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1 Relativité restreinte

1.1 Quelques expériences fictives

Principe général dans la mécanique Newtonienne : Additivité des vitesses. Si l’on se place en une dimension
et qu’on suppose qu’un observateur B se déplace à vitesse v par rapport à un observateur A, alors un photon
qui se déplace à la vitesse c par rapport à A dans la même direction que B devrait se déplacer à la vitesse c− v
par rapport à B. Ceci est en contradicition avec l’expérience (Michelson Morley 1887) car les photons vont à la
vitesse c dans n’importe quel référentiel.

Temps et distance n’ont de sens que par rapport aux observateurs (le temps mesuré par A n’est à priori pas
le même que celui mesuré par B même avec des chronomètres identiques). De même la simultanéité est relative.

Détaillons un peu cela :

1. Photon vertical :

Un train qui se déplace, un photon lancé d’un bout à l’autre du wagon, B est dans le wagon, A sur le
quai. Absurdité si on suppose que le temps s’écoule pareil pour A et pour B. Cependant, par réciprocité,
les directions orthogonales au mouvement ne sont pas affectées. Si l’on y voit une contradiction dans le
sens du mouvement, par exemple en collant une regle sur le wagon au passage du train, il faut comprendre
que si les deux extrémités de la règle sont collées simultanément pour A elles n’ont aucune raison de l’être
pour B. Il n’y a pas réciprocité contrairement au sens orthogonal au mouvement (train + ou - large que
les rails est absurde)

Deux observateurs : A dans le train et B sur le quai, le photon fait un aller retour sol-plafond tA, tB =
temps d’aller retour du photon pour A, B

h= heauteur du wagon cA = vitesse du photon pour A cB = vitesse du photon pour B v = vitesse du
train pour B On a

c = cA =
2h

tA
(1)

et par Pythagore

c = cB =

√
(2h)2 + v2t2B

tB

En mettant cette équation au carré et en substituant la valeur de h grace à l’équation (1)

t2Bc
2 = 4h2 + v2t2B = c2t2A + v2t2B

d’où

tA =

√
1− v2

c2
tB (2)

Remarque 1.1.1. Il est fondamental que les deux évenements (depart et retour du photon) se passent au
même endroit pour A
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2. Photon horizontal : Cette fois ci le photon se déplace dans le sens du déplacement. On s’intéresse de
nouveau à un aller retour. Ici, lA (resp. lB) est la longueur du wagon mesurée par A (resp. B) La vitesse
mesurée par A est

c =
2lA
tA

(3)

Pour l’observateur B, commençons par calculer la distance parcourue par le photon pendant un aller
retour : A l’aller le photon parcourt la longueur du train plus la distance parcourue par le train = lB +vt′B
où t′B est le temps de l’aller pour B. Pour le retour on trouve l − vt′′B où t′′B est le temps de retour pour
B. Or

c =
l + vt′B
t′B

donc t′B = lB
c−v , et

c =
l + vt′′B
t′′B

donc t′′B = lB
c+v

Ainsi, en utilisant (2) on a

lA =
ctA
2

=
c

2

√
1− v2

c2
tB =

√
c2 − v2

2
(

1

c+ v
+

1

c− v
)lB =

c√
c2 − v2

lB

d’où

lA =
1√

1− v2

c2

lB (4)

Remarque 1.1.2. Ici il est important que le wagon soit fixe par rapport à A. On peut généraliser les
équations (2) et (4) à des évènements qui ne se passent pas au même endroit où des longueurs non fixes.
Ce sont les transformations de Lorentz.

1.2 Quantité de mouvement

On considère un particule de masse m et de vitesse ~v.

Définition 1.2.1. Sa quantité de mouvement (ou impulsion), est le vecteur ~p défini par

~p := m~v

La quantité de mouvement est constante avec le temps (si l’on considère toutes les particules du système
évidemment). On peut en déduire (par le même genre de raisonnement que précédemment, en jetant des pierres
du train) que si une particule q de masse m (au repos pour A) se déplace à vitesse ~v par rapport à un observateur
A, alors la quantité de mouvement de q vue par A est

~p =
m~v√

1− ||~v||c2

1.3 Modélisation de l’espace temps

1.3.1 En mécanique classique

En mécanique classique, l’espace temps est un espace affine 1 M de dimension 4, muni d’une forme quadra-
tique T sur E := ~M de signature (+, 0, 0, 0).

