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Abstract

In this paper, we aim at recovering an undirected weighted graph of N vertices from
the knowledge of a perturbed version of the eigenspaces of its adjacency matrix W. Our
approach is based on minimizing a cost function given by the Frobenius norm of the
commutator AB —BA between symmetric matrices A and B. In the Erdés-Rényi model
with no self-loops, we show that identifiability (i.e. the ability to reconstruct W from the
knowledge of its eigenspaces) follows a sharp phase transition on the expected number
of edges with threshold function N log N /2. When an estimation of the eigenspaces is
at hand, we provide backward-type support selection procedures from theoretical and
practical point of views.

1 Presentation

We consider a set of problems where one aims at recovering an undirected weighted graph
from incomplete information on its set of edges (for instance, one knows that the target
graph has no self-loops) and an estimation of the eigenspaces of its adjacency matrix W.
This situation depicts any model where one knows in advance a linear operator K that com-
mutes with W. Several models (including Markov chain, stationary Vectorial AutoRegressive
process, vectorial Ornstein-Uhlenbeck process for instance) are presented in Section [3|while
the general model is given in Section 2.1

Section [2.2]is concerned with identifiability issues, i.e. the capacity to solve such prob-
lem. We exhibit sufficient and necessary conditions on the ability to reconstruct an undi-
rected graph with no self-loops from the knowledge of the eigenspaces of W. These condi-
tions allow us to derive a sharp phase transition on identifiability in the Erdés-Rényi model.

Then, we introduce and theoretically assert new estimation schemes based on the Frobe-
nius norm of the commutator AB—BA between symmetric matrices A and B, see Section|4.1
Using backward-type procedures, Section[4]derives estimators of the graph structure (i.e. its
support) from a perturbed observation of its eigenspaces. A numerical approach developed
in Section [5| assesses the performances of our new estimation method. Discussion and re-
lated questions are presented in Section
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2 Model and identifiability

2.1 The model

Consider a symmetric matrix W € RNV*N with some zero entries, where nonzero entries
describe the intensity of a link of any form of local interaction. One may understand W
as the adjacency matrix of an undirected weighted graph with N vertices. We focus on the
eigenspaces of W examining models where we have no information on the spectrum of the
graph. Depicting this situation, we assume that we consider a matrix K € R¥N*¥ such that
KW = WK or, in more realistic scenarios, we may observe a perturbed version K of K. In
particular, we may assume that there exists an unknown injective function f on the real line
such that K =: f(W) where f (W) denotes a symmetric matrix with the same eigenspaces
as W applying f to each of the underlying eigenvalues.

Our goal is to uncover W and f from the knowledge of an estimator K of K, namely
reconstruct W from a perturbed observation of its eigenspaces. The key point is then to use
extra information given by the location of some zero entries of W. Hence, we assume that
one knows in advance a set F c [1, N]? of "forbidden” entries such that

V(i,j) €F, Wij =0 (Hp)

Equivalently, the set F is disjoint to the set of edges of the target graph. Throughout this
paper, a special case of interest is given by F = Fyj,e := {(i,i), 1 < i < N} meaning that
there are no self-loops in W.

2.2 Identifiability under (Hp)

For S C [1,N]?, denote by &(S) the set of symmetric matrices A whose support is included
in S, namely Supp(A) € S. Given the set F of forbidden entries defined via (Hg)), the matrix
of interest W is sought in the set &(F) where F denotes the complement of F. In some cases,
most matrices W € &(F) are uniquely determined by their eigenspaces. More precisely, for
each of those W € &(F), there is no matrix A € &(F) different from W that commutes with
W. This property is encapsulated by the notion of F-identifiability as follows.

Definition 1 (F-identifiability) We say that a matrix W is F-identifiable if, and only if, the
only solutions A with Supp(A) C F to AW = WA are of the form A = AW for some A € R.

Interestingly, we have the following proposition.

Proposition 1 (Lemma 2.1 in [BDCER14]) Let S C F, the set of F-identifiable matrices in
&(S) is either empty or a dense open subset of &(S).

The proof uses the fact that non F-identifiable matrices in &(S) can be expressed as the
zeroes of a particular analytic function, we refer to [BDCER14] for further details. This
proposition shows that the F-identifiability of a matrix W is essentially a condition on its
support S. By abuse of notation, we say that a support S C F is F-identifiable if almost every
matrix in &(S) are F-identifiable.



Characterizing the F-identifiability appears to be a challenging issue since it can be
viewed as understanding the eigenstructure of a graph through its support. The particular
case of the diagonal Fy;,, as the set of forbidden entries is given a particular attention in
this paper. The Fgj,,-identifiability, or diagonal identifiability, can be reasonably assumed
in many practical situations since it entails that W lives on a simple graph, with no self-
loops. In Theorem [10] (see Appendix [A), we introduce necessary and sufficient conditions
on the target support Supp(W) for diagonal identifiability. Defining the kite graph V of
size N as the graph (V, E) with vertices V = [1,N] and edges E = {(k,k+1), 1 <k <
N—1}U{(N—2,N)} (see Figure[1]for instance), one simple sufficient condition on diagonal
identifiability reads as follows.

