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1 Relativité restreinte

Quelques expériences fictives

Principe général dans la mécanique Newtonienne : Additivité des vitesses. Si I’on se place en une dimension
et qu’on suppose qu'un observateur B se déplace a vitesse v par rapport a un observateur A, alors un photon
qui se déplace & la vitesse ¢ par rapport & A dans la méme direction que B devrait se déplacer a la vitesse ¢ — v
par rapport & B. Ceci est en contradicition avec I'expérience (Michelson Morley 1887) car les photons vont a la
vitesse ¢ dans n’importe quel référentiel.

Temps et distance n’ont de sens que par rapport aux observateurs (le temps mesuré par A n’est & priori pas

le méme que celui mesuré par B méme avec des chronometres identiques). De méme la simultanéité est relative.
Détaillons un peu cela :

1. Photon vertical :

Un train qui se déplace, un photon lancé d’'un bout a 'autre du wagon, B est dans le wagon, A sur le
quai. Absurdité si on suppose que le temps s’écoule pareil pour A et pour B. Cependant, par réciprocité,
les directions orthogonales au mouvement ne sont pas affectées. Si 'on y voit une contradiction dans le
sens du mouvement, par exemple en collant une regle sur le wagon au passage du train, il faut comprendre
que si les deux extrémités de la regle sont collées simultanément pour A elles n’ont aucune raison de 1’étre
pour B. Il n’y a pas réciprocité contrairement au sens orthogonal au mouvement (train + ou - large que
les rails est absurde)

Deux observateurs : A dans le train et B sur le quai, le photon fait un aller retour sol-plafond ¢4, tg =
temps d’aller retour du photon pour A, B

h= heauteur du wagon c4 = vitesse du photon pour A cg = vitesse du photon pour B v = vitesse du
train pour B On a

c=cp=— (1)

et par Pythagore
(2h)2 4+ v2t%

C=Cp —
tp

En mettant cette équation au carré et en substituant la valeur de h grace a ’équation (1)

t2c? = 4h? + 0% = Pt + 0ty

/ V2

Remarque 1.1.1. [l est fondamental que les deux évenements (depart et retour du photon) se passent au
méme endroit pour A

N
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2. Photon horizontal : Cette fois ci le photon se déplace dans le sens du déplacement. On s’intéresse de
nouveau & un aller retour. Ici, I4 (resp. {p) est la longueur du wagon mesurée par A (resp. B) La vitesse
mesurée par A est

21
c="" 3)

ta
Pour l'observateur B, commencgons par calculer la distance parcourue par le photon pendant un aller
retour : A Paller le photon parcourt la longueur du train plus la distance parcourue par le train = g + vty

ou t’z est le temps de l'aller pour B. Pour le retour on trouve [ — vt ot ¢ est le temps de retour pour

B. Or ,
I+t
c= o
donc tly = lev, et
4ot
c= o
donc %} = clfv

Ainsi, en utilisant (2) on a

cta ¢ v?2 vez —ov2 1 1 c
la=—=5\1-3is= ( + ) = lp
2 2 c 2 c+v c—v 2 — 2

1

Iy = ———Ip
v2
V= e

Remarque 1.1.2. Ici il est important que le wagon soit fixe par rapport a A. On peut généraliser les
équations (2) et (4) a des événements qui ne se passent pas au méme endroit ot des longueurs non fixes.
Ce sont les transformations de Lorentz.

d’ou

(4)

1.2 Quantité de mouvement
On considere un particule de masse m et de vitesse ¥.
Définition 1.2.1. Sa quantité de mouvement (ou impulsion), est le vecteur p défini par
pi=mv

La quantité de mouvement est constante avec le temps (si ’on consideére toutes les particules du systéme
évidemment). On peut en déduire (par le méme genre de raisonnement que précédemment, en jetant des pierres
du train) que si une particule ¢ de masse m (au repos pour A) se déplace & vitesse ¥ par rapport a un observateur
A, alors la quantité de mouvement de ¢ vue par A est

ﬁ:

1.3 Modélisation de ’espace temps
1.3.1 En mécanique classique

En mécanique classique, ’espace temps est un espace affine! M de dimension 4, muni d'une forme quadra-
tique T sur F := M de signature (+,0,0,0).

Remarque 1.3.1. Le point de vue affine permet d’éviter les directions privilegiées.

