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Abstract

In the framework of inverse problems, we consider the question

of aggregating estimators taken from a given collection. Extending

usual results for the direct case, we propose a new penalty to

achieve the best aggregation. An oracle inequality provides the

asymptotic behavior of this estimator. We investigate here the

price for considering indirect observations.
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Introduction

In this article, we are interested in recovering an unobservable signal x∗

based on observations

y(ti) = F (x∗)(ti) + δi, (1)

where F is a linear operator, X , Y functional Hilbert spaces, ti, i = 1, . . . , n is

a fixed observation scheme and δ = (δ1, ..., δn) a noise vector.

Due to indirect nature of the observation, nothing is known of the compo-

nent of x∗ lying in the kernel of F . This means that the best L2 approximation

one can get from the available information is the orthogonal projection of x∗
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onto ker(F )⊥. This function, usually noted x†, can be expressed as the image

of F (x∗) through the Moore-Penrose (generalized) inverse of F , i.e., the re-

verse image of F (x∗) with minimal norm on X . The inverse problem is said to

be ill-posed if the Moore-Penrose inverse F † is unbounded. This might entail,

and is generally the case, that F †(y) is not close to x†. Hence, the inverse

operator needs to be, in some sense, regularized.

One of the main differences between direct and indirect problems comes

from the fact that two spaces are at hand: the space of the observations Y
and the space where the function will be estimated, namely X , the operator

mapping one space into another, F : X → Y. Hence to build a statistical pro-

cedure, a choice must be made which will determine the whole methodology.

This question is at the core of the inverse problem structure and is encountered

in many cases. When trying to build basis well adapted to the operator, two

strategies can be chosen, either expanding the function onto a wavelet basis

of the space X and taking the image of the basis by the operator as stated

in [13], or expanding the image of the function onto a wavelet basis of Y and

looking at the image of the basis by the inverse of the operator, studied in

[1]. For the estimation problem with model selection theory, estimators can

be obtained either by considering sieves on (Ym)m ⊂ Y with their counterpart

Xm := F ?Ym ⊂ X or sieves on (Xm)m ⊂ X and their image Ym := FXm ⊂ Y
(see for instance in [18, 19]) where F ? states for the adjoint of F .

Regularization methods replace an ill-posed problem by a family of well-

posed problems. Numerous regularization methods have been proposed such as

Tikhonov regularization , iterative Landweber’s method or truncated singular

value decomposition to cite a few. In each case, the regularized solutions are

used as approximations of the desired solution of the inverse problem. These

methods involve some parameter measuring the closeness of the regularized

and the original (unregularized) inverse problem. Rules (and algorithms) for

the choice of these regularization parameters as well as convergence properties

of the regularized solutions are central points in the theory of these meth-

ods, since they allow to find the right balance between stability and accuracy.
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Hence, there exist a wide range of possible estimators for inverse problems,

each method with their advantages and their inconvenience. For a complete

review on regularization methods for inverse problems, we also refer to [8] and

references therein.

A natural idea is thus to look for a new, improved estimator called ag-

gregate, constructed by combining the existing estimators in a proper way.

Aggregation of estimators have been studied within a large number of frame-

works (we refer for instance to [3], [25] [5] and references therein). Here, we

study linear aggregation in the context of inverse problems. More precisely, we

assume that a collection x1, ..., xM of preliminary estimators of x∗ are avail-

able, and we search for the best linear combination of them. We provide an

aggregation procedure based on an empirical risk minimization with `1 penalty,

which aggregates functions in the space X . The advantage of a `1 penalty is

to promote the sparsity of the solution while preserving the convexity of the

minimizing criterion. In the frame of aggregation, sparsity is a crucial issue as

it allows one to select only the relevant estimators in the collection x1, ..., xM .

We prove that the choice of a penalty taking into account the ill-posedness of

the inverse problem enables to recover an oracle inequality which warrants the

good behavior of the estimate.

The paper falls into the following parts. Section 1 describes the inverse

problem model we are dealing with. The main result concerning the behavior

of the aggregation procedure is stated in Section 2 while all the proofs and

auxiliary results are postponed to the Appendix.