Remarque 1.3.1. Le point de vue affine permet d’éviter les directions privilegiées.

Comme E −KerT a deux composantes connexes, on en choisit une que l’on note E+. Ce sont les directions
positives. On note b : E × E → R la forme bilinéaire symétrique associée à T .

Définition 1.3.2.

1. ensemble M sur lequel un espace vectoriel ~M agit fidèlement et transitivement
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1. Un observateur est une courbe c : I →M de genre temps (i.e telle que T (c′(t)) 6= 0 pour tout t dans I).

2. Un observateur galiléen est une droite non isotrope.

Choisissons un produit scalaire g sur KerT := {v ∈ E|b(x, v) = 0∀x ∈ E} et notons || || la norme associée.

Définition 1.3.3. 1. Soient A et B dans M . On dit qu’ils sont simultanés si ~AB ∈ KerT . L’ensemble des
simultanés à A donné est l’hyperplan affine A+ KerT . C’est l’espace vu par un observateur en A.

2. Lorsque A et B sont simultanés, on peut calculer leur distance :

d(A,B) := || ~AB||

3. Le temps qui sépare deux évènements A et B de M est donné par

τAB =

√
T ( ~AB)

On voit que deux évènements sont simultanés si et seulement si le temps qui les sépare est nul.

Considérons un observateur galiléen D dirigé par un vecteur unitaire (T (iD) = 1) et orienté positivement.
Si on fixe une origine A à D, on a un isomorphisme naturel

ϕD,A : M → Ker T × R
B 7→ (~v, t)

où vecv et t sont déterminés par ~AB = ~v + tiD. En fait, t = τAB .
L’univers observable pour DA à l’instant t est ϕ−1(KerT × {t}).
Paramétrisation par le temps propre : Soit D un observateur et c : I →M une paramétrisation de D

(telle que T (c′(t)) 6= 0 pour tout t). quitte à échanger t par −t on peut supposer que c′(t) est dans E+ pour
tout t dans I. Posons

s(t) :=

∫ t

t0

√
T (c′(u)du

où t0 est un point fixé de I. On voitr que s est un difféomorphisme de I sur J := s(I). Posons C := c ◦ s−1 :
J →M . Alors, pour totu t dans J

T (C ′(t)) = 1 et C ′(t) ∈ E+

ûne telle paramétrisation est appelée paramétrisation normale positive de de l’observateur D. Elle existe toujours
et est unique à translation près.

Vitesse : Soient D et D̃ deux observateurs dont on note α et α̃ les paramétrisations normales positives
respectives. Quitte à faire une translation en temps on peut supposer que que pour t fixé, α(t) et α̃(t) sont
simultanés. Alors α̃′(t) s’écrit de manière unique sous la forme

α̃′(t) = ~k + aα′(t)

Comme T (α̃′(t)) = T (α′(t)) = 1, il est clair que a = 1.

Définition 1.3.4. Le vecteur ~k défini précédemment est la vitesse de D̃ vue par D au temps t. Elle est notée
~vD̃/D.

Remarque 1.3.5. 1. La vitesse définie dépend du temps t.

2. Si D et D̃ sont deux observateurs galiléens, alors le vecteur vitesse ~vD̃/D est constant en fonction du
temps.

3. ~vD̃/D = −~vD/D̃.

4. On retrouve l’additivité des vitesses

L’accélération de D̃ par rapport à D est le vecteur ~aD̃/D := d
dt~vD̃/D. On remarque que si D et D′ dont

galiléens, les accélération de D̃ vu par D et D′ sont égales.
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1.3.2 En relativité restreinte

La mécanique classique suppose l’additivité des vitesses ce qui contredit la constance de celle de la lumière.
D’où un nouveau modèle : la relativité restreinte (Einstein 1905).