Comme E — KerT a deux composantes connexes, on en choisit une que ’on note £+. Ce sont les directions
positives. On note b: E x E — R la forme bilinéaire symétrique associée a T.

Définition 1.3.2.

1. ensemble M sur lequel un espace vectoriel M agit fidelement et transitivement



1. Un observateur est une courbe ¢ : I — M de genre temps (i.e telle que T(c'(t)) # 0 pour tout t dans I ).

2. Un observateur galiléen est une droite non isotrope.
Choisissons un produit scalaire g sur KerT := {v € E|b(xz,v) = 0V € E} et notons || || la norme associée.

Définition 1.3.3. 1. Soient A et B dans M. On dit qu’ils sont simultanés si AB € KerT. L'ensemble des
simultanés a A donné est ’hyperplan affine A+ KerT. C’est l’espace vu par un observateur en A.

2. Lorsque A et B sont simultanés, on peut calculer leur distance :
d(A, B) := [|AB|

3. Le temps qui sépare deux événements A et B de M est donné par

Tap = \/T(AB)
On voit que deuxr événements sont simultanés si et seulement si le temps qui les sépare est nul.

Considérons un observateur galiléen D dirigé par un vecteur unitaire (T'(ip) = 1) et orienté positivement.
Si on fixe une origine A & D, on a un isomorphisme naturel

¢epa:M — KerTxR
B — (9,t)

ou vecv et t sont déterminés par AB =+ tip. En fait, t = T4p.

L’univers observable pour D4 a l'instant ¢ est ¢~ (KerT x {t}).

Paramétrisation par le temps propre : Soit D un observateur et ¢ : I — M une paramétrisation de D
(telle que T'(c'(t)) # 0 pour tout ¢). quitte & échanger ¢ par —t on peut supposer que ¢'(t) est dans ET pour

tout t dans I. Posons .
s(t) = T(c (u)du
to

ol tg est un point fixé de I. On voitr que s est un difféomorphisme de I sur J := s(I). Posons C := co s~
J — M. Alors, pour totu t dans J

1.

T(C'(t)=1 et C'(t)c ET

une telle paramétrisation est appelée paramétrisation normale positive de de ’observateur D. Elle existe toujours
et est unique a translation pres.

Vitesse : Soient D et D deux observateurs dont on note a et & les paramétrisations normales positives
respectives. Quitte & faire une translation en temps on peut supposer que que pour t fixé, a(t) et &(t) sont
simultanés. Alors &' (t) s’écrit de maniére unique sous la forme

& (t) =k + ao/(t)
Comme T(&'(t)) = T(c/(t)) = 1, il est clair que a = 1.
Définition 1.3.4. Le vecteur k défini précédemment est la vitesse de D wvue par D au temps t. Elle est notée
UD/D'
Remarque 1.3.5. 1. La vitesse définie dépend du temps t.

2. 8i D et D sont deuz observateurs galiléens, alors le vecteur vitesse 77[)/D est constant en fonction du
temps.

3. Tpp = ~Tp/p-

4. On retrouve l’additivité des vitesses

L’accélération de D par rapport & D est le vecteur EL’D/D = %77[7/17 On remarque que si D et D’ dont

galiléens, les accélération de D vu par D et D’ sont égales.



1.3.2 En relativité restreinte

La mécanique classique suppose ’additivité des vitesses ce qui contredit la constance de celle de la lumiere.
D’oti un nouveau modele : la relativité restreinte (Einstein 1905).

L’espace temps en relativité restreinte est un espace affine M de dimension 4 muni d’une forme quadratique
T sur E := M de signature (—,+++). Pour fixer les idées on considérera souvent I'espace de Minkowski (R*, )
ou

n = —dt* + (dz')? + (dz?)* + (dz?)?
dans les coordonnées canoniques (t, 2!, 22, z3).

Remarque 1.3.6. Une telle métrique est exactement celle qui est conservée par les changements de repére de
la premiére sous section. Le groupe des transformations de M qui laissent invariant cette métrique est appelé
groupe de Poincaré. C’est le produit semi direct des translations avec le groupe de Lorentz des automorphismes de
E qui laissent stable la metrique T. Il a €té exhibé comme le groupe des transformations qui laissent invariantes
les équations de Maxwell. Matriciellement, si D est en translation par rapport D avec pour vitesse v selon l’axe

des xt, en posant 8 =wv/c et v = 1/+/1 — 32, elles ont la forme

vy =By 00
=By v 00
0 0 10
0 0 0 1

Définition 1.3.7. Soit ¥ unvecteur de E. ¥ est dit
— type lumieére (isotrope) si T(¥) =0
— de genre temps si T(U) <0
~ de genre espace si T(U) > 0.