1 Inverse problem model

Consider the following inverse problem

y(ti) = F (x∗)(ti) + δi, (2)

where F is a linear operator, X , Y functional Hilbert spaces and ti, i = 1, . . . , n

is a fixed observation scheme. In this framework, it is important to remark

that, while the image F (x∗) lies in Y, the available information regarding x∗

3



is more faithfully described by the discretized operator Fn : X → Rn defined

as

Fn(x) = (F (x)(t1), ..., F (x)(tn))>, x ∈ X ,

with a> the transpose of a. In this setting, the observation vector y :=

(y(t1), ..., y(tn))> ∈ Rn can be defined as the noisy image of x∗ through the

operator Fn,

y = Fnx
∗ + δ.

The operator Fn is assumed one-to-one and continuous for Rn endowed with

inner product 〈a, b〉n = 1
n

∑n
i=1 aibi and associated norm ‖.‖n. The inner

product and norm on X are simply noted 〈., .〉 and ‖.‖ respectively. Moreover,

we assume for simplicity that δ is a standard Gaussian vector of Rn. This

particular situation has been extensively studied in the literature in inverse

problems, see for instance [9, 10, 20, 22].

A useful tool to describe a linear inverse problem is to use the singular

value decomposition (SVD). Precisely, let F ?n denote the adjoint of Fn and

let b21 > ... > b2n be the ordered eigenvalues of FnF
?
n (which are also the non-

zero eigenvalues of F ?nFn). Now denote by ϕ1, ..., ϕn ∈ Rn the corresponding

normed eigenvectors of FnF
?
n . Because FnF

?
n is self-adjoint, we know that

ϕ1, ..., ϕn form an orthonormal basis of Rn. Similarly, let ψ1, ..., ψn ∈ X de-

note the normed eigenvectors of F ?nFn which form an orthonormal basis of

ker(Fn)⊥. The system {bj ;ψj , ϕj}j=1,...,n is called the singular system of the

linear operator Fn. We have in particular, Fnψj = bjϕj and F ?nϕj = bjψj for

all j = 1, ..., n. More generally, for any x ∈ X and y ∈ Rn, one can write

Fnx =
n∑
j=1

bj〈x, ψj〉 ϕj and F ?ny =
n∑
j=1

bj〈y, ϕj〉n ψj . (3)

The Moore-Penrose generalized inverse of Fn, noted F †n, can be defined as the

operator F †n : Rn → X with singular system {b−1
j ;ϕj , ψj}j=1,...,n. The main

interest in the Moore-Penrose inversion is that the original inverse problem

(2) can be turned into a direct problem, considering z := F †n(y), which in the

basis ψ1, ..., ψn, leads to the following model

zj = x†j + εj , j = 1, ..., n, (4)
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where zj = 〈F †n(y), ψj〉 = b−1
j 〈y, ϕj〉n, x†j = 〈x†, ψj〉 and εj = 〈F †n(δ), ψj〉. In

this model, we point out that the noises remain Gaussian, but with unequal

variances as we have εj = b−1
j 〈δ, ϕj〉n ∼ N (0, b−2

j ). Moreover, εi and εj are

independent for i 6= j due to the orthogonality of the ϕj ’s.

Note that the inverse eigenvalues b−2
j grow with j, resulting in the high

frequency errors being strongly amplified in the observation zj . This amplifi-

cation measures the difficulty of the inverse problem, the faster the decay of

the eigenvalues, the more difficult is the inverse problem. In this paper we

will tackle the problem of polynomial decay of eigenvalues. So we assume that

there exists an index t such that bj is of the order j−t/2 for some t > 0. The

parameter t is called the index of ill-posedness of the operator Fn, following

notations in [14].

2 Aggregation with `1 penalty for inverse

problems

Let C = {x1, ..., xM}, with 2 6 M 6 n, be a collection of functions in

X , independent from the observations. The xm’s can be viewed as prelimi-

nary estimators of x∗, constructed from some training sample. Aggregation

procedures aim to build an estimator of x∗ by combining in a suitable way

the functions x1, ..., xM (we refer to [21, 24, 6, 25] for relevant references in

aggregation). The purpose is to filter out irrelevant elements in the collection

x1, ..., xM as well as to combine several possibly competing estimators. Thus,

an estimator is sought as a linear combination of the xm’s, called aggregate,

and noted

xλ =

M∑
m=1

λmxm,

for λ = (λ1, ..., λM )> ∈ RM . Due to the absence of information on ker(Fn),

we are only interested in the behavior of the xm’s on ker(Fn)⊥. For conve-

nience, we assume that for all m = 1, ...,M , xm ∈ ker(Fn)⊥. This condition is

very natural since most regularization methods for inverse problems provide

a solution in ∈ ker(Fn)⊥. Moreover, if one element xm does not satisfy this
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condition, one can simply replace it by its orthogonal projection onto ker(Fn)⊥.

