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Abstract We tackle the inverse problem of reconstructing an unknown finite mea-
sure µ from a noisy observation of a generalized moment of µ defined as the integral
of a continuous and bounded operator Φ with respect to µ . When only a quadratic
approximation Φm of the operator is known, we introduce the L2 approximate max-
imum entropy solution as a minimizer of a convex functional subject to a sequence
of convex constraints. Under several assumptions on the convex functional, the con-
vergence of the approximate solution is established and rates of convergence are
provided.

1 Introduction

A number of inverse problems may be stated in the form of reconstructing an un-
known measure µ from observations of generalized moments of µ , i.e., moments y
of the form

y =
∫

X
Φ(x)dµ(x),

where Φ : X → Rk is a given map. Such problems are encountered in various
fields of sciences, like medical imaging, time-series analysis, speech processing,
image restoration from a blurred version of the image, spectroscopy, geophysical
sciences, crytallography, and tomography; see for example Decarreau et al (1992),
Gzyl (2002), Hermann and Noll (2000), and Skilling (1988). Recovering the un-
known measure µ is generally an ill-posed problem, which turns out to be difficult
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to solve in the presence of noise, i.e., if one observes yobs given by

yobs =
∫

X
Φ(x)dµ(x)+ ε. (1)

For inverse problems with known operator Φ , regularization techniques allow the
solution to be stabilized by giving favor to those solutions which minimize a regu-
larizing functional J, i.e., one minimizes J(µ) over µ subject to the constraint that∫
X Φ(x)dµ(x) = y when y is observed, or

∫
X Φ(x)dµ(x) ∈ KY in the presence of

noise, for some convex set KY containing yobs. Several types of regularizing func-
tionals have been introduced in the literature. In this general setting, the inversion
procedure is deterministic, i.e., the noise distribution is not used in the definition of
the regularized solution. Bayesian approaches to inverse problems allow one to han-
dle the noise distribution, provided it is known, yet in general, a distribution like the
normal distribution is postulated (see Evans and Stark (2002) for a survey). How-
ever in many real-world inverse problems, the noise distribution is unknown, and
only the output y is easily observable, contrary to the input to the operator. Conse-
quently very few paired data are available to reliably estimate the noise distribution,
thereby causing robustness deficiencies on the retrieved parameters. Nonetheless,
even if the noise distribution is unavailable to the practitioner, she often knows the
noise level, i.e., the maximal magnitude of the disturbance term, say ρ > 0, and this
information may be reflected by taking a constraint set KY of diameter 2ρ .

As an alternative to standard regularizations such as Tikhonov or Galerkin, see
for instance Engl, Hanke and Neubauer (1996), we focus on a regularization func-
tional with grounding in information theory, generally expressed as a negative en-
tropy, leading to maximum entropy solutions to the inverse problem. In a determinis-
tic framework, maximum entropy solutions have been studied in Borwein and Lewis
(1993, 1996), while some others study exist in a Bayesian setting (Gamboa (1999),
Gamboa and Gassiat (1997)), in seismic tomography (Fermin, Loubes and Ludeña,
(2006)), in image analysis (Gzyl and Zeev (2003), Skilling and Gull (2001)). Regu-
larization with maximum entropy also provides one with a very simple and natural
manner to incorporate constraints on the support and the range of the solution (see
e.g. the discussion in Gamboa and Gassiat (1997)).

In many actual situations, however, the map Φ is unknown and only an approxi-
mation to it is available, say Φm, which converges in quadratic norm to Φ as m goes
to infinity. In this paper, following lines devised in Gamboa (1999) and Gamboa
and Gassiat (1997) and Loubes and Pelletier (2008), we introduce an approximate
maximum entropy on the mean (AMEM) estimate µ̂m,n of the measure µX to be
reconstructed. This estimate is expressed in the form of a discrete measure concen-
trated on n points of X . In our main result, we prove that µ̂m,n converges to the
solution of the initial inverse problem as m→ ∞ and n→ ∞ and provide a rate of
convergence for this estimate.
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The paper is organized as follows. Section 2 introduces some notation and the
definition of the AMEM estimate. In Section 3, we state our main result (Theo-
rem 2). Section 4 is devoted to the proofs of our results.