L’ensemble des vecteurs de type temps a deux composantes connexes. L’une est déclarée positive (orientation
en temps). De méme que précédemment :

Définition 1.3.8.
— Un observateur est une courbe de genre temps
— un observateur galiléen est une droite de genre temps.
- Si D est un observateur galiléen et ¢ : I — M est une paramétrisation de D, l'espace vu par D en c(t),
est Uhyperplan affine c(t) + ¢ (t)*.

Remarque 1.3.9. Si A et B sont deux points de M, cela n’a pas de sens de se demander si ils sont simultanés.
Par contre on peut se demander si A et B sont simultanés pour un observateur D : cela signifie qu’il exite un
t tel que A et B soient dans l'espace vu par D au point c(t).

De méme qu’en mécanique classique, chaque observateur D admet une paramétrisation C' : I — M par le
temps propre telle que T(C'(t)) = —1 et C'(t) est dans l'orientation pour tout ¢ dans I. Si ¢: I — M est une
paramétrisation quelconque de D, le temps propre 745 entre A = ¢(t1) et B = ¢(t2) est donné par

TAB = /tt2 V=T((¢))dt

Il s’agit du temps mesuré physiquement par D entre A et B. Si A et B sont simultanés pour D, la distance de
A & B vue par D est

dp(A, B) :=\/T(AB)

Remarque 1.3.10.

— Le temps propre ne dépend pas de la paramétrisation chotisie.

— Sil’on se donne A et B quelconques dans M, cela n’a pas de sens de parler du temps qui sépare A et B.
Cela dépend de la trajectoire choisie par l'observateur. C’est le paradozxe des jumeaux.

Paramétrisation par le temps propore d’un observateur galiléen : Soit D un observateur galiléen
de vecteur directeur unitaire ip (T(ip) = —1) parametré par ¢ : I — M tel que ¢/(t) = ip pour tout ¢ dans
I. Soit D un autre observateur parametré par ¢ : I — M. On peut décomposer at) = k+ aip avec ke iB.
En mécanique classique, si ¢ était en temps propre, on avait a = 1. Ce n’est plus le cas mais on peut trouver



une unique c telle que ce soit vrai. Une telle paramétrisation s’appelle paramétrisation normale positive pour
D. Elle a la proprieté que si ¢; et ¢; sont deux paramétrisations normales positives pour D telles que ¢ (¢1) et
¢a(t2) soient simultanés pour D, alors pour tout a, ¢1(t1 + a) et ca(t2 + a) le sont encore.

Vitesse Soient D et D deux observateurs parametrés respectivement par ¢ : I — M et é : I — M On
suppose que ¢ est par le temps propre pour D. Fixons un point A de D, A = ¢(t) pour un certain ¢ dans I.
Quitte & effectuer une translation on peutt supposer ¢&(t) et ¢(t) simultanés pour D. Le vecteur & (t) s’écrit alors
de maniere unique

&) =k+ad(t)
ol k est dans ¢ (t)* et a dans R.

Définition 1.3.11. Sous les hypothéses précédentes, le vecteur vitesse de D par rapport a D en A est

Up/p =

SIS

Remarque 1.3.12. 1. Si ¢ est normale pour D, 17D/D = k.

2. La vitesse relative de deux observateurs galiléens est constante.

Proposition 1.3.13. La vitesse de la lumiére par rapport a n’importe quel obervateur est constante.

2 Relativité générale

2.1 DModélisation de ’espace temps en relativité générale :
Quelques définitions succintes pour commencer :

Définition 2.1.1.
— Une varieté (C*) de dimension n est un espace topologique M muni d’un atlas de cartes (U;,; : U; —
R™); tel que les changements de cartes soient des difféomorphismes.
— Le fibré tangent d’une varieté M est ’espace topologique

TM = (Iil TUi) /.

oty TU; := U; x R™ et la relation d’équivalence ~ est définie par (z,@) ~ (z,7) si et seulement @ =
Dy () (¥ © w;l) - ¥, pour tous (z,u) € TU; et (y,v) € TU;. L'application mpr : TM — M qui envoie
la classe de (x,@) sur x fait du fibré tangent un fibré vectoriel de rang n sur M. TM est une varieté de
dimension 2n. La fibre m=1({z}) d’un point x de M est notée T, M, c’est l’espace tangent ¢ M en x.