The best linear combination xλ to approximate x∗ can be defined naturally

as the minimizer of λ 7→ ‖x∗ − xλ‖. With all the preliminary estimators xm

in ker(Fn)⊥, minimizing ‖x∗ − xλ‖ reduces to minimizing the distance to x†.

So, we consider the following loss function

λ 7→ γ(xλ) := ‖z − xλ‖2.

This criterion corresponds to a quadratic loss between the image by the opera-

tor of a candidate function x and the observed data. Viewing the preliminary

estimators x1, ..., xM as a collection of regressors, a natural solution to the ag-

gregation problem would be to consider the least square estimator, obtained

by minimizing λ 7→ γ(xλ) over RM . Defining the n×M matrix X by

Xi,m = 〈xm, ψi〉, i = 1, . . . n, m = 1, . . . ,M

the minimizer of λ 7→ γ(xλ) corresponds the ordinary least square solution

λ̂OLS = arg min
λ∈RM

‖z−Xλ‖2n,

where z = (z1, ..., zn)> ∈ Rn. However, this solution is known to be inefficient

when the number of regressors is too large. For this reason, penalized pro-

cedures, favoring low-dimensional values of λ are often preferred to classical

least square. For a given penalty pen(λ), the penalized aggregation estimator

x̂ = xλ̂ is built by minimizing over RM

λ 7→ γ(xλ) + pen(λ) (5)

In order to promote sparsity, we use a `1-type penalty defined as

pen(λ) =

M∑
m=1

rn,m|λm|, (6)

with the notation rn,m = rn σm with rn = 3
√

2(logM2n)/n and σ2
m =

1
n

∑n
j=1 b

−2
j 〈xm, ψj〉2. This penalty is highly inspired of the `1-penalty used in

[5] and enjoys the property of detection of relevant elements in the collection

of functions C, as it leads to a soft thresholding procedure (see for instance
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[20] or [17]). The term rn plays the role of the usual model selection penalty

to prevent the aggregation of a too large number of functions. The term in

σm is here an extra-term coming from the ill-posedness of the operator since

it depends on the regularity of the functions with regards to the decay of the

eigenvalues of the operator. In this way, it can be viewed as a source type

condition as pointed out in [7] or [14].

For any subset S of {1, . . . ,M} and for a given vector λ ∈ RM , we introduce

the notation λS for the vector of size M whose components coincide with λ in

S, and equal 0 otherwise. We denote by ‖λ‖ the usual Euclidean norm on RM

and |S| the cardinality of the set S. We now state an assumption required to

establish the theoretical result in this part. Fix s ∈ N∗:

Assumption RE(s): Let S be a subset of {1, . . . ,M}, and define the set

ΓS = {λ ∈ RM :
∑

m∈Sc σm|λm| 6 5
∑

m∈S σm|λm|}. We the assume

that

φ(s) := min
S⊂{1,...,M}: |S|6s

min
λ 6=0: λ∈ΓS

λ>X>Xλ

n‖λS‖
> 0.

This assumption can be interpreted as a positive definiteness assumption

of square sub-matrices of the Gram matrix X>X with size smaller than s. This

assumption has first been introduced in [2]. Some recent developments [23, 11]

introduce other assumptions, weaker than Assumption RE, which also can be

used in our framework. We prefer to use the more common Assumption RE to

reduce extra technical arguments which would make the paper harder to read.

Finally, we point out the book [4] for a complete display of the assumptions

needed for `1-regularized methods.

