) \otimes b^{\prime}-\left((a, w)_{(1)}, b^{\prime}\right) \otimes(a, w)_{(2)}-(a, w)_{(1)} \otimes\left((a, w)_{(2)}, b^{\prime}\right)+(a, w) \otimes b_{(2)}^{\prime}, b_{(1)}^{\prime}\right)
\end{aligned}
$$

We know determine the primitive operad $\operatorname{Prim}_{Z_{\text {inb }}}\left(\operatorname{Leib^{2}}\right)$. The method we us is the one employed by Loday in [Petit Livre Bleu] to show that the primitive operad of the type ($A s^{c}, D u p$) is Mag.
Proposition 2.0.14. Let \mathfrak{g} be a right Leibniz algebra with bracket $[-,-]_{g}$, and define three linear maps $(-,-)$: $\bar{T} \mathfrak{g} \otimes \bar{T} \mathfrak{g} \rightarrow \bar{T} \mathfrak{g},\{-,-\}: \bar{T} \mathfrak{g} \otimes \bar{T} \mathfrak{g} \rightarrow \bar{T} \mathfrak{g}$ and $\delta: \bar{T} \mathfrak{g} \rightarrow \bar{T} \mathfrak{g} \otimes \bar{T} \mathfrak{g}$ by setting :

- δ is the cofree conZinbiel coproduct obtained by identifying $\bar{T} \mathfrak{g}$ with $\operatorname{Zinb}^{c}(\mathfrak{g})$, the cofree coZinbiel coalgebra cogenerated by the vector space \mathfrak{g},
$-(-,-)$ is the free right Leibniz bracket obtained by identifying $\bar{T} \mathfrak{g}$ with Leib($\mathfrak{g})$, the free Leibniz algebra generated \mathfrak{g}.
$-\{a, b\}:=(b, a)-[b, a]$ for all a and b in $\bar{T} \mathfrak{g}$,
where $[-,-]$ is the unique bracket defined inductively by
$-[g, h]=[g, h]_{\mathfrak{g}}$ if g and h are in \mathfrak{g},
$-[(a, g), b]=([a, b], g)+(a,[g, b])$ for all a, b in $\bar{T} \mathfrak{g}$ and g in \mathfrak{g},
$-[g,(b, h)]=(a,(b, h))+(a,(h, b))-(a,[h, b])$ for all b in $\bar{T} \mathfrak{g}$ and g, h in \mathfrak{g}.
Then $(\bar{T} \mathfrak{g},(-,-),\{-,-\}, \delta)$ is a $\left(Z_{i n b}{ }^{c}, L_{\text {Leib }}{ }^{2}, \chi_{Z L^{2}}\right)$-bialgebra.
Applying the preceeding proposition to the case $\mathfrak{g}=\operatorname{Leib}(V)$, we get the following :
Theorem 2.0.15. The unique map of Leibniz dialgebras $\psi: \operatorname{Leib}^{2}(V) \rightarrow \bar{T} L e i b(V)$ lifting the canonical inclusion $V \rightarrow \bar{T} \operatorname{Leib}(V)$ is an isomorphism of coZinbiel coalgebras.

Corollary 2.0.16.

$$
\operatorname{Prim}_{Z_{i n b^{c}}}\left(\text { Leib }^{2}\right)=L e i b
$$

Definition 2.0.17. - An ideal of a Leibniz dialgebra $(L,(-,-),\{-,-\})$ is a linear subspace I such that $(I, L),(L, I),\{I, L)\}$ and $\{L, I\}$ are all contained in I.

- Let $\left(\mathfrak{g},[-,-]_{\mathfrak{g}}\right)$ be a Leibniz algebra. The universal enveloping Leibniz dialgebra of \mathfrak{g}, denoted $U_{L D}(\mathfrak{g})$, is the quotient of the free Leibniz dialgebra generated by \mathfrak{g} by the ideal I generated by elements of the form $(g, h)-\{h, g\}-[g, h]_{\mathfrak{g}}$, i.e.

$$
U_{L D}(\mathfrak{g}):=\operatorname{Leib}^{2}(\mathfrak{g}) /<(g, h)-\{h, g\}-[g, h]_{\mathfrak{g}}, g, h \in \mathfrak{g}>
$$

Theorem 2.0.18. The triple (Zinb, Leib ${ }^{2}$, Leib) is a good triple of operads.