2 Notation and definitions

2.1 Problem position

Let Φ be a continuous and bounded map defined on a subset X of Rd and taking
values in Rk. The set of finite measures on (X ,B(X )) will be denoted by M (X ),
where B(X ) denotes the Borel σ -field of X . Let µX ∈M (X ) be an unknown
finite measure on X and consider the following equation:

y =
∫

X
Φ(x)dµX (x). (2)

Suppose that we observe a perturbed version yobs of the response y:

yobs =
∫

X
Φ(x)dµX (x)+ ε,

where ε is an error term supposed bounded in norm from above by some positive
constant η , representing the maximal noise level. Based on the data yobs, we aim
at reconstructing the measure µX with a maximum entropy procedure. In image
analysis this measure may viewed as the intensity at each pixel of the image, blurred
by an unknown filter. Another interpretation is given by texture modeling where
maximum entropy is well used (see for instance Zhu, Wu and Mumford (1998)).
Other applications can be found in seismic tomography (see Fermin, Loubes and
Ludeña (2006)), in image optical nanoscopy (see Uecker et al (2008) for instance)
or remote sensing (see Section 3.2).

As explained in the introduction, the true map Φ is unknown and we assume
knowledge of an approximating sequence Φm to the map Φ , such that

‖Φm−Φ‖L2(PX ) =
√

E(‖Φm(X)−Φ(X)‖2)→ 0,

at a rate ϕm.

Let us first introduce some notation. For all probability measure ν on Rn, we
shall denote by Lν , Λν , and Λ ∗ν the Laplace, log-Laplace, and Cramer transforms
of ν , respectively defined for all s ∈ Rn by:
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Lν(s) =
∫

Rn
exp〈s,x〉dν(x),

Λν(s) = logLν(s),
Λ
∗
ν (s) = sup

u∈Rn
{〈s,u〉−Λν(u)}.

Define the set
KY = {y ∈ Rk : ‖y− yobs‖6 η},

i.e., KY is the closed ball centered at the observation yobs and of radius η .

Let X be a set, and let P(X ) be the set of probability measures on X . For
ν ,µ ∈P(X ), the relative entropy of ν with respect to µ is defined by

H(ν |µ) =

{ ∫
X log

(
dν

dµ

)
dν ifν << µ

+∞ otherwise.

Given a set C ∈P(X ) and a probability measure µ ∈P(X ), an element µ? of
C is called an I-projection of µ on C if

H(µ
?|µ) = inf

ν∈C
H(ν |µ).

Now we let X be a locally convex topological vector space of finite dimension.
The dual of X will be denoted by X ′. The following Theorem, due to Csiszar
(1984), characterizes the entropic projection of a given probability measure on a
convex set. For its proof, see Theorem 3 and Lemma 3.3 in Csiszar (1984).

Theorem 1. Let µ be a probability measure on X . Let C be a convex subset of X
whose interior has a non-empty intersection with the convex hull of the support of
µ . Let

Π (X ) = {P ∈P(X ) :
∫

X
xdP(x) ∈ C }.

Then the I-projection µ? of µ on Π(C ) is given by the relation

dµ
?(x) =

expλ ?(x)∫
X expλ ?(u)dµ(u)

dµ(x),

where λ ? ∈X ′ is given by

λ
? = arg max

λ∈X ′

[
inf
x∈C

λ (x)− log
∫

X
expλ (x)dµ(x)

]
.

Now let νZ be a probability measure on R+. Let PX be a probability measure on
X having full support, and define the convex functional IνZ (µ|PX ) by:

IνZ (µ|PX ) =

{∫
X Λ ∗νZ

(
dµ

dPX

)
dPX if µ << PX

+∞ otherwise.
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Within this framework, we consider as a solution of the inverse problem (2) a mini-
mizer of the functional IνZ (µ|PX ) subject to the constraint

µ ∈ S(KY ) = {µ ∈M (X ) :
∫

X
Φ(x)dµ(x) ∈ KY}.

2.1.1 The AMEM estimate

We introduce the approximate maximum entropy on the mean (AMEM) estimate as
a sequence µ̂m,n of discrete measures on X . In all of the following, the integer m
indexes the approximating sequence Φm to Φ , while the integer n indexes a random
discretization of the space X . For the construction of the AMEM estimate, we pro-
ceed as follows.

Let (X1, . . . ,Xn) be an i.i.d sample drawn from PX . Thus the empirical measure
Pn = 1

n ∑
n
i=1 δXi converges weakly to PX .