Proposition 2 If the kite graph V of size N is a subgraph of the graph of size N and edges S
then S is diagonally identifiable.
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Figure 1: The kite graph Vj on a set of vertices of size N.

Denote G(N,p) the Erdés-Rényi model on graphs of size N where the edges are drawn
independently with respect to the Bernoulli law of parameter p.

Proposition 3 The existence of kite graphs in the ErdGs-Rényi model occurs as follows. For
any w(N) — oo and for Gy ~ G(N,py), if py = (1/N)(logN + loglogN + w(N)) then
P{Gy has a kite of length N} tends to 1 as N goes to infinity.

A proof of this statement can be found in Section In particular, the proof makes use
of the existence of a hamiltonian cycle which is a standard result in Random Graph Theory,
see Corollary 8.12 in [Bol98]] for instance. This theorem shows that in the regime (log N +
loglog N)/N an Erd6s-Rényi graph is diagonally identifiable. Looking at a pair of isolated
points and using Theorem[10} one can prove that log N /N is a sharp threshold for diagonal
identifiability in the Erdés-Rényi model (see Section[A.3)), it can be stated as follows.

Theorem 4 Diagonal identifiability in the Erdds-Rényi model occurs with a sharp phase tran-
sition with threshold function log N /N: for any ¢ > 0, it holds

o If py = (1+ &)logN/N and Gy ~ G(N,py) then the probability that Supp(Gy) is
diagonally identifiable tends to 1 as N goes to infinity.

o If py < (1 —¢)logN/N and Gy ~ G(N,py) then the probability that Supp(Gy) is
diagonally identifiable tends to O as N goes to infinity.

In practice, one may expect that any target graph of size N with no self-loops and degree
bounded from below by log N is diagonally identifiable. In this case, it might be recovered



from its eigenspaces. Conversely, small degree graphs (i.e. graphs with some vertices of de-
gree much smaller than log N) may not be identifiable. In this case, there is no hope to re-
construct it from its eigenspaces since there exist another small degree undirected weighted
graph with the same eigenspaces.

3 Some concrete models

Markov chains

We begin with an example treated in the companion papers [[BDCER14] BPR16]]. Consider
a Markov chain (X,),cn with finite state space [1,N] and transition matrix Q € RN*V,
Let (Ty)r>1 be a sequence of random times such that T}, — T} are i.i.d random variables
independent of (X,),en. Denoting Y = Xy, remark that Y is also a Markov chain with
transition matrix f (Q) where f is the generating function of T, — T)_,. Therefore K = f(Q)
may be estimated and one may recover Q from K. That was one purpose of the paper .

Vectorial AutoRegressive process

Consider a stationary Vectorial AutoRegressive process (X,,) ez verifying
Xn+1 :WXH"FSH,

with ¢; i.i.d. random variables. Define as above Y} = Xy, where Tj are random times such
that the time gaps Ty — Ty—; are i.i.d. with generating function f. Then, it holds

E[Yy Y11= fF(W)Y,q,

which allows us to estimate K = f (W) and ultimately recover W from this estimate.

Ornstein-Uhlenbeck process

The same property holds for the continuous time version of this process, namely a vectorial
Ornstein-Uhlenbeck process observed at random times verifying

dx, = Wx,dt + dB,.

In this case, one can check that, if Y; = X5, where T} are random times such that the time
gaps T — Ty are i.i.d., then

E[Y Y11= fe")Y;,

where f is the generating function of the the time gaps T — Tj_;-



Graphical models

Our model may be related to Graphical models. Indeed, one may consider W as the precision
matrix, which is the inverse of the covariance matrix, having some non zero entries described
by a graph of dependancies. Using f(x) = x ™, this falls into our setting, trying to recover
W from the estimation of the covariance matrix. Of course, in this case, it is better to use the
knowledge of f, which certainly improves estimation. However, our procedure allows us to
estimate the function f and heuristically validate the hypothesis f(x) = x™!, see Section
Seasonal VAR structure

We can also consider a toy example looking at a seasonal VAR structure without any ran-
domness on the times of observations. Let T be a positive integer, and (i )rez, (Vi )kez be
some periodic sequences of period T. Consider the following model

VkeZ, Yigq=uY+vwWY+e.
We may observe the model only at time gap intervals T with some error
X, = YtT+k0 +n;.
This falls into the general frame
X, = FONIX,y +pae,
where the u, are time uncorrelated. In this case, K = f(W) can be estimated from the
observations.
4 Estimating the support

4.1 The commutator

The methodology presented in the paper relies on the fact that the matrix of interest W
commutes with K. However, to be able to recover W from the estimator R, one needs
additional information which comes from the identifiability condition (Hg). We use the
following minimization criterion

A |[KA—AK|l,, Aecé&(F),

where ||.||; denotes the Frobenius norm. This criterion was first used in [BDCER14] in a
similar context to reflect that W is expected to nearly commute with K, provided that K is
sufficiently close to its true value K.