3 Homology of Leibniz dialgebras

Definition 3.0.19. A Zinbiel dialgebra (or Zinb ${ }^{2}$-algebra) is a vector space Z equipped with two products $\succ: Z \otimes Z \rightarrow Z$ and $\prec: Z \otimes Z \rightarrow Z$ satisfying the four following relations

1. $(a \prec b) \prec c=a \prec(b \prec c+c \prec b)$,
2. $a \succ(b \succ c)=(a \succ b+b \succ a) \succ c$,
3. $(a \prec b) \succ c=a \prec(b \succ c)+a \succ(c \prec b)$,
4. $a \succ(b \prec c)=(a \succ b) \prec c+(b \prec a) \succ c$,
for all a, b and c in Z.
Zinbiel dialgebras are encoded by an algebraic operad we denote Zinb ${ }^{2}$.
Proposition 3.0.20. Zinb 2 is the Koszul dual of Leib², i.e.

$$
\left(\text { Leib }^{2}\right)^{!}=Z i n b^{2}
$$

The knowledge of the Koszul dual of $L e i b^{2}$ enables us to determine the operadic homology theory of Leibniz dialgebras :

Definition 3.0.21. Let $(L,(-,-),\{-,-\})$ be a Leibniz dialgebra. The Leibniz dialgebra chain complex of L, denoted by $C L D_{*}(L)$, is the graded vector space defined in degree n by

$$
C L D_{n}(L):=\mathbb{K}\left[\{0,1\}^{n-1}\right] \otimes L^{\otimes n}
$$

equipped with the differential $d^{L D}: C L D_{*}(L) \rightarrow C L D_{*-1}(L)$ defined in degree n by

$$
d^{L D}\left(\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right)<x_{1}|\cdots| x_{n}>\right):=\sum_{1 \leqslant i<j \leqslant n}(-1)^{j}\left(\varepsilon_{2}, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}|\cdots| x_{i-1}\left|\left(x_{i}, x_{j}\right)_{\varepsilon_{j}}\right| \cdots\left|\widehat{x_{j}}\right| \cdots \mid x_{n}>
$$

for all $\varepsilon_{2}, \ldots, \varepsilon_{n}$ in $\{0,1\}$, and x_{1}, \ldots, x_{n} in L, where the bracket $(x, y)_{\varepsilon}$ is defined by

$$
(x, y)_{\varepsilon}:= \begin{cases}(x, y) & \text { if } \varepsilon=1 \\ \{y, x\} & \text { if } \varepsilon=0\end{cases}
$$

and where the notation $\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right)<x_{1}|\cdots| x_{n}>$ stands for the length n elementary tensor $\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right) \otimes x_{1} \otimes$ $x_{2} \otimes \cdots \otimes x_{n}$ and the symbol $\widehat{x_{j}}$ means as usual that x_{j} has been omitted.
Proposition 3.0.22. The graded vector space $C L D_{*}(L)$ equipped with the degree -1 map $d^{L D}$ defined above is indeed a chain complex, i.e.

$$
d^{L D} \circ d^{L D}=0
$$

Moreover, its homology, that we denote $H L D_{*}(L):=H_{*}\left(C L D_{*}(L), d^{L D}\right)$, is the operadic homology of the L prescribed by the theory of operads, meaning that it can obtained as the homology of the (graded) cofree Zinb ${ }^{2}$ coalgebra cogenerated by L[1] endowed with the unique coderivation extending the canonical twisting cochain $\kappa:\left(\text { Zinb }^{2}\right)^{c}(L[1]) \rightarrow L[1]$.