Let Ln be the discrete measure with random weights defined by

Ln =
1
n

n

∑
i=1

ZiδXi ,

where (Zi)i is a sequence of i.i.d. random variables on R.

For S a set we denote by coS its convex hull. Let Ωm,n be the event defined by

Ωm,n = [KY ∩ coSuppF∗ν⊗n
Z 6= /0] (3)

where F : Rn → Rk is the linear operator associated with the matrix Am,n =
1
n (Φ i

m(X j))(i, j)∈[1,k]×[1,n] and where F∗ν⊗n
Z denotes the image measure of ν

⊗n
Z by

F . For ease of notation, the dependence of F on m and n will not be explicitly writ-
ten throughout.

Denote by P(Rn) the set of probability measures on Rn. For any map Ψ : X →
Rk define the set

Πn(Ψ ,KY ) =
{

ν ∈P(Rn) : Eν

[∫
X

Ψ(x)dLn(x)
]
∈ KY

}
.

Let ν?
m,n be the I-projection of ν

⊗n
Z on Πn(Φm,KY ).

Then, on the event Ωm,n, we define the AMEM estimate µ̂m,n by

µ̂m,n = Eν?
m,n [Ln] , (4)
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and we extend the definition of µ̂m,n to the whole probability space by setting it to
the null measure on the complement Ω c

m,n of Ωm,n. In other words, letting (z1, ...,zn)
be the expectation of the measure ν?

m,n, the AMEM estimate may be rewritten more
conveniently as

µ̂m,n =
1
n

n

∑
i=1

ziδXi (5)

with zi = Eν?
m,n(Zi) on Ωm,n, and as µ̂m,n ≡ 0 on Ω c

m,n. It is shown in Loubes and
Pelletier (2008) that P(Ωm,n)→ 1 as m→ ∞ and n→ ∞. Hence for m and n large
enough, the AMEM estimate µ̂m,n may be expressed as in (5) with high probability,
and asymptotically with probability 1.

Remark 1. The construction of the AMEM estimate relies on a discretization of the
space X according to the probability PX . Therefore by varying the support of PX , the
practitioner may easily incorporate some a-priori knowledge concerning the support
of the solution. Similarly, the AMEM estimate also depends on the measure νZ ,
which determines the domain of Λ ∗νZ

, and so the range of the solution.

3 Convergence of the AMEM estimate

3.1 Main Result

Assumption 1 The minimization problem admits at least one solution, i.e., there
exists a continuous function g0 : X → coSuppνZ such that∫

X
Φ(x)g0(x)dPX (x) ∈ KY .

Assumption 2

(i) domΛνZ := {s : |ΛνZ (s)|< ∞}= R;
(ii)Λ ′νZ

is bounded.

Assumption 3 The approximating sequence Φm converges to Φ in L2(X ,PX ).
Its rate of convergence is given by

‖Φm−Φ‖L2 = O(ϕ−1
m )

Assumption 4 ΛνZ is a convex function

Assumption 5 For all m, the components of Φm are linearly independent

Assumption 6 Λ ′νZ
and Λ ′′νZ

are continuous functions.
We define Cb = {g : X → R,g continuous and bounded}.
We are now in a position to state our main result.
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Theorem 2 (Convergence of the AMEM estimate). Suppose that Assumption 1
and Assumption 2 hold. Let µ∗ be the minimizer of the functional

IνZ (µ|PX ) =
∫

X
Λ
∗
νZ

(
dµ

dPX

)
dPX

subject to the constraint µ ∈ S(KY ) = {µ ∈M (X ) :
∫
X Φ(x)dµ(x) ∈ KY}.

• Then the AMEM estimate µ̂m,n is given by

µ̂m,n =
1
n

n

∑
i=1

Λ
′
νZ

(〈v̂m,n,Φm(Xi)〉)δXi

where v̂m,n minimizes on Rk

Hn(Φm,v) =
1
n

n

∑
i=1

ΛνZ (〈v,Φm(Xi)〉)− inf
y∈KY
〈v,y〉

• Moreover, under Assumption 4, Assumption 2, and Assumption 3, it converges
weakly to µ∗ as m→ ∞ and n→ ∞. Its rate of convergence is given by

∀g ∈ Cb, |
∫

X
g(dµ̂m,n−dµ

∗)|= κm,n +OP

(
1√
n

)
,

where κm,n = OP(ϕ−1
m ), uniformly for all n ∈ N.