4.2 The {,-approach

Given an estimator K = Rn of K build from a sample of size n and a set of forbidden entries F
reflecting (Hg)), we construct an estimator S = S, of the target support S* := Supp(W) as a
minimizer of the criterion Q given by

IAK — KA,

VSCF, Q(S):= min
Acs\y  ||Ally

+AH|S|J

for some tuning parameter A, > 0 and defining the minimum of an empty set as co. Recall
that £(S) is the set of matrices A such that Supp(A) € S. Furthermore, we assume that the
estimator K, converges toward K in probability R,, namely

Ve>0, P{[K,~ Kl >t} <R,(0), (Hy)
where t — R, (t) is non-increasing and such that, for all t > 0, R,(t) — 0 as n goes to 00.

Theorem 5 Assume that (Hy)) and (Hg) hold. If W is F-identifiable, then

P55} sr (0 e v, ().

where
. IAK— KAl
Co = min —=>0.
s#s* Ace(s)  |Ally
Is|<ls*|

Corollary 6 Under the assumptions of Theorem [} if it holds

A, — 0 and ZRH(%) <400,
nelN

then one has S, — S* almost surely.
Note that, based on the upper bound in Theorem 5] the optimal scaling should be

4
2= o ’
TS +2

which interestingly does not depend on n. However, this calibration is not relevant since
both ¢y and |S*| are unknown. Nevertheless, we may choose a sequence A, decreasing
slowly to O to ensure both conditions of Corollary [6]

4.3 Backward support selection based on commutator criterion

The {,-approach meets with the curse of dimensionality, especially since the size of the
support increases quadratically with the dimension. In practice, a backward methodol-
ogy provides a computationally feasible alternative to the support reconstruction problem.
Starting from the maximal acceptable support F, the idea of the backward procedure is
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to remove the least significant entries one at a time and stop when every entry is signif-
icant. Using the corresponding small case letter to denote the vectorization of a matrix,
e.g. a =vec(A) = (A1, A1, oy A1y, o, Ayy) |, significancy can be leveraged using the
Frobenius norm of the commutator operator a — A(K)a = vec(KA — AK), where

AK)=I8K—K®I1 e RN*N*

and ® denotes the Kronecker product. Indeed, searching for the target W in the commutant
of K reduces to searching for w = vec(W) in ker(A(K)), the kernel of A(K). Because
the Frobenius norm coincides with the Euclidean norm of the vectorization, the functions
A— ||RA—AR||§ and a — ||A(R)a||§ can be used indistinctly as cost functions. Minimizing
this criterion over model spaces of decreasing size, we may consider sequences of least-
squares estimates in the sequel.

Assumptions

In this section, we may assume the three following hypothesis (Hy)), and (Hyg).

o Deriving the asymptotic law of least-squares estimators, we may assume that the esti-
mate K is built from a sample of size n growing to infinity and asymptotically Gaussian with
asymptotic covariance matrix either known or that can be estimated. One can write

Jnk—k) %O; H(0,%), (Hy)

where ¥ is a N2 x N? covariance matrix. This condition is verified for instance in the
framework considered in [BDCER14, [ BPR16]]. Note that asymptotic normality is a standard
ground base investigating any least-square procedure.
o In order to exclude the trivial solution a = 0, the target W is assumed normalized so
that
1'w=1, (Hy)

where 1 has all its entries equal to one. Because the available information on W is of
spectral nature and as such, is scale-invariant, a normalization of some kind is crucial for
the identifiability. Here, the condition 1'w = 1 achieves two goals: preventing the null
matrix form being a solution and making the problem identifiable. The main drawback of
this normalization concerns the situation where the entries of W sum up to zero, in which
case the normalization is impossible. If the context suggests that the solution may be such
that 1Tw = 0, a different affine normalization v w = 1 (with any fixed vector v) must be
used, without major changes in the methodology. In practice, one may consider the vector
v as random (for instance with isotropic law), so that (H;)) is almost surely fulfilled for any
fixed target w.
o For S a support included in F, we may aim at a solution in the affine space

s .= {a=vec(A):Supp(A)C S, A= AT, 1Ta=1}.
with linear difference space given by

YLs :={a=vec(A):Supp(A)C S, A= AT, 1Ta=0}.