The canonical morphism of operads Leib \rightarrow Leib ${ }^{2}$ induces a morphism of operads $\left(L e i b^{2}\right)^{!} \rightarrow L e i b^{!}$and thus, for any Leibniz dialgebra $(L,(-,-),\{-,-\})$, a morphism of chain complexes

$$
C L_{*}\left(L_{L e i b}\right) \rightarrow C L D_{*}(L)
$$

where $L_{\text {Leib }}$ denotes the underlying Leibniz algebra obtained from L by only remembering the Leibniz bracket $[-,-]:=(-,-)-\{-,-\} \circ(12)$.

Taking $L=U_{L D}(\mathfrak{g})$ for some Leibniz algebra \mathfrak{g} and precomposing this morphism with the one induced at the level of chin complexes by the inclusion of Leibniz algebras $\mathfrak{g} \hookrightarrow\left(U_{L D}(\mathfrak{g})\right)_{\text {Leib }}$, we get a morphisms of chain complexes

$$
\begin{equation*}
\phi: C L_{*}(\mathfrak{g}) \rightarrow C L D_{*}\left(U_{L D}(\mathfrak{g})\right) \tag{4}
\end{equation*}
$$

Proposition 3.0.23. The morphism of chain complexes $\phi: C L_{*}(\mathfrak{g}) \rightarrow C L D_{*}\left(U_{L D}(\mathfrak{g})\right)$ defined above is given in degree n by the following explicit formula :

$$
\phi\left(<g_{1}|\cdots| g_{n}>\right)=\sum_{\varepsilon \in\{0,1\}^{n-1}}(-1)^{c(\varepsilon)} \varepsilon<g_{1}|\cdots| g_{n}>
$$

where the integer $c(\varepsilon)$ is the number of 0 's in the multi-index ε.
Notice that $(\operatorname{Leib}(V),[-,-])$, the free Leibniz algebra generated by some vector space V, can be seen as a Leibniz dialgebra by setting $(-,-):=[-,-]$ and $\{-,-\}:=[-,-] \circ(12)$.

Proposition 3.0.24. The universal enveloping dialgebra of a vector space V seen as abelian Leibniz algebra is Leib (V) endowed with the dialgebra structure defined above.

Proposition 3.0.25. For any vector space V seen as an abelian Leibniz algebra, the map ϕ of (4) induces an isomorphism in homology i.e.

$$
H_{n}(\phi): H L_{n}(V)=V^{\otimes n} \xrightarrow{\cong} H L D_{n}\left(U_{L D}(V)\right)=H L D_{n}(\operatorname{Leib}(V))
$$

is an isomorphism for all $n \geqslant 0$
Proof. Let n be a positive integer and recall that, as a vector space, $\operatorname{Leib}(V)=\bar{T} V$ and $V \subset \operatorname{Leib}(V)$, and that the Leib^{2}-brackets are given by $(-,-)_{1}=(-,-)_{0}=[-,-]$, the free Leibniz bracket on $\operatorname{Leib}(V)$.

The fact that $H L D_{n}(\operatorname{Leib}(V))$ is "smaller" than $\mathbb{K}\left[\{0,1\}^{n-1}\right] \otimes V^{\otimes n}$ is a consequence of the following
Lemma 3.0.26. Any n-cycle in $C L D_{n}(\operatorname{Leib}(V))$ is homologeous to a n-cycle in $\mathbb{K}\left[\{0,1\}^{n-1}\right] \otimes V^{\otimes n} \subset C L D_{n}(\operatorname{Leib}(V))$
Before proving the lemma, let us show how to use it to establish the proposition. Fix an integer n.
First notice that $H_{n}(\phi)$ is clearly injective because ϕ takes its values in $\mathbb{K}\left[\{0,1\}^{n-1}\right] \otimes V^{\otimes n}$ which is not hit by $d^{L D}$ since any tensor in the image of an element under $d^{L D}$ has to contain a factor of length greater than 2 .