Remark 2. Assumption 2-(i) ensures that the function H(Φ ,v) in Theorem 2 attains
its minimum at a unique point v? belonging to the interior of its domain. If this
assumption is not met, Borwein and Lewis (1993) and Gamboa and Gassiat (1997)
have shown that the minimizers of IνZ (µ|PX ) over S(KY ) may have a singular part
with respect to PX .

Proof. The first part of the theorem is proved in Theorem 3.1 in Loubes and Pelletier
(2008) using Theorem 1. We here focus on the proof of the second part. The rate
of convergence of the AMEM estimate depends both on the discretization n and the
convergence of the approximated operator m. Hence we consider

v̂m,∞ = argmin
v∈Rk

H(Φm,v) = argmin
v∈Rk

{∫
X

ΛνZ (〈Φm(x),v〉)dPX − inf
y∈KY
〈v,y〉

}
,

µ̂m,n = Λ
′
νZ

(〈v̂m,n,Φm(.)〉)Pn,

µ̂m,∞ = Λ
′
νZ

(〈Φm(.), v̂m,∞〉)PX .

For a given g ∈ Cb, we have the following upper bound

|
∫

X
g(dµ̂m,n−dµ

∗)|6 |
∫

X
g(dµ̂m,n−dµ̂m,∞)|+ |

∫
X

g(dµ̂m,∞−dµ
∗)|,
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where each term must be tackled separately.
First, let us consider |

∫
X g(dµ̂m,n−dµ̂m,∞)|.

|
∫

X
g(dµ̂m,n−dµ̂m,∞)| = |

∫
X

g
(
Λ
′
νZ

(〈Φm, v̂m,n〉)dPn−Λ
′
νZ

(〈Φm, v̂m,∞〉)dPX
)
|

6 |
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,n〉)−Λ
′
νZ

(〈Φm, v̂m,∞〉)
)

dPn|

+ |
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,∞〉)dPn−Λ
′
νZ

(〈Φm, v̂m,∞〉)dPX
)
|.

To bound the first term |
∫
X g

(
Λ ′νZ

(〈Φm, v̂m,n〉)−Λ ′νZ
(〈Φm, v̂m,∞〉)

)
dPn|, write

|
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,n〉)−Λ
′
νZ

(〈Φm, v̂m,∞〉)
)

dPn|

6 ‖g‖∞‖Λ ′′νZ
‖∞

1
n

n

∑
i=1
〈Φm(Xi), v̂m,n− v̂m,∞〉

6 ‖g‖∞‖Λ ′′νZ
‖∞‖v̂m,n− v̂m,∞‖

1
n

n

∑
i=1
‖Φm(Xi)‖

where we have used Cauchy-Schwarz inequality. Since (Φm)m converges in L2(PX ),
it is bounded in L2(PX )-norm, yielding that 1

n ∑
n
i=1 ‖Φm(Xi)‖ converges almost

surely to E‖Φm(X)‖< ∞. Hence, there exists K1 > 0 such that

|
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,n〉)−Λ
′
νZ

(〈Φm, v̂m,∞〉)
)

dPn|6 K1‖v̂m,n− v̂m,∞‖.

For the second term, we obtain by Assumption 2

|
∫

X
g(dµ̂m,n−dµ̂m,∞)|= OP

(
1√
n

)
,

uniformly for all n ∈ N. Hence we get

|
∫

X
g(dµ̂m,n−dµ

∗)|6 K1‖v̂m,n− v̂m,∞‖+OP

(
1√
n

)
.