L’espace temps en relativité restreinte est un espace affine M de dimension 4 muni d’une forme quadratique
T sur E := ~M de signature (−,+++). Pour fixer les idées on considérera souvent l’espace de Minkowski (R4, η)
où

η := −dt2 + (dx1)2 + (dx2)2 + (dx3)2

dans les coordonnées canoniques (t, x1, x2, x3).

Remarque 1.3.6. Une telle métrique est exactement celle qui est conservée par les changements de repère de
la première sous section. Le groupe des transformations de M qui laissent invariant cette métrique est appelé
groupe de Poincaré. C’est le produit semi direct des translations avec le groupe de Lorentz des automorphismes de
E qui laissent stable la metrique T . Il a été exhibé comme le groupe des transformations qui laissent invariantes
les équations de Maxwell. Matriciellement, si D̃ est en translation par rapport D avec pour vitesse v selon l’axe
des x1, en posant β = v/c et γ = 1/

√
1− β2, elles ont la forme

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


Définition 1.3.7. Soit ~v unvecteur de E. ~v est dit

– type lumière (isotrope) si T (~v) = 0
– de genre temps si T (~v) < 0
– de genre espace si T (~v) > 0.

L’ensemble des vecteurs de type temps a deux composantes connexes. L’une est déclarée positive (orientation
en temps). De même que précédemment :

Définition 1.3.8.
– Un observateur est une courbe de genre temps
– un observateur galiléen est une droite de genre temps.
– Si D est un observateur galiléen et c : I → M est une paramétrisation de D, l’espace vu par D en c(t),

est l’hyperplan affine c(t) + c′(t)⊥.

Remarque 1.3.9. Si A et B sont deux points de M , cela n’a pas de sens de se demander si ils sont simultanés.
Par contre on peut se demander si A et B sont simultanés pour un observateur D : cela signifie qu’il exite un
t tel que A et B soient dans l’espace vu par D au point c(t).

De même qu’en mécanique classique, chaque observateur D admet une paramétrisation C : I → M par le
temps propre telle que T (C ′(t)) = −1 et C ′(t) est dans l’orientation pour tout t dans I. Si c : I → M est une
paramétrisation quelconque de D, le temps propre τAB entre A = c(t1) et B = c(t2) est donné par

τAB =

∫ t2

t1

√
−T (c′(t))dt

Il s’agit du temps mesuré physiquement par D entre A et B. Si A et B sont simultanés pour D, la distance de
A à B vue par D est

dD(A,B) :=

√
T ( ~AB)

Remarque 1.3.10.
– Le temps propre ne dépend pas de la paramétrisation choisie.
– Si l’on se donne A et B quelconques dans M , cela n’a pas de sens de parler du temps qui sépare A et B.

Cela dépend de la trajectoire choisie par l’observateur. C’est le paradoxe des jumeaux.

Paramétrisation par le temps propore d’un observateur galiléen : Soit D un observateur galiléen
de vecteur directeur unitaire iD (T (iD) = −1) parametré par c : I → M tel que c′(t) = iD pour tout t dans

I. Soit D̃ un autre observateur parametré par c̃ : Ĩ → M . On peut décomposer c̃′(t) = ~k + aiD avec ~k ∈ i⊥D.
En mécanique classique, si c̃ était en temps propre, on avait a = 1. Ce n’est plus le cas mais on peut trouver
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une unique c telle que ce soit vrai. Une telle paramétrisation s’appelle paramétrisation normale positive pour
D. Elle a la proprieté que si c1 et c1 sont deux paramétrisations normales positives pour D telles que c1(t1) et
c2(t2) soient simultanés pour D, alors pour tout a, c1(t1 + a) et c2(t2 + a) le sont encore.

Vitesse Soient D et D̃ deux observateurs parametrés respectivement par c : I → M et c̃ : Ĩ → M On
suppose que c est par le temps propre pour D. Fixons un point A de D, A = c(t) pour un certain t dans I.
Quitte à effectuer une translation on peutt supposer c̃(t) et c(t) simultanés pour D. Le vecteur c̃′(t) s’écrit alors
de manière unique

c̃′(t) = ~k + ac′(t)

où ~k est dans c′(t)⊥ et a dans R.