By abuse of notation, .«/s may refer both to the space of matrices or their vectorizations. To
find the target support S*, one must exploit the fact that the vector w lies in the intersection
of ker(A(K)) and .&/% Actually, w can then be recovered if the intersection is reduced to the
singleton {w}. In this case, the matrix W and its support S* are F-identifiable. Hence, we
may assume that

ker(A(K))n %z = {0}, (Hyg)

which is the definition of F-identifiability, see Definition[1}

Asymptotic normality and a significance test

The framework under consideration can be viewed as a heteroscedastic linear regression
model with noisy design for which w = vec(W) is the parameter of interest. Indeed, consider
for each support S C F a full-ranked matrix &5 € RV *xdim(4%s) whose column vectors form
a basis of 4. Since W is F-identifiable and S C F, the operator A(K)®; is one-to-one. In
this case, evaluating the commutator a — A(K)a over .«/ reduces to considering the map

b— A(K)(ay—®sb), be RIS,

with a, chosen arbitrarily in .«/s. When replacing the unknown A(K) with its estimate
A(K), the minimization of the criterion a — ||A(K)a||% over ./ can be written similarly as
a linear regression framework where the parameter of interest is estimated by

~

Bs€arg min [|A(K)(ao —sb)II3. 1
beRdlm

(As)
We recognize a linear model with response variable y = A(R)ao and noisy design matrix
X = A(K)®s. In this setting, remark that w = ay, — ®3f with  the unique solution to
A(K)(ay — ®sB) = 0. Denote by M the pseudo-inverse of a matrix M, we deduce the

following result.

Theorem 7 If S* C S, the estimator B\s is asymptotically Gaussian with
~ d
Vn(Bs —p) — > A(0,9s),
where Qg = (CIJLIA(K))TA(W)EA(W)(A(K)<I>S)‘L.

We then have
wg = vec(Wg) = arg min ||A(K)a||§ =ay—®5fs.
aEJZfS

The asymptotic distribution of wg follows directly from Theorem

V(i —w) —— 4(0,85058] ). )



The limit covariance matrix is unknown, but plugging the estimates Wy, K and & yields a
consistent estimator <I>SQS<I>ST. So, letting 83 ij denote the diagonal entry of <I>5525<I>ST asso-

ciated to Ws,i j» the (i, j) entry is judged significant if the statistic

—

We .
745(8) 1= V=2

Os.ij

exceeds in absolute value some quantile of the standard Gaussian distribution. The back-
ward support selection procedure is then implemented by the following recursive algorithm.

1. Start with the maximal acceptable support S; = F
2. At each step m, compute the statistics 7;;(S,,) for all (i, j) € S,

3. If the minimal value |7;;(S,,)| is smaller than some threshold t > 0, set S, ;1 = Sp, \
{@ ), (G, 0}
4. Stop when all entries are judged significant, i.e. when all |7;;(S,,)| are greater than t.

Based on Eq. (2), the quantile q1-¢ of the standard Gaussian distribution appears as a
reasonable choice for the threshold, as it boils down to performing an asymptotic significa-
tivity test of level a. However, due to the slow convergence to the limit distribution and the
tendency to underestimate the variance for small sample sizes (see Figure [3)), the numer-
ical study shows that a better choice for the threshold depends on the overall behavior of
the commutator A(R)VT/Sm computed over the nested sequence of supports. The details are
discussed in Section [5|where the backward procedure is computed on numerical examples,
along with a more robust bootstrap-assisted version.

Similarly as the Fisher test in the linear regression model, the previous procedure can
be extended to test the significance of a whole set of entries at once. For I' a symmetric
positive semi-definite matrix, we note y2(I') the distribution of the generalized chi-square
random variable ¢ ' T'e where ¢ is a standard Gaussian vector. Moreover, for any pair S’,S
of nested supports with S’ € S C F, we define the linear space

Eg s :=Im(A(K)®s) Nker (&, A(K)),
and denote by Ilg,  the orthogonal projector onto Eg/ s.

Proposition 8 Let S’, S be nested supports with S* €S’ C S,
= = d
T(S',S):= in ||A(K)a|> — min ||A(K 2) (1,
(5',5):=n(_ min 1ARl~ min 18RI ) — 22(Ty.5)

where Tg g = I, AMW)TEAW)II,, .

The proof, given in Appendix B.3} follows the same guidelines as Theorem 3.1 in [BPR16].



5 Simulations

In this section, we provide some simulations to show the performances of the stepwise
backward algorithm.

5.0.1 Studied cases

First, we explain two different frameworks we will work into. In Subsection [5.0.3] we will
consider the graph G; showed by Figure |2l We chose W fixed as the normalized adjacency
matrix of G;. For the function f, we took arbitrarily f(t) = %e‘t

positive on the spectrum of W.

, which happens to be

Figure 2: Graph G,

From K = f(W), we draw n i.i.d. realizations of a Gaussian centered vector X with
covariance matrix K. We use empirical estimates K, for K and 3., for %, the covariance
matrix of K.