The second step is to consider |
∫
X g(dµ̂m,∞−dµ∗)| and to follow the same guide-

lines. So, we get

|
∫

X
g(dµ̂m,∞−dµ

∗)| = |
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,∞〉)−Λ
′
νZ

(〈Φ ,v∗〉)
)

dPX |

6 |
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,∞〉)−Λ
′
νZ

(〈Φm,v∗〉)
)

dPX |

+|
∫

X
g
(
Λ
′
νZ

(〈Φm,v∗〉)−Λ
′
νZ

(〈Φ ,v∗〉)
)

dPX |

We can write still using Cauchy-Schwarz inequality that
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X

g(x)
(
Λ
′
νZ

(〈Φm(x), v̂m,∞〉)−Λ
′
νZ

(〈Φm(x),v∗〉)
)

dPX (x)

6
∫

X
g(x)Λ ′′νZ

(ξ )〈Φm(x), v̂m,∞− v∗〉dPX (x)

6 ‖Λ ′′νZ
‖∞

√
E(g(X))2

√
E(‖Φm(X)‖2)‖v̂m,∞− v∗‖

Hence there exists K2 > 0 such that

|
∫

X
g
(
Λ
′
νZ

(〈Φm, v̂m,∞〉)−Λ
′
νZ

(〈Φm,v∗〉)
)

dPX |6 K2‖v̂m,∞− v∗‖.

Finally, the last term |
∫
X g

(
Λ ′νZ

(〈Φm,v∗〉)−Λ ′νZ
(〈Φ ,v∗〉)

)
dPX | can be bounded.

Indeed,

|
∫

X
g(x)

(
Λ
′
νZ

(〈Φm(x),v∗〉)−Λ
′
νZ

(〈Φ(x),v∗〉)
)

dPX (x)|

= |
∫

X
g(x)Λ ′′νZ

(ξx)〈Φm(x)−Φ(x),v∗〉dPX (x)|

6 |
∫

X
g(x)Λ ′′νZ

(ξx)‖Φm(x)−Φ(x)‖‖v∗‖dPX (x)|

6 ‖v∗‖‖Λ ′′νZ
‖∞

√
E(g(X))2

√
E(‖Φm(X)−Φ(X)‖2)

Hence there exists K3 > 0 such that

|
∫

X
g
(
Λ
′
νZ

(〈Φm,v∗〉)−Λ
′
νZ

(〈Φ ,v∗〉)
)

dPX |6 K3‖Φm−Φ‖L2

We finally obtain the following bound

|
∫

X
g(dµ̂m,n−dµ

∗)| 6 K1‖v̂m,n− v̂m,∞‖+K2‖v̂m,∞− v∗‖+K3‖Φm−Φ‖L2

+OP

(
1√
n

)
Using Lemmas 1 and 2, we obtain that

‖v̂m,n− v̂m,∞‖= OP

(
1√
n

)
‖v̂m,∞− v∗‖= OP(ϕ−1

m ),

uniformly for all n ∈ N. Finally, we get

|
∫

X
g(dµ̂m,n−dµ

∗)|= κm,n +OP

(
1√
n

)
,

where κm,n = OP(ϕ−1
m ) uniformly for all n ∈ N, which proves the result. ut
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3.2 Application to remote sensing

In remote sensing of aerosol vertical profiles, one wishes to recover the concentra-
tion of aerosol particules from noisy observations of the radiance field (i.e., a radio-
metric quantity), in several spectral bands (see e.g. Gabella et al (1997), Gabella,
Kisselev and Perona (1999)). More specifically, at a given level of modeling, the
noisy observation yobs may be expressed as

yobs =
∫

X
Φ(x; tobs)dµX (x)+ ε, (6)

where Φ : X ×T → Rk is a given operator, and where tobs is a vector of angu-
lar parameters observed simultaneously with yobs. The aerosol vertical profile is a
function of the altitude x and is associated with the measure µX to be recovered,
i.e., the aerosol vertical profile is the Radon-Nykodim derivative of µX with respect
to a given reference measure (e.g., the Lebesgue measure on R). The analytical ex-
pression of Φ is fairly complex as it sums up several models at the microphysical
scale, so that basically Φ is available in the form of a computer code. So this prob-
lem motivates the introduction of an efficient numerical procedure for recovering
the unknown µX from yobs and arbitrary tobs.