Most controls on `1-regularized methods are established with high proba-

bility. To the best of our knowledge, the sharpest oracle inequalities for the

Lasso (`1- penalized least squares estimator) available in the literature are the

ones presented in [23, 11]. In what follows, we will exploit these results to im-

prove them and develop a control on the error of the `1-penalized least-square

estimator (5)-(6) in expectation :

Theorem 2.1 Fix some integer 1 6 s̄ 6M . Under the assumption Assump-
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tion RE(s̄), the penalized estimator x̂ = xλ̂ =
∑M

m=1 λ̂mxm, with

λ̂ = arg min
λ∈RM

{
γ(xλ) + 3

√
2

logM2n

n

M∑
m=1

σm|λm|

}

satisfies,

E‖x̂− x†‖2 6 inf
λ∈RM : |S|=s6s̄

{
‖xλ − x†‖2 +

25

36
r2
n φ
−2(s)

∑
m∈S

σ2
m

}

+
4‖x†‖2 + 12b−2

max

Mn
+ 12b−2

max exp
(
−n

8

)
,

where S = {m ∈ {1, . . . ,M} : λm 6= 0} and b−2
max = max

j=1,...,n
b−2
j .

This theorem provides an oracle inequality that controls the aggregation pro-

cedure. The inequality is sharp in the sense that the leading constant in front

of the main term is 1. Moreover, several quantities are of interest in the above

bound. The main term is given by infλ
{
‖xλ − x∗‖2 + 25

36r
2
n φ
−2(s)

∑
m∈S σ

2
m

}
.

It is composed of a bias term and an additional term where
∑

m∈S σ
2
m plays

the role of the sparsity index. The rate is penalized on the one hand by r2
n

and on the other hand by σ2
m = σ2

m = 1
n

∑n
j=1 b

−2
j 〈xm, ψj〉2 for all the different

functions xm that are selected in the aggregation set S. This term can be seen

as a source condition that links the smoothness of the functions to the decay of

the eigenvalues of the inverse operator. It is bounded under the usual source

condition assumption. Then if there exists a λ∗ such that xλ∗ = x∗, and given

the definition of r2
n, the rate of convergence is log(M2n)

n

∑
m∈S∗ σ2

m, where S∗

is the true sparsity index. Compared to the usual rate of convergence, we

accepted here to lose a log factor (log(M2n) instead of log(M)) in order to

provide a bound in expectation.

The remainder term is made of two parts. An exponential bound which is

negligible and a second term of order b−2
max/Mn which is the price to pay for

using aggregation in an inverse problem settings. For mildly ill-posed prob-

lems where the coefficients of the SVD decay at a polynomial rate bj = Cj−t/2,

this term is of order nt−1. Note that it goes to zero when t is smaller than

1, yet hampering the consistency rate. In other cases and in the severely ill-

posed setting, this term becomes dominant in the upper bound. Actually, the
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presence in the oracle inequality of the maximal singular value b−2
max (which in

direct problems, corresponds to the spectral radius of the covariance operator)

is currently a main issue in heteroscedastic aggregation. A similar term, in-

volving the operator norm of the covariance operator, appears for instance in

Theorem 1 in [12]. To this date, it seems that aggregation methods for inverse

problems can only handle small degrees of ill-posedness in inverse problems.

Appendix

Proof of Theorem 2.1. This theorem is a control on the prediction error in

expectation. To prove it, we establish an intermediate result where we propose

a control on the error on the event A defined by

A =

M⋂
m=1

{3|Vm| 6 rn,m}, with Vm =
1

n

n∑
j=1

Xj,mεj ,

and which holds with large probability (cf. Appendix A for the definition of

ε).

Proposition 2.2 Under the assumption of Theorem 2.1, we have on the set

A

‖x̂− x†‖2 6 inf
λ∈RM |S|6s

{
‖xλ − x†‖2 +

25

36
r2
n φ
−2(s̄)

∑
m∈S

σ2
m

}
,

for any s 6 s̄, where S = {m ∈ {1, . . . ,M} : λm 6= 0}.

Proof of Proposition 2.2. The proof of this result is inspired by the proof

of Theorem 2 in [16]. First of all, we notice that if
〈
x̂− x†, x̂− xλ

〉
6 0, then

the identity

2
〈
x̂− x†, x̂− xλ

〉
= ‖x̂− x†‖2 + ‖x̂− xλ‖2 − ‖xλ − x†‖2 (7)

implies ‖x̂ − x†‖2 6 ‖xλ − x†‖2. Then the bound in the proposition is valid.