Then, we will take a look at the performances of the algorithm in a second framework
where we add randomness to the graph, the entries of W, and the function f. More precisely,

e The graph G is taken randomly as a symmetric Erdos-Rényi graph (N, py)

e The matrix W is chosen randomly, drawing sign with probability % and entries as
binomial variables increased by a constant (in order to prevent them from beeing
closed to zero), and then normalized such that ||W||, = 1, where ||W||, denotes the
Frobenius norm of W (this normalization is here to ensure the positivity of the function
on the spectrum of W).

e The function f is chosen randomly uniformly among the 3 following functions, chosen
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arbitrarily as

1 —t
fr(t) = 1— t)4€
1+2¢2 ot
fo(t) = —— (1—1)3

fs()=1—-t’Q+tDe ™,

Then, as previously, a Gaussian centered sample X is drawn from the covariance matrix
K = f(W), and we use X to recover the graph G.

5.0.2 The backward algorithm

The backward algorithm explained in Section provides from X a sequence of nested
supports. Recall its main steps :

Algorithm 1

Backward algorithm

1: Begin with the full support S = F€

Compute Wy := argmin, s || A(K,)w]|%.
Compute the significancy 7, for all i,j € [1,N].
Remove from S the less significant entry (i, j).
Back to step 2.

oA b

end

Figure [3| shows the speed of convergence of Wy, to the normal distribution while in-
creasing the number of observations. Here, we make no constraints on the support. That
may be an explanation of the fact that the distribution seems tighter when n decreases.

In practice, the stopping condition given in Section happens to overestimate the
support. Indeed, it does not take into account the fact that the same sample is used to
remove variables, and to select the best support among the sequence of candidates given by
the backward procedure. Furthermore, the non Gaussianity of the 7;; for small samples may
be a problem. We could perform another threshold based on multiple tests, but thresholding
directly the commutator works even better.

Observing that the backward algorithm builds a sequence of nested support S; D -+ D
5,051 < w, we can choose the best support by taking a look at the behavior of the
minimized commutator ||A(kn)Wsi ||I? in function of i, when the true support S* lies in the
chosen sequence. While the transition seems obvious for large samples, it remains quite
noticeable for smaller samples, if we look at it at the good scale. Figure [4 summarizes this
fact (we choose realizations for which the true support S* lies in the sequence selected by
the backward algorithm, which is not always the case.).
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Figure 3: Convergence of the significance to the normal distribution

Therefore, the very simple idea to apply a threshold to the commutator is very effi-
cient from a practical point of view. To understand the level of thresholding that should
be applied, notice that ||A(I%,1)Vf/5i||2 is of order maximal NTZ whenever S; D S* and that
||A(IA<H)WSi I> > ¢y, where the unknown constant ¢, > 0 is given in Section This con-
stant is unknown but can be upper bound by the value ¢; = ||A(kn)Wsi||2; for a known
support S; that does not contain S*, and has less edges. From this simple observation, a lot
of ideas for the threshold level should work. Here comes some useful observations:

e For large samples, speed as % works perfectly, as any speed that goes to zero, but

slower than %

e For smaller samples, notice that Tr(X) bounds the variance of K —K and can be esti-
mated.

e Furthermore, any additional information about the number of edges of S* can be
efficiently used in the choice of the threshold, since it reduce the value of the estimated
constant c;.

In the following, we took as a threshold w, where ¢} has been estimated just by

taking the minimized commutator over the last model of the sequence with 14 edges (and
the assumption of identifiability ensures that S* contains at least 15 edges).

The following table summarizes the first results, varying n from 100000 to 100. Remark
that the graph G; has N = 15 vertices, and 25 edges among 105 possible. The table shows
the proportion of successful runs (the support has been perfectly recovered), the mean of the
number of false edges (either wrongly removed or wrongly kept). It gives also the number
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Figure 4: Observed commutator values

of trajectories (i.e. sequences of support) that contains S*. Theses numbers are computed
over 1000 runs.

n 50000 | 20000 | 10000 | 5000 | 2000 | 1000 | 500 | 200 | 100
Succesfully recovered | >99% | 97% | 92% | 87% | 78% | 31% | 14% | 4% | < 1%

Mean error 0.15 1.3 3.2 4.6 6.4 9.7 (123 | 20 25

Good trajectories >99% | 97% | 92% | 87% | 80% | 69% | 58% | 28% | 5%

Even if it was not the purpose of this paper, Figure [5| shows some estimations of f, on
the spectral domain of W, computed with 1000 values, on the first simulated case in which
the support has been recovered.

Yet, for smaller samples, the good threshold is very dependent into the size of the true
unknown support. Even if the transition appear to be obvious in Figure |4} it is mainly be-
cause we choose the good scale to look at it. Actually, with less than 2000 observations, the
optimal window for the thresholding is not very large, and we should calibrate it adaptively.
This is the purpose of the next section.