More generally, the remote sensing of the aerosol vertical profile is in the form of
an inverse problem where some of the inputs (namely tobs) are observed simultane-
ously with the noisy output yobs. Suppose that random points X1, . . . ,Xn of X have
been generated. Then, applying the maximum entropy approach would require the
evaluations of Φ(Xi, tobs) each time tobs is observed. If one wishes to process a large
number of observations, say (yobs

i , tobs
i ), for different values tobs

i , the computational
cost may become prohibitive. So we propose to replace Φ by an approximation Φm,
the evaluation of which is faster in execution. To this aim, suppose first that T is a
subset of Rp. Let T1, ...,Tm be random points of T , independent of X1, . . . ,Xn, and
drawn from some probability measure µT on T admitting a density fT with respect
to the Lebesgue measure on Rp such that fT (t) > 0 for all t ∈T . Next, consider the
operator

Φm(x, t) =
1

fT (t)
1
m

m

∑
i=1

Khm(t−Ti)Φ(x,Ti),

where Khm(.) is a symmetric kernel on T of smoothing sequence hn. It is a classical
result to prove that Φm converges to Φ in quadratic norm provided hm tends to 0 at a
suitable rate, which ensures that Assumption 3 of Theorem 2 is satisfied. Since the
Ti’s are independent from the Xi, one may see that Theorem 2 applies, and so the
solution to the approximate inverse problem

yobs =
∫

X
Φm(x; tobs)dµX (x)+ ε,
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will converge to the solution to the original inverse problem in Eq. 6. In terms of
computational complexity, the advantage of this approach is that the construction of
the AMEM estimate requires, for each new observation (yobs, tobs), the evaluation of
the m kernels at tobs, i.e., Khm(tobs−Ti), the m×n ouputs Φ(Xi,Tj) for i = 1, . . . ,n
and j = 1, . . . ,m being evaluated once and for all.

4 Technical Lemmas

Recall the following definitions

v̂m,∞ = argmin
v∈Rk

H(Φm,v) = argmin
v∈Rk

{∫
X

ΛνZ (〈Φm(x),v〉)dPX − inf
y∈KY
〈v,y〉

}
,

v̂m,n = argmin
v∈Rk

Hn(Φm,v) = argmin
v∈Rk

{
1
n

n

∑
i=1

ΛνZ (〈v,Φm(Xi)〉)− inf
y∈KY
〈v,y〉

}
,

v∗ = argmin
v∈Rk

H(Φ ,v) = argmin
v∈Rk

{∫
X

ΛνZ (〈Φ(x),v〉)dPX (x)− inf
y∈KY
〈v,y〉

}
Lemma 1 (Uniform convergence at a given approximation level m). For all m,
we get

‖v̂m,n− v̂m,∞‖= OP

(
1√
n

)
Proof. v̂m,n is defined as the minimizer of an empirical contrast function Hn(Φm, .).
Indeed, set

hm(v,x) = ΛνZ (〈Φm(x),v〉)− inf
y∈KY
〈v,y〉,

hence
H(Φm,v) = PX hm(v, .).

Using a classical theorem from the theory of M-estimation and by convexity of the
empirical contrast functions Hn(Φm, .), we get the convergence in probability of
v̂m,n towards v̂m,∞ provided that the contrast converges uniformly over every com-
pact set of Rk towards H(Φm, .) when n→ ∞. More precisely, let x 7→ hm(v,x) be
a measurable function and

.
hm a function in L2(P), such that for all v1 and v2 in a

neighbourhood of v∗

|hm(v1,x)−hm(v2,x)|6
.

hm(x)‖v1− v2‖.

If v 7→ Phm(v, .) has a Taylor expansion of order at least 2 around its unique mini-
mum v∗ and if the Hessian matrix at this point is positive, hence Corollary 5.53 in
van der Vaart (1998) states that if Pnhm(v̂n, .) 6 Pnhm(v∗,)+ OP(n−1), then

√
n(v̂n− v∗) = OP(1).
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We want to apply this result to our problem. Let η be an un upper bound for ‖ε‖,
we set hm(v,x) = ΛνZ (〈Φm(x),v〉)−〈v,yobs〉− inf‖y−yobs‖6η

〈v,y− yobs〉. Now note

that z 7→ 〈v,z〉 reaches its minimum on B(0,η) at the point −η
v
‖v‖

, so

hm(v,x) = ΛνZ (〈Φm(x),v〉)−〈v,yobs〉+η‖v‖

For all v1, v2 ∈ Rk, we have

|hm(v1,x)−hm(v2,x)|
= |ΛνZ (〈Φm(x),v1〉)− inf

y∈KY
〈v1,y〉−ΛνZ (〈Φm(x),v2〉)+ inf

y∈KY
〈v2,y〉|

6 |ΛνZ (〈Φm(x),v1〉)−ΛνZ (〈Φm(x),v2〉)|+ | inf
y∈KY
〈v2,y〉− inf

y∈KY
〈v1,y〉|

6 |ΛνZ (〈Φm(x),v1〉)−ΛνZ (〈Φm(x),v2〉)|+ |〈v2− v1,yobs〉−η(‖v2‖−‖v1‖)|

6
(
‖Λ ′νZ

‖∞‖Φm(x)‖+‖yobs‖+η

)
‖v1− v2‖

Define
.