— Un champ de vecteurs sur M est une section du fibré tangent c’est a dire une application (C*) s : M —
TM telle que mpr 0o s = Idps. On note T'(M,TM) Uensemble des champs de vecteurs sur M.

— Le fibré cotangent associé a M est le fibré dont les fibres sont duales de celles de wpy : TM — M : la
fibre au dessus d’un point © de M est ’espace vectoriel T, M* des formes sur l’espace tangent a M en x.
Le fibré cotangent est noté T*M — M. Une section du fibré cotangent est appelée 1-forme différentielle.

- SiE— M et E' — M sont deuz fibrés au dessus de M leur produit tensoriel, noté E Q@ E' — M, est le
fibré vectoriel dont la fibre au dessus de x est (E® E'), = E, ® E..

— Un tenseur d’ordre (p,q) est une section du fibré TM®? @ T*M®1 — M. Ezemple : Un tenseur (0,1)
est une 1-forme différentielle.

~ Une métrique sur M est un (0, 2)-tenseur sur M, non dégénéré et symétrique. C’est un moyen cohérent de
se donner une forme bilinéaire symétrique non dégénérée sur chaque espace tangent T, M. Un métrique
lorentzienne est une métrique de signature (—,+,+,4+).

En relativité générale, ’espace-temps est modélisé par une varieté lorentzienne (M, g) de dimension 4.

Définition 2.1.2. Un vecteur tangent @ en un point de M est dit

— isotrope (ou de type lumiére) si g(@, ) =0,

— de type espace si g(u, @) > 0,

— de type temps si g(u, @) < 0.
Un observateur est une courbe parametrée C' : I — M dont le vecteur tangent C'(t) est de type temps pour
tout t dans l'intervalle I C R. Un observateur en un point x de M est un vecteur tangent a M en x de type
temps et unitaire.



De méme que dans le cas de la relativité restreinte, tout observateur C' admet un paramétrage C : I — M
par le temps propre qui vérifie
9(C'(t),C'(t)) = -1
pour tout ¢ dans I. Soit 2 un point de M et soient i et vecv deux observateurs ? au point . Alors @ se décompose
de maniere unique sous la forme @ = a¥ + W ou W est orthogonal a v.

Définition 2.1.3. La vitesse de i vue par ¥ est le vecteur vgjyec, défini par

. 1
’Uﬁ/g: Ew

La vitesse scalaire est la g-norme du vecteur vitesse |z7ﬁ/17|2 = 9(Ua/w, Via/v)-

2.2 Energie et impulsion pour les fluides v-parfaits :

Le but de cette sous section est de définir I’énérgie et 'impulsion vues par un observateur dans le cas ou M
ne contient quun fluide vraiment parfait.

Définition 2.2.1. Un fluide vraiment parfait (abrégé en fluide v-parfait) est un champ de vecteurs F sur
M, de type temps et dans l'orientation. 1l existe un unique champs de vecteurs unitaires et dans l’orientation u
et une unique fonction p sur M tels que F' = pu. p est la densité de masse du fluide.

Pour un fluide v-parfait et un point = de M, le vecteur () est le vecteur tangent a I'unique courbe?® du
fluide paramétrée, par son temps propre, qui passe x. Nous sommes maintenant en mesure de définir la densité
d’impulsion du fluide vue par un observateur ¢ au point x de M :

Définition 2.2.2. La densité d’énergie du fluide F= pU vue par un observateur U au point x est

L pl@)
=l = 1= wu(})/a@

11 est possible de réécrire la densité d’énergie a 'aide de la métrique g comme suit : en notant 4 := @(x), et
comme @ = a¥ + W, il vient
g(i,7)* = a?g(¥,7)* = o?