5.0.3 How to perform a kind of cross validation

The main problem for small samples remains robustness of the algorithm. Actually, we
synthesized all available informations in K,,, so we throw away a lot of useful information.
When we have the sample X at hand, we could run many times the previous algorithm on
learning samples to improve robustness. The best practical choice seems to do it without
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—— Estimated function
—— True function

20

Figure 5: Estimation of the unknown function f

replacement. Doing that, it appears that if we compute at each step i the value r; of the
commutator between WS,- and kn (where the estimator Wsi of W is obtained with the learn-
ing sample, and constraints on support S;, and the value of K, is estimated with the whole
sample), then this sequence is quite constant as soon as S; contains S*, and even decreases
close to S*, as shown if Figure [6]

learning sample whole sample
le—03 — 1le—03 —
8e—04 —| 8e—04 —|
.Be—04a — . Be—04a —
= =
(=3 (=3
=] =]
= =
R ] L2
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4e—04 — d4e—04 —
2e—04 — 2e—04 —
Oe+00 — Oe+00 —
T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
Support size Support size
1000 observations 1000 observations

Figure 6: Comparison between errors for a learning sample and the whole sample
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It allows us to efficiently calibrate the threshold only using the value of the commutator
on the first model (for large sample, it can be multiplied by a constant between 1 and 2
to even improve the results). To add robustness to this method, and to avoid to select a
model that did wrong at the begging of the algorithm, we may remove a proportion q of the
trajectories with the largest value r;.

We end with many estimators S i, each one build with a different learning sample. But
since we can be as much conservative as we want choosing g close to 1, we can now take
the smallest support selected without risk of choosing a too small support.

Let us summarize the algorithm now :

Algorithm 2

CV algorithm

1: Compute K, on the whole sample

2: Build m learning samples without replacement.

3: For each learning sample, run the backward algorithm without stopping condition, re-
turn m sequences (of length w ) of nested supports, and the values (r;;), _,. NOV2) g
of the commutator between W; jand K,, where W, j Ls computed with support S;; and the
learning sample j and K,, is computed with the whole sample.

4: Remove a proportion q of sample with largest ;.

5: Compute the estimated support § i = S;»j for all learning sample j by choosing i* as the
last index i such that r;; > Cryj.

6: Return § as the smallest of the § j in terms of number of edges

end

Here we made the conservative choice C = 1, but C > 1 also works fine. Actually, this
constant does not need to be calibrated, but it defines the ratio “signal over noise” needed
to be able to recover the graph.

The following table summarizes the improvements. We chose arbitrarily 10 learning
samples drawn from X with a probability decreasing with n, to avoid over-learning (and
maximal of % for very small samples). We removed 60% of the trajectories, with the largest
r1j- These numbers are computed over only 1000 runs.

n 50000 | 20000 | 10000 | 5000 | 2000 | 1000 500 200 | 100
Succesfully recovered | 100% | 99.6% | 99.4% | 94.6% | 83.4% | 75.4% | 40.2% | 8.8% | < 1%
Mean error 0 0.21 0.3 0.88 1.85 2.7 5.9 19.6 | 38.9

For computational time issues, we took only 10 learning samples in the previous table,
but the following table shows the improvement of the results, for n = 500, 1000, only in-
creasing the number of trajectories, and the proportion g of removed trajectories. (This
time, the frequencies are estimated with only 200 runs).
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Number of trajectories 10 20 | 50 | 100

q 0.6 0.7 | 0.8 | 0.85

Succesfully recovered, N = 1000 | 75.4% | 85% | 91% | 93%
Mean error, N = 1000 2.7 04 | 0.2 | 0.1

Succesfully recovered, N =500 | 40% |47% | 60% | 61%
Mean error, N = 500 5.9 32 | 1.3 | 1.1

Now, we can run the algorithm in the second framework, where the graph, the entries
of W, and the function f are all random. We choose N = 12, py; = 0.4, and removed 60%
of the trajectories. The following table summarizes the results :

n 50000 | 20000 | 10000 | 5000 | 2000 | 1000 | 500
Succesfully recovered % % 81% | 77% | 58% | 38% | %
Mean Error % % 3.3 4.2 82 | 148 | %

6 Real life application

In this section, we will apply our algorithm on real life datas for which the graph is known.
Indeed, we consider spatial data on a 4 x 4 grid over France. At each of the 16 vertices, we
observed the daily number of lightning during 3 years in the corresponding region. From
theses observations, we try to recover an underlying graph that should make the grid appear.