Then, let us consider the case
〈
x̂− x†, x̂− xλ

〉
> 0. Recall that we have set

rn = 3

√
2 log(M2n)

n and σ2
m = 1

n

∑n
j=1 b

−2
j X2

j,m, where Xj,m = 〈xm, ψj〉 for

j ∈ {1, . . . , n} and m ∈ {1, . . . ,M}. In this case, we exploit the optimality
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condition of the minimization criterion (5)-(6). Since λ̂ is minimizer of this

criterion, the first order optimality conditions imply that

2
X>z

n
− 2

X>Xλ̂

n
∈ rn ∂|λ̂|1,σ

where for any λ, the quantity ∂|λ|1,σ denotes the sub-differential of the weighted

`1-norm, defined for any vector a ∈ RM by |a|1,σ =
∑M

m=1 σm|am|. Set

S = {m : λm 6= 0}, the sparsity pattern of λ. Thanks to sub-differential

of the `1-norm in RM , we deduce the set of sub-differential ∂|λ|1,σ of the

above weighted `1-norm, with µ = (µ1, ..., µM )> ∈ ∂|λ|1,σ if and only if

µm = σmsgn(λm) if m ∈ S and µm ∈ [−σm, σm] if m ∈ Sc,

where, for a given a ∈ R, sgn(a) equals ±1 according to the sign of a, and

Sc denotes the complementary set of S in {1, . . . ,M} (cf. [15, page 259] for

details on sub-differential tools). Based on the above statement, we can write

2
λ̂>X>z

n
− 2

λ̂>X>Xλ̂

n
= rn|λ̂|1,σ (8)

where we recall z = (z1, ..., zn)> ∈ Rn and for any λ ∈ RM with sparsity

pattern S = {m : λm 6= 0},

2
λ>X>z

n
− 2

λ>X>Xλ̂

n
6 rn|λ|1,σ (9)

Subtracting (8) from (9), we get for any λ ∈ RM with sparsity pattern S =

{m : λm 6= 0}

2
(λ− λ̂)>X>z

n
− 2

(λ− λ̂)>X>Xλ̂

n
6 rn(|λ|1,σ − |λ̂|1,σ).

Moreover, according to (4), the above inequality becomes

2
(λ̂− λ)>X>Xλ̂

n
− 2

(λ̂− λ)>X>x†

n
6 rn(|λ|1,σ − |λ̂|1,σ) + 2

(λ̂− λ)>X>ε

n
,

setting x† = (x†1, ..., x
†
n)> and ε = (ε1, ..., εn)>. This inequality states that for

any λ ∈ RM with sparsity pattern S = {m : λm 6= 0}

2
〈
x̂− x†, x̂− xλ

〉
6 rn(|λ|1,σ − |λ̂|1,σ) + 2

(λ̂− λ)>X>ε

n
. (10)
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Considering the sparsity pattern of λ, the first term on the rhs of the above

inequality can be decomposed as

rn(|λ|1,σ − |λ̂|1,σ) = −
∑
m∈Sc

rn,m|λ̂m|+
∑
m∈S

rn,m

(
|λm| − |λ̂m|

)
6 −

∑
m∈Sc

rn,m|λ̂m|+
∑
m∈S

rn,m|λ̂m − λm|

where we set rn,m = rn σm. Let V = 1
nX
>ε for short, then (10) becomes

2
〈
x̂− x†, x̂− xλ

〉
+
∑
m∈Sc

rn,m|λ̂m| 6
∑
m∈S

rn,m|λ̂m − λm|+ 2V >(λ̂− λ).

Using (7), the above inequality gives us the fundamental results

‖x̂− x†‖2 + ‖x̂− xλ‖2 +
∑
m∈Sc

rn,m|λ̂m| 6 ‖xλ − x†‖2 +
∑
m∈S

rn,m|λ̂m − λm|

+ 2V >(λ̂− λ). (11)

Once we established this last major inequality, we will first use it to show that

λ̂− λ belongs to the set ΓS in Assumption RE(s̄). Then we will use it again

to establish the bound announced in the proposition.

First, since λm = 0 for m ∈ Sc, (11) combined with
〈
x̂− x†, x̂− xλ

〉
> 0

implies that

∑
m∈Sc

rn,m|λ̂m| 6
∑
m∈S

rn,m|λ̂m − λm|+ 2
∑
m∈S
|Vm||λ̂m − λm|+ 2

∑
m∈Sc

|Vm||λ̂m|

yielding

∑
m∈Sc

(rn,m − |Vm|)|λ̂m| 6
∑
m∈S

(rn,m + |Vm|)|λ̂m − λm|. (12)