Définition 1.3.11. Sous les hypothèses précédentes, le vecteur vitesse de D̃ par rapport à D en A est

~vD̃/D =
~k

a

Remarque 1.3.12. 1. Si c̃ est normale pour D, ~vD̃/D = ~k.

2. La vitesse relative de deux observateurs galiléens est constante.

Proposition 1.3.13. La vitesse de la lumière par rapport à n’importe quel obervateur est constante.

2 Relativité générale

2.1 Modélisation de l’espace temps en relativité générale :

Quelques définitions succintes pour commencer :

Définition 2.1.1.
– Une varieté (C∞) de dimension n est un espace topologique M muni d’un atlas de cartes (Ui, ψi : Ui →

Rn)i tel que les changements de cartes soient des difféomorphismes.
– Le fibré tangent d’une varieté M est l’espace topologique

TM :=
(
q
i
TUi

)
/∼

où TUi := Ui × Rn et la relation d’équivalence ∼ est définie par (x, ~u) ∼ (x,~v) si et seulement ~u =
Dψj(x)(ψi ◦ ψ−1

j ) · ~v , pour tous (x, ~u) ∈ TUi et (y,~v) ∈ TUj. L’application πM : TM → M qui envoie
la classe de (x, ~u) sur x fait du fibré tangent un fibré vectoriel de rang n sur M . TM est une varieté de
dimension 2n. La fibre π−1({x}) d’un point x de M est notée TxM , c’est l’espace tangent à M en x.

– Un champ de vecteurs sur M est une section du fibré tangent c’est à dire une application (C∞) s : M →
TM telle que πM ◦ s = IdM . On note Γ(M,TM) l’ensemble des champs de vecteurs sur M .

– Le fibré cotangent associé à M est le fibré dont les fibres sont duales de celles de πM : TM → M : la
fibre au dessus d’un point x de M est l’espace vectoriel TxM

∗ des formes sur l’espace tangent à M en x.
Le fibré cotangent est noté T ∗M →M . Une section du fibré cotangent est appelée 1-forme différentielle.

– Si E → M et E′ → M sont deux fibrés au dessus de M leur produit tensoriel, noté E ⊗ E′ → M , est le
fibré vectoriel dont la fibre au dessus de x est (E ⊗ E′)x := Ex ⊗ E′x.

– Un tenseur d’ordre (p, q) est une section du fibré TM⊗p ⊗ T ∗M⊗q → M . Exemple : Un tenseur (0, 1)
est une 1-forme différentielle.

– Une métrique sur M est un (0, 2)-tenseur sur M , non dégénéré et symétrique. C’est un moyen cohérent de
se donner une forme bilinéaire symétrique non dégénérée sur chaque espace tangent TxM . Un métrique
lorentzienne est une métrique de signature (−,+,+,+).

En relativité générale, l’espace-temps est modélisé par une varieté lorentzienne (M, g) de dimension 4.

Définition 2.1.2. Un vecteur tangent ~u en un point de M est dit
– isotrope (ou de type lumière) si g(~u, ~u) = 0,
– de type espace si g(~u, ~u) > 0,
– de type temps si g(~u, ~u) < 0.

Un observateur est une courbe parametrée C : I → M dont le vecteur tangent C ′(t) est de type temps pour
tout t dans l’intervalle I ⊂ R. Un observateur en un point x de M est un vecteur tangent à M en x de type
temps et unitaire.
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De même que dans le cas de la relativité restreinte, tout observateur C admet un paramétrage C : I → M
par le temps propre qui vérifie

g(C ′(t), C ′(t)) = −1

pour tout t dans I. Soit x un point de M et soient ~u et vecv deux observateurs 2 au point x. Alors ~u se décompose
de manière unique sous la forme ~u = α~v + ~w où ~w est orthogonal à ~v.

Définition 2.1.3. La vitesse de ~u vue par ~v est le vecteur v~u/vecv défini par

~v~u/~v =
1

α
w

La vitesse scalaire est la g-norme du vecteur vitesse |~v~u/~v|2 := g(~v~u/~v, ~v~u/~v).