et

S o —12 2 2 2 . 2
g(0,0) + |0|* = —a” + Jvecw|* = —a(1 — |vu(?c)/17|g)
ce qui implique que o? = ﬁ d’ou

ev = p(x)g(d, 5)°
Comme fonction de ¥, la densité d’énergie en x se prolonge en une forme quadratique sur 7, M puis en une
forme bilinéaire symmétrique 7,, par la formule
72 (U, W) = p(a)g(i(x), v)g(u(x), W)

Ceci qui conduit naturellement & la définition du tenseur d’énergie-impulsion associé au fluide v-parfait F' :

Définition 2.2.3. Le tenseur d’énergie-impulsion de F est le (0,2)-tenseur T défini par

7 = p(x)g(t(z), ) @ g(u(z),-)

2. Noter qu’ici les deux obervateurs sont au méme point et que ¥ est 'unité de temps pour le deuxiéme observateur
3. Une telle courbe représente la trajectoire d’une des “particules” constituant le fluide dans I’espace temps.




2.3 La mécanique Newtonnienne du point de vue des fluides

L’objectif de cette sous-section est de formaliser les lois de Newton pour un fluide classique afin de deviner
celle qui régissent le mouvement d’un fluide v-parfait dans le contexte relativiste, en faisant en sorte de retrouver
la mecanique Newtonnienne a “petite” vitesse.

En mécanique classique, le potentiel au point x créé par des masses my, ..., m, situées en yi,..., yn (les y;
doivent étre simultanés & x) est le nombre f(z) donné par

@ =% 3o

ou k est la constante de gravitation que 1'on choisit égale & 1 pour la suite. Dans le cas d’un fluide de densité
de masse p, le potentiel au point x est

f(z) = /Z r p(y)ﬁdu(y)

ou i est la mesure associée au produit scalaire sur KerT'. Ainsi, f est solution de I’équation de Poisson :
(a) Af=dmp

o Af est le laplacien (en espace) usuel associé au produit scalaire sur KerT'. La loi de Newton traduite sur les
courbes du fluide s’écrit

() ) = —gradf(x)

Ici d(z) est la dérivée seconde de 'unique courbe du fluide (parametrée par le temps propre) passant par x.

2.4 L’axiomatique de la relativité générale

Il est temps a ce stade d’introduire le premier axiome de la relativité générale :

AXIOME I : Les trajectoires des particules parametrées par leur temps propre sont des
géodésiques pour la métrique g. Pour l'instant, la notion de géodésique n’a pas été définie (elle le sera au
paragraphe suivant). Une définition, équivalente & celle qui sera donnée par la suite, pourrait-étre la suivante :
une courbe C': [tg, 1] = M est une géodésique si elle minimise la fonctionnelle

) e ) di

ol 7 parcourt toutes les applications C* de [tg,t1] dans M dont les extrémités coincident avec celles de C.

L’idée d’Einstein est de considérer que les particules n’interagissent pas entre elles par une forme d’attraction
gravitationnelle comme dans le cas Newtonnien, mais que la présence de matiere altere la courbure de I'espace-
temps, prescrivant ainsi les trajectoires des particules qui sont supposées étre des géodésiques. Les notions de
courbure et de géodésique nécéssitent d’introduire un nouvel objet sur M : la connection.

2.4.1 Digression sur les connections

Définition 2.4.1. Une connection sur un fibré E — M est une application C*

V :T(M,TM)® (M, E) — (M, E)
X®Y — VX(Y)

qui vérifie les axiomes suivants :

1. La reégle de Leibniz :
Vx(fY) =df(X) @Y + fVx(Y)

pour toute section Y de E et toute fonction f sur M.

2. Pour tout X champ de vecteur et pour toute fonction

Vix(Y)=fVx(Y)



On peut prolonger une connection a toute conbinaison de produits tensoriels et de duaux de E en appliquant
la regle de Leibniz pour les contractions* et les produits tensoriels, et en posant qu’elle doit coincider avec la
différentiation dans le cas des fonctions vues comme O-tenseurs. Par exemple, si w est une 1-forme et X un
champ de vecteur, la contraction de w avec X, notée w--- X est la fonction x — w(x, X (z)). Ainsi

dw- X)) =V(w:X)=V(w) X +w-V(X)
d’ou
Vw) X =d(w-X) —w-nabla(X)
cette égalité permet de définir localement V(w) en choisissant une base de sections de F sur un ouvert trivialisant
le fibré F.
Dans ce qui suit, le fibré E de départ est le fibré tangent 7'M — M et la connection permet de dériver des
tenseur dans la direction d’un champ de vecteur en évitant de tomber dans le fibré tangent du fibré tangent.