Let us show that $H_{n}(\phi)$ is surjective, i.e. that any cycle ω in $C L D_{n}(\operatorname{Leib}(V))$ is, modulo some boundary, in the image of ϕ. Thanks to lemma 3.0.26, we can restrict to the case when ω is a cycle of the form

$$
\omega=\sum_{\varepsilon} \varepsilon<v_{1}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}>
$$

where the v_{i}^{ε} 's are in V.
Proof of lemma 3.0.26. Let $\omega=\sum_{\varepsilon} \varepsilon<x_{1}^{\varepsilon} \mid \cdots, x_{n}^{\varepsilon}>$ be an arbitrary element in $C L D_{n}(\operatorname{Leib}(\underline{V}))$, where the ε 's are multi-indices in $\{0,1\}^{n-1}$ (possibly redundant) and the x_{i} 's are elements of $\operatorname{Leib}(V)=\bar{T} V$. Since for any $\varepsilon=\left(\varepsilon_{2} \cdots, \varepsilon_{n}\right)$, any y in $\operatorname{Leib}(V)$ and $v \in V$

$$
\begin{aligned}
d^{L D}\left(\left(\varepsilon_{2}, \cdots, \varepsilon_{n}, 1\right)<x_{1}|\cdots| x_{n-1}|y| v>\right)= & (-1)^{n} \varepsilon<x_{1}|\cdots| x_{n-1}\left|[y, v]>+\sum_{\varepsilon^{\prime}} \varepsilon^{\prime}<z_{1}^{\varepsilon^{\prime}}\right| \cdots z_{n-1}^{\varepsilon^{\prime}} \mid y> \\
& +\sum_{\varepsilon^{\prime \prime}} \varepsilon^{\prime}<z_{1}^{\varepsilon^{\prime \prime}}\left|\cdots z_{n-1}^{\varepsilon^{\prime \prime}}\right| v>
\end{aligned}
$$

where the $z_{i}^{\varepsilon^{\prime}}$'s and the $z_{i}^{\varepsilon^{\prime \prime}}$'s are elements of $\operatorname{Leib}(V)$, we can assume that x_{n}^{ε} is in V for all ε (because applying the preceeding equality recursively to lower the degree of the last factor shows that ω is at least homologeous to a sum of tensors having this property).

Now suppose that ω is homologeous to a cycle of the form

$$
\omega^{\prime}:=\sum_{\varepsilon} \varepsilon<x_{1}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}>
$$

where $k<n$ and the v_{i}^{ε} 's have length 1 . Then

$$
\begin{aligned}
0=d^{L D} \omega=d^{L D} \omega^{\prime}= & \sum_{\varepsilon} \sum_{i<j \leqslant k}(-1)^{j} \varepsilon^{j}<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, x_{j}^{\varepsilon}\right]|\cdots| \widehat{x}_{j}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\varepsilon} \sum_{i \leqslant k<j}(-1)^{j} \varepsilon^{j}<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\varepsilon} \sum_{k<i<j}(-1)^{j} \varepsilon^{j}<x_{1}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots\left|\left[v_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}>
\end{aligned}
$$

where $\varepsilon^{j}:=\left(\varepsilon_{2}, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)$ if $\varepsilon=\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right)$. But looking at the elements located at the k-th place and at the $i-t h$ place of each tensor appearing in the right-hand side of the preceeding equation, we can see that for length reasons, it implies

$$
(S)\left\{\begin{array}{l}
\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{k<j}(-1)^{j} \varepsilon^{j}<x_{1}^{\varepsilon}|\cdots|\left[x_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]|\cdots| \widehat{v}_{j}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}>=0 \\
\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{k<i<j}(-1)^{j} \varepsilon^{j}<x_{1}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}|\cdots|\left[v_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]|\cdots| \widehat{v_{j}^{\varepsilon}}|\cdots| v_{n}^{\varepsilon}>=0
\end{array}\right.
$$