hm : x 7→ ‖Λ ′νZ
‖∞‖Φm(x)‖+‖yobs‖+η . Since (Φm)m is bounded in L2(PX ),

(
.

hm)m is in L2(PX ) uniformly with respect to m, which entails that

∃K,∀m,
∫

X

.
hm

2
dPX < K (7)

Hence the function
.

hm satisifes the first condition

|hm(v1,x)−hm(v2,x)|6
.

hm(x)‖v1− v2‖.

Now, consider H(Φm, .) Let Vm,v be the Hessian matrix of H(Φm, .) at point v. We
need to prove that Vm,v̂m,∞ is non negative. Let ∂i be the derivative with respect to the
ith component. Set v 6= 0, we have

Vm,v
i j(v) = ∂i∂ jH(Φm,v) =

∫
X

∂i∂ jhm(v,x)dPX (x)

=
∫

X
Φ

i
m(x)Φ j

m(x)Λ ′′νZ
(〈Φm(x),v〉)dPX (x)+η ∂i∂ jN(v)

where let N be N : v 7→ ‖v‖.
Hence the Hessian matrix Vm,v̂m,∞ of H(Φm, .) at point v̂m,∞ can be split into the sum
ot the following matrices

(M1)i j =
∫

X
Φ

i
m(x)Φ j

m(x)Λ ′′νZ
(〈Φm(x), v̂m,∞〉)dPX (x),

(M2)i j = ∂i∂ jN(v̂m,∞).

Under Assumptions (A3) and (A5), Λ ′′νZ
is positive and belongs to L1(PX ) since it is

bounded. So we can define
∫
X Φ i

m(x)Φ j
m(x)Λ ′′νZ

(〈Φm(x), v̂m,∞〉)dPX (x) as the scalar
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product of Φ i
m and Φ

j
m in the space L2(Λ ′′νZ

(〈Φm(.), v̂m,∞〉PX ).
M1 is a Gram matrix, hence using (A6) it is a non negative matrix.
M2 can be computed as follows. For all v ∈ Rk/{0}, we have

N(v) =
√

∑
k
i=1 v2

i

∂iN(v) =
vi

‖v‖

∂i∂ jN(v) =


−

viv j

‖v‖3 if i 6= j

‖v‖2− v2
i

‖v‖3 if i = j

Hence for all a ∈ Rk, we can write

aT M2a

= ∑
16i, j6k

∂i∂ jN(v̂m,∞)aia j

=
k

∑
i=1

‖v̂m,∞‖2− v̂2
m,∞,i

‖v̂m,∞‖3 a2
i −∑

i6= j

v̂m,∞,iv̂m,∞, j

‖v̂m,∞‖3 aia j

=
1

‖v̂m,∞‖3

(
‖v̂m,∞‖2

k

∑
i=1

a2
i −

k

∑
i=1

a2
i v̂2

m,∞,i− ∑
16i, j6k

aiv̂m,∞,ia j v̂m,∞, j +
k

∑
i=1

a2
i v̂2

m,∞,i

)

=
1

‖v̂m,∞‖3

(
‖v̂m,∞‖2‖a‖2− ∑

16i, j6k
aiv̂m,∞,ia j v̂m,∞, j

)

=
1

‖v̂m,∞‖3

(
‖v̂m,∞‖2‖a‖2−〈a, v̂m,∞〉2

)
> 0 using Cauchy-Schwarz’s inequality.