Ce n’est pas un (1,1)-tenseur car il n’y a pas C*°(M)-linéarité dans la deuxiéme composante (celle liée & E).
Cependant

Remarque 2.4.2. Si T est un (p,q)-tenseur, V(T) est (p,q+ 1)-tenseur appelé dérivée covariante de T.
Il existe des connections sur M et I'une d’entre elles se distingue :
Théoreme 2.4.3. Toute varieté lorentzienne (M, g) admet une connection V, dite de Levi-Civita, qui satisfait
les deux conditions suivantes :
1. 'V est sans torsion i.e
V(df)
est un (0, 2)-tenseur symétrique pour toute fonction f sur M.

2. La dérivée covariante de la métrique est nulle :
V(g)=0

Dans ce qui suit, V sera toujours la connection de Levi-Civita associée a (M, g). Nous allons maintenant
examiner I'expression de V dans un systéme de coordonnées (20, 2!, 22, 23) défini sur un ouvert U de M. Soit
6%1, e % la base canonique de R* et da!, ..., dz3 la base duale associée. Dans ces coordonnées, un champ de

vecteurs X s’écrit sous la forme s
.0
S 1
X = ;,0 X B

Cette écriture signifie que si on note ¢ : z € U > (2°(x), -+ ,23(z)) la carte correspondant aux fonctions
coordonnées choisies :

3
: 0
XD (20 oo 23 = (D (0 ... 3 X0 ... 23 :
(P (@ 2)) = (P (27, x); (7, ,ﬂf)aﬂ)
dans TU = U @ R*.
La dérivée covariante de X s’écrit alors
3 3 3 3
0 oxX" 0 , 1o}
X) = ¢ = - X* -
V(X) V(; 6:61) ;; oxJ Ox* Zz: v((‘?xl)

0 ; 0

Définition 2.4.4. Les fonctions I’fj, 1,5,k =0,---,3 sont appellées symboles de Christoffel de V.

4. La contraction d’un tenseur (p,q) s’obtient en évaluant une composante covariante en une composante contravariante



A Tl’aide des symboles de Christoffel, la dérivée covariante de X prend la forme :
29X i)
VX)) =3 § XThda? @ —
& 224 Dai axz 2 ® Bt

A partir de maintenant nous utiliserons la convention d’Einstein® qui consiste & considérer toute expression
P L. . R (s . 3 L
dans laquelle un méme indice o est écrit deux fois comme elle méme précédée du signe > . Ainsi

%
0X' 0 + XTI} dw J@i

ViX) = Qi D ozk

Les symboles de Cristoffel de la connection de Levi-Civita ont la proprieté de symétrie suivante

Proposition 2.4.5. Pour tous i, j, k entiers entre 0 et 3

k
F?j = Fji
Démonstration. La non torsion de V s’écrit
0 e, O
Ve o (da* )N(55) = Voo (da®)(55)
ce qui est équivalent a 1’égalité voulue. O

Les symboles de Christoffel sont entierement déterminés par la métrique ¢ :

Proposition 2.4.6. Pour tous a, b et ¢ dans {0,1,2,3}

1
ab = 596(1(3:19011) + OvGad — OaYab)

Démonstration. 1l suffit d’utiliser la nullité de la dérivée covariante de g : Soit (gi;)i j=0...3 la matrice de g dans
la base des dz’

0=V(g) = V(gijda’ @ da’) = 0pg;jdr™ @ dz' @ da? — g;;T% pdz® @ dz’ @ da? — g”I‘j da' @ dz® ® da”

ot O, f := 86;];. En évaluant V(g) sur zﬁa ® % ® % il vient :

8agbc = gdcrgb + gadrgc =0
d’ot, en utilisant la symétrie des symbole de Cristoffel en les indices covariants et celle de g :
) O Jac — Ocfab = gapl'e rd rd ¢ — gpld — g.al'? = 2g.40%
wgcb + ObGac cGab = Jabl g T Gadl pe + Gedl qp + gvdl g — gavl gc — Geal ap = 29cdl op

Ainsi, si I'on note (¢g7); ; la matrice inverse de (gij)i;

1
ab = §ng(8agdb + OvGad — Oagab)