2.2 Energie et impulsion pour les fluides v-parfaits :

Le but de cette sous section est de définir l’énérgie et l’impulsion vues par un observateur dans le cas où M
ne contient quún fluide vraiment parfait.

Définition 2.2.1. Un fluide vraiment parfait (abrégé en fluide v-parfait) est un champ de vecteurs ~F sur
M , de type temps et dans l’orientation. Il existe un unique champs de vecteurs unitaires et dans l’orientation ~u
et une unique fonction ρ sur M tels que ~F = ρ~u. ρ est la densité de masse du fluide.

Pour un fluide v-parfait et un point x de M , le vecteur ~u(x) est le vecteur tangent à l’unique courbe 3 du
fluide paramétrée, par son temps propre, qui passe x. Nous sommes maintenant en mesure de définir la densité
d’impulsion du fluide vue par un observateur ~v au point x de M :

Définition 2.2.2. La densité d’énergie du fluide ~F = ρ~u vue par un observateur ~v au point x est

εx(~v) =
ρ(x)

1− |~v ~u(x)/~v
|2g

Il est possible de réécrire la densité d’énergie à l’aide de la métrique g comme suit : en notant ~u := ~u(x), et
comme ~u = α~v + ~w, il vient

g(~u,~v)2 = α2g(~v,~v)2 = α2

et
−1 = g(~u, ~u) = α2g(~v,~v) + |~w|2 = −α2 + |vecw|2 = −α2(1− |~v ~u(x)/~v

|2g)

ce qui implique que α2 = 1
1−|~v ~u(x)/~v

|2g
d’où

ε~v = ρ(x)g(~u,~v)2

Comme fonction de ~v, la densité d’énergie en x se prolonge en une forme quadratique sur TxM puis en une
forme bilinéaire symmétrique τx par la formule

τx(~v, ~w) = ρ(x)g(~u(x), ~v)g(~u(x), ~w)

Ceci qui conduit naturellement à la définition du tenseur d’énergie-impulsion associé au fluide v-parfait ~F :

Définition 2.2.3. Le tenseur d’énergie-impulsion de ~F est le (0, 2)-tenseur τ défini par

τx := ρ(x)g(~u(x), ·)⊗ g(~u(x), ·)

2. Noter qu’ici les deux obervateurs sont au même point et que ~v est l’unité de temps pour le deuxième observateur
3. Une telle courbe représente la trajectoire d’une des “particules” constituant le fluide dans l’espace temps.
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2.3 La mécanique Newtonnienne du point de vue des fluides

L’objectif de cette sous-section est de formaliser les lois de Newton pour un fluide classique afin de deviner
celle qui régissent le mouvement d’un fluide v-parfait dans le contexte relativiste, en faisant en sorte de retrouver
la mecanique Newtonnienne à “petite” vitesse.

En mécanique classique, le potentiel au point x créé par des masses m1, ..., mp situées en y1,..., yn (les yi
doivent être simultanés à x) est le nombre f(x) donné par

f(x) =
∑
i

miκ

d(x, yi)

où κ est la constante de gravitation que l’on choisit égale à 1 pour la suite. Dans le cas d’un fluide de densité
de masse ρ, le potentiel au point x est

f(x) =

∫
x+KetT

ρ(y)
1

d(x, y)
dµ(y)

où µ est la mesure associée au produit scalaire sur KerT . Ainsi, f est solution de l’équation de Poisson :

(a) ∆f = 4πρ

où ∆f est le laplacien (en espace) usuel associé au produit scalaire sur KerT . La loi de Newton traduite sur les
courbes du fluide s’écrit

(b) ~a(x) = − ~gradf(x)

Ici ~a(x) est la dérivée seconde de l’unique courbe du fluide (parametrée par le temps propre) passant par x.