To this aim, we first eliminate day without any lighting all over France and we obtain
some observations Y;, i = 1---,950, where Y; is a vector of length 16 giving the number of
impacts day i in each of the 16 regions. This numbers are highly non Gaussian, contains a
lot of zeros, and show a clear south-east/north-west tendency (with much more lightning
in the south east). Therefore, we look at the numbers at the log scale and we substracted a
tendency.

Now, it remains a strong inhomogeneity, that should violate the assumption that the
underlying graph has no self-loop (i.e. the diagonal of W is zero). To overcome this prob-
lem, we normalize the process in such manner that the conditional variance at each vertex
conditionally to all the other is 1.

Finally, considering that the covariance matrix of the process commute with an underly-
ing graph, we applied our algorithm with default parameters : we draw 50 learning samples
keeping all observations with probability %, and removed 60% of the 50 trajectories. We do
not obtain exactly the same graph at each run, which means that the results are not perfect.
However, the graphs obtained are most of the time very satisfying.

To show the results, we ran 100 times the algorithm, and memorized, for every edge,
the proportion of the time that this edge appears. This is summarized if Figure

To compare our method with other, we only used the package GGM used to infer Graph-
ical Models. This package is very efficient, and powerful even for samples with more ver-
tices than observations. It is not designed exactly for our case, so we do not pretend that our
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Figure 7: Results with our methods : Edges that appears 30%, 50%, and 70% of the time.

method makes better than this algorithm. Furthermore, we did not tune the parameters,
and used rather the default parameters, only specifying the maximal degree of each vertex
as dmax = 4. The results are given in Figure

Q. O QO O
O Q" 0C/ O
O—O—0 O
o—0O0 O O
o—0O Q O
O Q" OAN O
O—O—~20 O
o—0O0 O O
Q QO o—O0
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o &.\NO O
o O0—06—=20

Figure 8: Results with the GGM package, with families “LA’, “C01” and “QE”

The results show that, in this case, our method seems to work at least as fine as an
inference of a graphical model, modelling the datas as a Gaussian Markov Field.

We insist that we do not claim this fact to be general. In particular, we need much
more observations than the methods developed in this package. But we pretend that, in
different contexts, and with enough observations, we can be as good as other methods.
Indeed, our method yet present one advantage : the process does not need to be Markov, and
for instance, we could infer spatial autoregressive process of any order (whereas graphical
model inference can only recover underlying graphs for AR; spatial processes, which are
Markov). But this advantage turns into a problem when the process is truly Markov, because

we do not use the knowledge of the function f, which can be taken as % in the Markov case.

7 Discussion

In this paper, we devellop a new method to recover hidden graphical structures, in different
models that shares the fact that, one way or another, we access to an approximation of
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the eigenstructure of the graph, through an estimation of an operator that commutes with a
weighted adjacency matrix of this unkown graph. This is noticeable that we do not need any
sparsity assumption to make the method work, and even with the large number of unknown
parameters (K = f (W), with the support, the function f, and the non-null entries of W all
unknown), we can perfectly recover the support when enough observations are available.

We only assume that we know the location of some zeros. The most interesting case
is when the known zeros are localized onto the diagonal, because it only means that the
process is well normalized, in a sense, because all self-loop have same weights.

We can also explain why the ¢! penalty has not been tackled in this paper. First note
that in our framework, the design itself is noised, and that any ¢! penalty without further
constraints leads to the null matrix. Therefore, we need to add a condition to avoid O,
for instance that ||W||, = 1. We aim at recovering the exact support when the number of
observations is large. But using the ¢! penalty tends to overestimate a lot the support. It
can be understood by seeing that a full matrix may commute with K, and in the same time
have a smaller ¢! norm.

Furthermore, we can note that there is a number of observations behind which the
algorithm always provides a wrong support. Furthermore, this fact can be data-observed,
because almost all learning samples will lead to different supports. This limit is intrinsic to
our model and is only the observation of a balance between the noise and the signal. The
noise is only the estimation error of K, and has order %, whereas the signal is of order
o, unknown. Yet, being under this limit can be data validated only verifying that the error
behaves as in the left picture of Figure

Finally, it is really surprising that this model is almost surely identifiable, as soon as the
graph is not too sparse. The limit (1 + e)lO%\,ﬁ for py in Erdoés-Rényi model G(N, py) is as
low as we could expect it to be.

For practical issues, it remains 3 challenges that have to be bypassed. The first one
concern the assumption about the symmetry of W, that should be released for real practical
interest. The second concerns the assumption that W has a null diagonal. It remains to
find an effective way to normalize the process when this assumption does not hold (the
normalization used in Section[6|assume an autoregressive structure). Finally, our algorithm
is greedy when the size of the graphs increases, and for large graphs, it would be really
interesting to find a way to minimize the commutator, and to compute the significance of
the variable without multiplying N? x N? matrices.
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A Asserting the Diagonal Identifiability

A.1 Necessary and sufficient conditions

In this section, we focus on the F-identifiability in the special case where the set of forbidden
entries is the diagonal Fy;,, := {(i,1) : i € [1,N]}. Recall that a support S is Fgj,,-identifiable,
or simply diagonally identifiable (DI), if for almost every matrix A € &(S),

BA=AB — diag(B) #0.