O

Associé a la connection, le (1, 3)-tenseur de courbure de Riemann mesure la “non platitude” de I’espace-temps
M. 11 est défini comme suit :

Définition 2.4.7. Le tenseur de Riemann, noté Riem(g) est le (1,3)-tenseur défini par
Riem(X,Y,Z) := VxVy(Z) - VyVx(Z) - Vix,y|(Z)

0t [X,Y]:= XY —YX est le crochet de Lie des champs de vecteurs X etY vus comme dérivations de l'algébre
des fonctions C* sur M. Le terme ot figure le crochet de Lie est nul si X et'Y sont associés a des coordonnées
(commutation des dérivées partielles par le lemme de Gauss).

5. Par exemple, Z?:o a;b* s’écrira simplement a;bt.



Dans le systéme de coordonnées (z°, x!, 22, 23) les composantes de Riem sont données par

. l ! ! 1 1
Riem(g);;, = 0il'yy, + I, Ty, — 0,15, — T5,T5,
En contractant le tenseur de courbure de Riemann, on obtient le (0, 2)-tenseur de courbure de Ricci :

Définition 2.4.8. Le tenseur de courbure de Ricci de g, noté Ricci(g) est le tenseur de courbure obtenu en

contractant le tenseur de courbure de Riemann selon le premier et dernier indice. Ces composantes dans le

systéme de coordonnées (x°,x', x2 2%) sont données par

Ricci(g)jx == Riem(g)i;x = ;T + T, Th, — 0,75, — TH.T5,
pour tous j et k dans {0,1,2,3}.
Il reste & définir la notion de géodésique associée a la métrique via la connection :
Définition 2.4.9. Une courbe paramétrée C' : I — M est une géodésique si son accélération dans sa propre
direction est nulle i.e
Ve (C'(t) =0

pour tout t dans I.

2.4.2 L’équation d’Einstein

Dans cette sous-sous-section nous allons tenter de déduire I’équation d’Einstein de I’axiome I) et du principe
qui consiste a supposer qu’'une particule de masse non nulle interfere avec les autres masses présentes dans
I’espace temps en déformant ce dernier, liant ainsi le tenseur de courbure de Ricci et celui d’énergie-impulsion.
A cette fin, il est indispensable de supposer I’existence ® d’ouverts de cartes “proches” de ceux de la mécanique
classique :

Définition 2.4.10. Un domaine statique est un ouvert U de [’espace temps M, muni de coordonnées

(20,21, 2%, 2) dans lesquelles la matrice de la métrique g est de la forme :

— (2, 22, 23) 0
( 0 g(at, 22, 2%) )

ot g est une matrice 3 x 3 qui ne dépend que des coordonnées “d’espace” x', x? et 3.

Dans un ouvert statique les coefficients de Christoffel de g se simplifieraient de la maniere suivante : Comme
1
T3y = 59" (0905 + 0391 = Opgis)
il est clair que
- I‘80 =0,
- T9; =T =30;fsij>0,
- Tty = —39"70,(—f?) = fg"*0,f = ferad"(f) pour tout k dans {0,1,2,3},
~ Tg; =T% = 05si j et k sont strictement positifs,
A Taide de ces relations, on peut écrire la composante dans la direction “temps” du tenseur de Ricci :

Ricci(g)oo = i + Loy, — 8ol — Th Lo,
i i 1
= 0;(fgrad'(f)) + fT},grad”(f) — 0 — Qfgradp(f)fapf

= [(Bigrad'(f) + Tipgrad”(f)) (i >0)
= fAg(f)
Ici le laplacien Agz(f) est défini comme la trace sur les indices strictements positifs du (1, 1)-tenseur V(grad(f)).
Rappelons 'axiome prescrivant le mouvement des particules en relativité générale : Les trajectoires des
particules du fluides paramétrées par leur temps propre sont des géodésiques.
Soit ¢ : I — M une courbe du fluide paramétrée par son temps propre. Notons (¢} (t),c;(t), ch(t), c5(t)) le
vecteur tangent au point ¢(t) vu dans la carte associée a ouvert statique considéré précédemment (celle des

p“g;ﬁ“l). L’équation des géodésiques pour c s’écrit alors

Vc’(t) (Cl(t)) =0« 8j

6. De “bonnes” hypotheéses assurant une telle existence seraient énoncées dans [Hawking-Ellis].
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