So M2 is clearly non negative, hence Vm,v̂m,∞ = M1 + ηM2 is also non negative. Fi-
nally we conclude that H(Φm, .) undergoes the assumptions of Theorem 5.1. ut

Lemma 2.
‖v̂m,∞− v∗‖= OP(ϕ−1

m )

Proof. First write,

|H(Φm,v)−H(Φ ,v)| = |
∫

X
ΛνZ (〈Φm(x),v〉)−ΛνZ (〈Φ(x),v〉)dPX (x)|

6 ‖Λ ′νZ
‖∞‖v‖‖Φm−Φ‖L2 ,

which implies uniform convergence over every compact set of H(Φm, .) towards
H(Φ , .) when m→ ∞, yielding that v̂m,∞ → v∗ in probability. To compute the rate
of convergence, we use Lemma 3. As previously we can show that the Hessian
matrix of H(φ , .) at point v∗ is positive. We need to prove uniform convergence of
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∇H(φm, .) towards ∇H(φ , .). For this, write

∂i [H(φm, .)−H(φ , .)] (v)

=
∫

X
Φ

i
m(x)Λ ′νZ

(〈Φm(x),v〉)−Φ
i(x)Λ ′νZ

(〈Φ(x),v〉)dPX (x)

=
∫

X
(Φ i

m−Φ
i)(x)Λ ′νZ

(〈Φm(x),v〉)−Φ
i(x)Λ ′′νZ

(ξ )〈(Φ−Φm)(x),v〉dPX (x)

6‖Φ i−Φ
i
m‖L2‖Λ ′νZ

‖∞ +‖Φ i‖L2‖Λ ′′νZ
‖∞‖Φ−Φm‖L2‖v‖

using again Cauchy-Schwarz’s inequality. Finally we obtain

‖∇(H(φm, .)−H(Φ , .))(v)‖6 (C1 +C2‖v‖) ‖Φ−Φm‖L2

for positive constants C1 and C2. For any compact neighbourhood of v∗, S , the
function v 7→ ‖∇(H(φm, .)−H(Φ , .))(v)‖ converges uniformly to 0. But for m
large enough, v̂m,∞ ∈ S almost surely. Using 2. in Lemma 3 with the function
v 7→ ‖∇(H(φm, .)−H(Φ , .))(v)‖1S (v) converging uniformly to 0, implies that

‖v̂m,∞− v∗‖= OP(ϕ−1
m ).ut

Lemma 3. Let f be defined on S ⊂ Rd → R, which reaches a unique minimum at
point θ0. Let ( fn)n be a sequence of continuous functions which converges uniformly
towards f . Let θ̂n = argmin fn. If f is twice differentiable on a neighbourhood of θ0
and provided its Hessian matrix Vθ0 is non negative, hence we get

1. there exists a positive constant C such that

‖θ̂n−θ0‖6 C
√
‖ f − fn‖∞.

2. Moreover if θ 7→ Vθ is continuous in a neighbourhood of θ0 and ‖∇ fn(.)‖ uni-
formly converges towards ‖∇ f (.)‖, hence there exists a constant C′ such that

‖θ̂n−θ0‖6 C′‖∇( f − fn)‖∞

with ‖g‖∞ = sup
x∈S
‖g(x)‖.

Proof. The proof of this classical result in optimization relies on easy convex anal-
ysis tricks. For sake of completeness, we recall here the main guidelines.
1. There are non negative constants C1 et δ0 such that

∀ 0 < δ 6 δ0, inf
d(θ ,θ0)>δ

f (θ)− f (θ0) > C1δ
2

Set ‖ fn− f‖∞ = εn. For 0 < δ1 < δ0, let n be chosen such that 2εn 6 C1δ 2
1 . Hence

inf
d(θ ,θ0)>δ1

fn(θ) > inf
d(θ ,θ0)>δ1

f (θ)− εn > f (θ0)+ εn > fn(θ0)
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Finally fn(θ0) < inf
d(θ ,θ0)>δ1

fn(θ) =⇒ θ̂n ∈ {θ : d(θ ,θ0) 6 δ1}, which enables to

conclude setting C =
√

2
C1

.

2. We prove the result for d = 1, which can be easily extended for all d. Using
Taylor-Lagrange expansion, there exists θ̃n ∈ ]θ̂n,θ0[ such that

f ′(θ0) = 0 = f ′(θ̂n)+(θ0− θ̂n) f ′′(θ̃n).

Remind that f ′′(θ̃n) −→
n→∞

f ′′(θ0) > 0. So, for n large enough there exits C′ > 0 such
that

|θ0− θ̂n|=
| f ′(θ̂n)− f ′(θ0)|
| f ′′(θ̃n)|

6 C′‖ f ′− f ′n‖∞,

which ends the proof. ut
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