Now write any x_{k}^{ε} of length greater than 1 as a bracket of the form $x_{k}^{\varepsilon}=\left[y_{k}^{\varepsilon}, v_{k}^{\varepsilon}\right]$, with v_{k}^{ε} in V and y_{k}^{ε} in $\operatorname{Leib}(V)$. As the Leibniz bracket $[-,-]$ is the free one, we can replace every x_{k}^{ε} by $y_{k}^{\varepsilon} \mid v_{k}^{\varepsilon}$ and any ε^{j} by $\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)$ in the second equation of (S) so that

$$
\begin{equation*}
\sum_{\substack{\varepsilon \\\left|x_{k}^{\varepsilon}\right|>1}} \sum_{k<i<j}(-1)^{j}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots\left|\left[v_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}>=0 \tag{5}
\end{equation*}
$$

Similarly, the definition of the free bracket enables us to replace each $\left[x_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]=\left[\left[y_{k}^{\varepsilon}, v_{k}^{\varepsilon}\right], v_{j}^{\varepsilon}\right]$ by $y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| v_{j}^{\varepsilon}$ and any ε^{j} by $\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)$ in the first equation of (S) to get

$$
\begin{equation*}
\sum_{\substack{\varepsilon \\\left|x_{k}^{\varepsilon}\right|>1}} \sum_{k<j}(-1)^{j}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| v_{j}^{\varepsilon}|\cdots| \widehat{v_{j}^{\varepsilon}}|\cdots| v_{n}^{\varepsilon}>=0 \tag{6}
\end{equation*}
$$

which implies both

$$
\begin{equation*}
\sum_{\substack{\varepsilon \\\left|x_{k}^{\varepsilon}\right|>1}} \sum_{k<j}(-1)^{j}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|\left[v_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}>=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{\varepsilon \\\left|x_{k}^{\varepsilon}\right|>1}} \sum_{k<j}(-1)^{j}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[y_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]\left|v_{k}^{\varepsilon}\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}>=0 \tag{8}
\end{equation*}
$$

by applying respectively $\mathrm{Id}^{\otimes k} \otimes[-,-] \otimes \mathrm{Id}^{\otimes n-k-1}$ and $\mathrm{Id}^{\otimes k-1} \otimes[-,-] \otimes \mathrm{Id}^{\otimes n-k} \circ(k k+1)$ to (6).
Now define the $n+1$-chain α by

$$
\alpha:=\sum_{\substack{\varepsilon \\\left|x_{k}^{\varepsilon}\right|>1}}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}>
$$

So that

$$
\begin{aligned}
d^{L D}(\alpha)= & \sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{k<i<j}(-1)^{j+1}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots\left|\left[v_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]\right| \cdots\left|v_{j}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{k<j}(-1)^{j+1}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots| y_{k}^{\varepsilon}\left|\left[v_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{k<j}(-1)^{j+1}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[y_{k}^{\varepsilon}, v_{j}^{\varepsilon}\right]\left|v_{k}^{\varepsilon}\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\left.\right|_{\varepsilon} ^{\varepsilon} \mid>1} \sum_{i<k<j}(-1)^{j+1}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right]|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots\left|\widehat{v_{j}^{\varepsilon}}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +(-1)^{k+1} \sum_{\left.\right|_{k} ^{\varepsilon} \mid} \varepsilon<x_{1}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +(-1)^{k+1} \sum_{\left.\right|_{k} ^{\varepsilon} \mid>1} \sum_{i<k} \varepsilon<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, v_{k}^{\varepsilon}\right] \cdots\left|y_{k}^{\varepsilon}\right| v_{k+1}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}> \\
& +(-1)^{k} \sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{i<k}\left(\varepsilon_{2}, \cdots, \varepsilon_{k-1}, 1, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, y_{k}^{\varepsilon}\right]|\cdots| x_{k-1}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& +\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{i<j<k}(-1)^{j}\left(\varepsilon_{2}, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{k}, 1, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, x_{j}^{\varepsilon}\right]|\cdots| \widehat{x_{j}^{\varepsilon}}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}>
\end{aligned}
$$