On the set A :=
⋂M
m=1{3|Vm| 6 rn,m}, we easily obtain

∑
m∈Sc σm|λ̂m| 6

5
∑

m∈S σm|λ̂m − λm| and then the vector λ̂− λ belongs to ΓS as announced

above. Since s 6 s̄, Assumption RE(s̄) implies Assumption RE(s), and as a

consequence (thanks to Assumption RE(s)), we can write

‖(λ̂− λ)S‖ 6 φ−1(s) ‖x̂− xλ‖.
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Combining this last inequality, with (11) and the fact that on the set A,

rn,m > 3|Vm| (and then rn,m − 2|Vm| > rn,m/3) for all m ∈ {1, . . . ,M}, we

have

‖x̂− x†‖2 + ‖x̂− xλ‖2 +
∑
m∈Sc

rn,m
3
|λ̂m|

6 ‖xλ − x†‖2 +

(
1 +

2

3

)∑
m∈S

rn,m|λ̂m − λm|

6 ‖xλ − x†‖2 +
5

3
rn

√∑
m∈S

σ2
m|(λ̂− λ)S |2

6 ‖xλ − x†‖2 +
5

3
rn

√∑
m∈S

σ2
m φ
−1(s) ‖x̂− xλ‖

6 ‖xλ − x†‖2 +
25

36
r2
n φ
−2(s)

∑
m∈S

σ2
m + ‖x̂− xλ‖2.

where we used, for the first inequality, similar reasoning as those exploited to

get (12). We also used Cauchy-Schwarz Inequality and the fact that rn,m =

rn σm, ∀m ∈ {1, . . . ,M} for the second inequality, and the relation 2ab 6

a2 + b2 (for any positive reals a and b) in the last one. Subtracting ‖x̂− xλ‖2

to both sides leads to the result in the proposition

E‖x̂− x†‖21A 6 inf
λ∈RM |S|6s

{
‖xλ − x∗‖2 +

25

36
r2
n φ
−2(s̄)

∑
m∈S

σ2
m

}
.

since φ−2(s) 6 φ−2(s̄) for all s 6 s̄. This finishes the proof of Proposition 2.2.

Now, let’s go back to the proof of the theorem. It remains to deal with

error when the event Ac occurs. By definition, γ(x̂)+pen(λ̂) 6 γ(xλ)+pen(λ)

for all λ ∈ RM . Taking λ = 0, we deduce that γ(x̂) 6 0. Moreover, using the

definition of γ we find

‖x̂− x†‖2 6 ‖x†‖2 + 2| 〈x̂, ε〉 | 6 ‖x†‖2 + 2‖x̂‖‖ε‖

6 ‖x†‖2 + 2‖ε‖
(
‖x̂− x†‖+ ‖x†‖

)
6 ‖x†‖2 +

‖x̂− x†‖2

2
+ ‖x†‖2 + 3‖ε‖2

using the inequality 2ab 6 θa2 + θ−1b2 successively for θ = 1/2 and θ = 1.

Now, we use that ‖ε‖2 6 nb−2
max‖δ‖2n = b−2

maxW , where W := n‖δ‖2n has χ2(n)
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distribution and b−2
max = max

m=1,...,M
b−2
m . Thus,

‖x̂− x†‖2 6 4‖x†‖2 +
6b−2
max

n
W.

As in the proof in [5], we now introduce the event B = {W 6 2n}. Remark

that E(W1Ac) 6 2nP(Ac)+E(W1Bc), where the second term can be bounded

by

E(W1Bc) 6
√
E(W 2)

√
P(Bc),

by Cauchy-Schwarz’s inequality. Since W has χ2(n) distribution, it satisfies

in particular E(W 2) 6 4n2 and P(W > 2n) 6 exp(−n/8) (for the second

statement, see [9], page 857). Moreover, since Vm ∼ N (0, n−1σ2
m), a standard

tail bound for Gaussian distributions gives

P(Ac) 6 P

(
M⋃
m=1

{3|Vm| > rn,m}

)
6

M∑
m=1

P
(
|Vm| >

rn,m
3

)
6

M∑
m=1

exp

{
−(rn,m/3)2

2n−1σ2
m

}
=

M∑
m=1

1

M2n
=

1

Mn
,

yielding

E(‖x̂− x†‖21Ac) 6
4‖x†‖2 + 12b−2

max

Mn
+ 12b−2

max exp
(
−n

8

)
,

which completes the proof.
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