2.4 L’axiomatique de la relativité générale

Il est temps à ce stade d’introduire le premier axiome de la relativité générale :
AXIOME I : Les trajectoires des particules parametrées par leur temps propre sont des

géodésiques pour la métrique g. Pour l’instant, la notion de géodésique n’a pas été définie (elle le sera au
paragraphe suivant). Une définition, équivalente à celle qui sera donnée par la suite, pourrait-être la suivante :
une courbe C : [t0, t1]→M est une géodésique si elle minimise la fonctionnelle

γ 7→
∫ t1

t0

√
−g(γ′(t), γ′(t)) dt

où γ parcourt toutes les applications C∞ de [t0, t1] dans M dont les extrémités cöıncident avec celles de C.
L’idée d’Einstein est de considérer que les particules n’interagissent pas entre elles par une forme d’attraction

gravitationnelle comme dans le cas Newtonnien, mais que la présence de matière altère la courbure de l’espace-
temps, prescrivant ainsi les trajectoires des particules qui sont supposées être des géodésiques. Les notions de
courbure et de géodésique nécéssitent d’introduire un nouvel objet sur M : la connection.

2.4.1 Digression sur les connections

Définition 2.4.1. Une connection sur un fibré E →M est une application C∞

∇ : Γ(M,TM)⊗ Γ(M,E) → Γ(M,E)
X ⊗ Y 7→ ∇X(Y )

qui vérifie les axiomes suivants :

1. La règle de Leibniz :
∇X(fY ) = df(X)⊗ Y + f∇X(Y )

pour toute section Y de E et toute fonction f sur M .

2. Pour tout X champ de vecteur et pour toute fonction

∇fX(Y ) = f∇X(Y )

3.
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On peut prolonger une connection à toute conbinaison de produits tensoriels et de duaux de E en appliquant
la règle de Leibniz pour les contractions 4 et les produits tensoriels, et en posant qu’elle doit coincider avec la
différentiation dans le cas des fonctions vues comme 0-tenseurs. Par exemple, si ω est une 1-forme et X un
champ de vecteur, la contraction de ω avec X, notée ω · · ·X est la fonction x 7→ ω(x,X(x)). Ainsi

d(ω ·X)) = ∇(ω ·X) = ∇(ω) ·X + ω · ∇(X)

d’où
∇(ω) ·X = d(ω ·X)− ω · nabla(X)

cette égalité permet de définir localement∇(ω) en choisissant une base de sections de E sur un ouvert trivialisant
le fibré E.

Dans ce qui suit, le fibré E de départ est le fibré tangent TM →M et la connection permet de dériver des
tenseur dans la direction d’un champ de vecteur en évitant de tomber dans le fibré tangent du fibré tangent.
Ce n’est pas un (1, 1)-tenseur car il n’y a pas C∞(M)-linéarité dans la deuxième composante (celle liée à E).
Cependant

Remarque 2.4.2. Si T est un (p, q)-tenseur, ∇(T ) est (p, q + 1)-tenseur appelé dérivée covariante de T .

Il existe des connections sur M et l’une d’entre elles se distingue :

Théorème 2.4.3. Toute varieté lorentzienne (M, g) admet une connection ∇, dite de Levi-Civita, qui satisfait
les deux conditions suivantes :

1. ∇ est sans torsion i.e
∇(df)

est un (0, 2)-tenseur symétrique pour toute fonction f sur M .

2. La dérivée covariante de la métrique est nulle :

∇(g) = 0

Dans ce qui suit, ∇ sera toujours la connection de Levi-Civita associée à (M, g). Nous allons maintenant
examiner l’expression de ∇ dans un système de coordonnées (x0, x1, x2, x3) défini sur un ouvert U de M . Soit
∂
∂x1 , ..., ∂

∂x3 la base canonique de R4 et dx1, ..., dx3 la base duale associée. Dans ces coordonnées, un champ de
vecteurs X s’écrit sous la forme

X =

3∑
i=0

Xi ∂

∂xi

Cette écriture signifie que si on note ψ : x ∈ U 7→ (x0(x), · · · , x3(x)) la carte correspondant aux fonctions
coordonnées choisies :