Equations (5), (7) and (8) imply that the first three sums in this expression have to vanish, which leads to

$$
\begin{aligned}
\sum_{\substack{\varepsilon \\
\left|x_{k}^{\varepsilon}\right|>1}} \varepsilon<x_{1}^{\varepsilon} \mid \cdots & \left|x_{k}^{\varepsilon}\right| v_{k+1}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}>=(-1)^{k} d^{L D}(\alpha) \\
& +\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{i<k<j}(-1)^{j+k}\left(\varepsilon_{2}, \cdots, \varepsilon_{k}, 1, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, v_{j}^{\varepsilon}\right] \cdots\left|y_{k}^{\varepsilon}\right| v_{k}^{\varepsilon}|\cdots| \widehat{v}_{j}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}> \\
& +\sum_{x_{k}^{\varepsilon} \mid>1} \sum_{i<k} \varepsilon<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, v_{k}^{\varepsilon}\right] \cdots\left|y_{k}^{\varepsilon}\right| v_{k+1}^{\varepsilon}|\cdots| v_{n}^{\varepsilon}> \\
& -\sum_{\mid x_{k}^{\varepsilon}>} \sum_{i<k}\left(\varepsilon_{2}, \cdots, \varepsilon_{k-1}, 1, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, y_{k}^{\varepsilon}\right]|\cdots| x_{k-1}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}> \\
& -\sum_{\left|x_{k}^{\varepsilon}\right|>1} \sum_{i<j<k}(-1)^{j+k}\left(\varepsilon_{2}, \cdots, \widehat{\varepsilon_{j}}, \cdots, \varepsilon_{k}, 1, \cdots, \varepsilon_{n}\right)<x_{1}^{\varepsilon}|\cdots|\left[x_{i}^{\varepsilon}, x_{j}^{\varepsilon}\right]|\cdots| \widehat{x_{j}^{\varepsilon}}|\cdots| y_{k}^{\varepsilon}\left|v_{k}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}>
\end{aligned}
$$

This proves that $\sum_{\left|x_{k}\right|>1}^{\varepsilon} \varepsilon<x_{1}^{\varepsilon}|\cdots| x_{k}^{\varepsilon}\left|v_{k+1}^{\varepsilon}\right| \cdots \mid v_{n}^{\varepsilon}>$ is homologeous to a chain of the form

$$
\sum_{\varepsilon^{\prime}} \varepsilon^{\prime}<x_{1}^{\varepsilon^{\prime}}|\cdots| x_{k}^{\varepsilon^{\prime}}\left|v_{k+1}^{\varepsilon^{\prime}}\right| \cdots \mid v_{n}^{\varepsilon^{\prime}}>
$$

such that

$$
\max _{\varepsilon^{\prime}}\left|x_{k}^{\varepsilon^{\prime}}\right|<\max _{\varepsilon}\left|x_{k}^{\varepsilon}\right|=: N_{k}\left(\omega^{\prime}\right)
$$

and thus so is ω^{\prime}. By decreasing induction on $N_{k}\left(\omega^{\prime}\right)$, this proves that ω^{\prime} is homologeous to a cycle of the form

$$
\sum_{\varepsilon^{\prime \prime}} \varepsilon^{\prime \prime}<x_{1}^{\varepsilon^{\prime \prime}}|\cdots| x_{k-1}^{\varepsilon^{\prime \prime}}\left|v_{k}^{\varepsilon^{\prime \prime}}\right| \cdots v_{n}^{\varepsilon^{\prime \prime}}>\quad, v_{i}^{\varepsilon^{\prime \prime}} \in V
$$

and thus so is ω.
By decreasing induction on the integer k, this shows that ω is indeed homologeous to a cycle in elements of V, i.e. in $\mathbb{K}\left[\{0,1\}^{n-1}\right] \otimes V^{\otimes} \subset C L D_{n}(\operatorname{Leib}(V))$, which concludes the proof of the lemma.

Theorem 3.0.27. For any Leibniz algebra \mathfrak{g},

$$
H L D_{*}\left(U_{L D}(\mathfrak{g})\right) \cong H L_{*}(\mathfrak{g})
$$

Proof. The general case can be reduced to the abelian one by the following standard spectral sequence argument :