X(ψ(−1)(x0, · · · , x3)) = (ψ(−1)(x0, · · · , x3),

3∑
i=0

Xi(x0, · · · , x3)
∂

∂xi
)

dans TU = U ⊗ R4.
La dérivée covariante de X s’écrit alors

∇(X) = ∇(

3∑
i=0

Xi ∂

∂xi
) =

3∑
i=0

3∑
j=0

∂Xi

∂xj
∂

∂xi
+

3∑
i=0

Xi∇(
∂

∂xi
)

Notons que ∇( ∂
∂xi ) est une (1, 1)-tenseur qui se décompose sous la forme

∇(
∂

∂xi
) =

3∑
j,k=0

Γkijdx
j ⊗ ∂

∂xk

Définition 2.4.4. Les fonctions Γkij, i, j, k = 0, · · · , 3 sont appellées symboles de Christoffel de ∇.

4. La contraction d’un tenseur (p, q) s’obtient en évaluant une composante covariante en une composante contravariante
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A l’aide des symboles de Christoffel, la dérivée covariante de X prend la forme :

∇(X) =

3∑
i=0

3∑
j=0

∂Xi

∂xj
∂

∂xi
+

3∑
i,,k=0

XiΓkijdx
j ⊗ ∂

∂xk

A partir de maintenant nous utiliserons la convention d’Einstein 5 qui consiste à considérer toute expression
dans laquelle un même indice α est écrit deux fois comme elle même précédée du signe

∑3
α=0. Ainsi

∇(X) =
∂Xi

∂xj
∂

∂xi
+XiΓkijdx

j ⊗ ∂

∂xk

Les symboles de Cristoffel de la connection de Levi-Civita ont la proprieté de symétrie suivante

Proposition 2.4.5. Pour tous i, j, k entiers entre 0 et 3

Γkij = Γkji

Démonstration. La non torsion de ∇ s’écrit

∇ ∂

∂xi
(dxk)(

∂

∂xj
) = ∇ ∂

∂xj
(dxk)(

∂

∂xj
)

ce qui est équivalent à l’égalité voulue.

Les symboles de Christoffel sont entièrement déterminés par la métrique g :

Proposition 2.4.6. Pour tous a, b et c dans {0, 1, 2, 3}

Γcab =
1

2
gcd(∂agdb + ∂bgad − ∂dgab)

Démonstration. Il suffit d’utiliser la nullité de la dérivée covariante de g : Soit (gij)i,j=0···3 la matrice de g dans
la base des dxi

0 = ∇(g) = ∇(gijdx
i ⊗ dxj) = ∂αgijdx

α ⊗ dxi ⊗ dxj − gijΓiαβdxα ⊗ dxβ ⊗ dxj − gijΓ
j
αβdx

i ⊗ dxα ⊗ dxβ

où ∂αf := ∂f
∂xα . En évaluant ∇(g) sur ∂

∂xa ⊗
∂
∂xb
⊗ ∂

∂xb
il vient :

∂agbc = gdcΓ
d
ab + gadΓ

d
bc = 0

d’où, en utilisant la symétrie des symbole de Cristoffel en les indices covariants et celle de g :

∂agcb + ∂bgac − ∂cgab = gdbΓ
d
ac + gadΓ

d
bc + gcdΓ

d
ab + gbdΓ

d
ac − gdbΓdac − gcdΓdab = 2gcdΓ

d
ab

Ainsi, si l’on note (gij)i,j la matrice inverse de (gij)i,j :

Γcab =
1

2
gcd(∂agdb + ∂bgad − ∂dgab)

Associé à la connection, le (1, 3)-tenseur de courbure de Riemann mesure la “non platitude” de l’espace-temps
M . Il est défini comme suit :

Définition 2.4.7. Le tenseur de Riemann, noté Riem(g) est le (1, 3)-tenseur défini par

Riem(X,Y, Z) := ∇X∇Y (Z)−∇Y∇X(Z)−∇[X,Y ](Z)

où [X,Y ] := XY −Y X est le crochet de Lie des champs de vecteurs X et Y vus comme dérivations de l’algèbre
des fonctions C∞ sur M . Le terme où figure le crochet de Lie est nul si X et Y sont associés à des coordonnées
(commutation des dérivées partielles par le lemme de Gauss).

5. Par exemple,
∑3

i=0 aib
i s’écrira simplement aib

i.
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Dans le système de coordonnées (x0, x1, x2, x3) les composantes de Riem sont données par

Riem(g)lijk = ∂iΓ
l
jk + ΓpjkΓlip − ∂jΓlik − ΓpikΓljp

En contractant le tenseur de courbure de Riemann, on obtient le (0, 2)-tenseur de courbure de Ricci :

Définition 2.4.8. Le tenseur de courbure de Ricci de g, noté Ricci(g) est le tenseur de courbure obtenu en
contractant le tenseur de courbure de Riemann selon le premier et dernier indice. Ces composantes dans le
système de coordonnées (x0, x1, x2, x3) sont données par

Ricci(g)jk := Riem(g)iijk = ∂iΓ
i
jk + ΓpjkΓiip − ∂jΓiik − ΓpikΓijp

pour tous j et k dans {0, 1, 2, 3}.
Il reste à définir la notion de géodésique associée à la métrique via la connection :

Définition 2.4.9. Une courbe paramétrée C : I → M est une géodésique si son accélération dans sa propre
direction est nulle i.e

∇C′(t)(C
′(t)) = 0

pour tout t dans I.

2.4.2 L’équation d’Einstein

Dans cette sous-sous-section nous allons tenter de déduire l’équation d’Einstein de l’axiome I) et du principe
qui consiste à supposer qu’une particule de masse non nulle interfère avec les autres masses présentes dans
l’espace temps en déformant ce dernier, liant ainsi le tenseur de courbure de Ricci et celui d’énergie-impulsion.
A cette fin, il est indispensable de supposer l’existence 6 d’ouverts de cartes “proches” de ceux de la mécanique
classique :

Définition 2.4.10. Un domaine statique est un ouvert U de l’espace temps M , muni de coordonnées
(x0, x1, x2, x3) dans lesquelles la matrice de la métrique g est de la forme :(

−f2(x1, x2, x3) 0
0 ḡ(x1, x2, x3)

)
où ḡ est une matrice 3× 3 qui ne dépend que des coordonnées “d’espace” x1, x2 et x3.

Dans un ouvert statique les coefficients de Christoffel de g se simplifieraient de la manière suivante : Comme

Γkij =
1

2
gkp(∂igpj + ∂jgip − ∂pgij)

il est clair que
– Γ0

00 = 0,
– Γ0

0j = Γ0
j0 = 1

f ∂jf si j > 0,

– Γk00 = − 1
2g
kp∂p(−f2) = fgkp∂pf = fgradk(f) pour tout k dans {0, 1, 2, 3},

– Γk0j = Γkj0 = 0 si j et k sont strictement positifs,
A l’aide de ces relations, on peut écrire la composante dans la direction “temps” du tenseur de Ricci :

Ricci(g)00 = ∂iΓ
i
00 + Γp00Γiip − ∂0Γii0 − Γpi0Γi0p

= ∂i(fgradi(f)) + fΓiipgradp(f)− 0− 2fgradp(f)
1

f
∂pf

= f(∂igradi(f) + Γiipgradp(f)) (i > 0)

= f∆ḡ(f)

Ici le laplacien ∆ḡ(f) est défini comme la trace sur les indices strictements positifs du (1, 1)-tenseur ∇(grad(f)).
Rappelons l’axiome prescrivant le mouvement des particules en relativité générale : Les trajectoires des

particules du fluides paramétrées par leur temps propre sont des géodésiques.
Soit c : I → M une courbe du fluide paramétrée par son temps propre. Notons (c′0(t), c′1(t), c′2(t), c′3(t)) le

vecteur tangent au point c(t) vu dans la carte associée à l’ouvert statique considéré précédemment (celle des
partial
∂xi ). L’équation des géodésiques pour c s’écrit alors

∇c′(t)(c′(t)) = 0⇔ ∂j

6. De “bonnes” hypothèses assurant une telle existence seraient énoncées dans [Hawking-Ellis].
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