In other words, a support S is diagonally identifiable if almost every symmetric matrix A
with support in S is uniquely determined by its eigenspaces among symmetric matrices
with zero diagonal. In this section, we provide both sufficient and necessary conditions
on a support S to ensure the Fg;,o-identifiability. For this, we consider a simple undirected
graph Gg = ([1,N],S) on N vertices with edge set S.

Definition 2 (Induced subgraph) For V C [1,N], the induced subgraph G¢(V) = (V,S(V))
is the graph on V with edge set S(V) =SnN V2.

Proposition 9 For all support S C [1,N ]2, the set of invertible matrices in &(S) is either empty
or a dense open subset of &(S).

The proof is straightforward when writing the determinant of A € &(S) as a polynomial in
its entries. Observe that by this property, finding one invertible matrix A in &(S) guarantees
that almost every matrix in &(S) is invertible. In this case, we say that the graph Gg is
invertible. Similarly, we say that G is diagonally identifiable if S is diagonally identifiable.

Theorem 10 (Conditions for Fg;,,-identifiability) Let S C fdiag and G =([1,N],S).

1. Necessary condition: If S is diagonally identifiable then there exists a sequence of subsets
V3, ..., Vy—1 C [1,N] such that |Vi| = k and Gg(V;) is invertible for all k =3, ...,N — 1.

2. Sufficient condition: If there exists a nested sequence V3 C ... C Vy_; C [1,N] with
|Vi| = k such that Gg(V) is invertible for all k = 3,...,N — 1, then S is diagonally
identifiable.

The gap between the sufficient and necessary conditions lies essentially in the fact that the
sequence Vs, ..., Vy_; need to be nested for the sufficient condition.

Proof. We proceed by contradiction. For the necessary condition, let k > 3 be such that

Gs(V,) is not invertible, for all subset V; C [1,N] of size k. For A € &(S), denote by
YPo(A), Y1 (A),...,¢YnN(A) the coefficients of the characteristic polynomial

N
det(z1-A) = > ;(A)z), z€R.

j=0
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Consider the matrix M (A) := Z;(:o Y;(A) Al. By Eq. (14) in [[ERI5]], we see that the (i, i)-
entry of My (A) equals the sum of all minors of size k that do not contain the vertex i. Thus,
the condition that G¢(V;) is not invertible for all subset V; of size k implies that M;(A) has
zero diagonal. On the other hand, the non-zero entries of M;(A) are degree k polynomials
in the variables A;;, (i, j) € Supp(A). Therefore, the equality M;(A) = AA for some A € R
occurs for at most a countable number of A € &(S). Since M (A) commutes with A, we
deduce that S is not diagonally identifiable.

For the sufficient condition, we will need the following lemma.

Lemma 11 If there exists a subset V' C [1,N] of size N — 1 such that Gg¢(V’) is both DI and
invertible, then Gg is DI.

Proof We may assume that V' = [1,N — 1] without loss of generality. Let M’ denote a
symmetric (N — 1) x (N — 1) matrix indexed on V’ that is both invertible and diagonally
identifiable, i.e. for all non-zero matrix A’,

M'A"=A'M" = diag(A’) # 0.

To prove that Gy is DI, it suffices to find a symmetric matrix M with support S that is diag-
onally identifiable. Consider M defined by

(M’ 0
M= 0 ol
Let A be a matrix with zero diagonal that commutes with M and write
A o]
A= al 0

for some a € RV, with diag(A’) = 0. The condition MA = AM can be stated equivalently
as

M'A" = A'M’
{ Ma=0
Since M’ is invertible by assumption, a = 0 and the only matrix A with zero diagonal that
commutes with M is the null matrix. Thus, M is diagonally identifiable. O

We now go back to prove the sufficient condition in Theorem[10] Assume that Gg is not
diagonally identifiable, then by Lemma[11] neither is Gg(Vyy_). By iterating the argument,
we conclude that Gg(V3) is not diagonally identifiable. However, the only invertible graph
on three vertices is the triangle graph, which is diagonally identifiable, leading to a contra-
diction. 0

We deduce a simple and tractable sufficient condition for a graph Gg to be diagonally
identifiable, namely that G5 contains the kite graph as a vertex covering (possible not in-
duced) subgraph. This property is given in Proposition[2] The proof is a direct consequence
of Theorem [10] considering the nested sequence Vy_; D ... D V3 obtained by removing the
end vertex of the kite at each step.
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A.2 Proof of Proposition

The condition of containing the kite graph Vj as a subgraph is mild in the sense that it is
satisfied in the dense regime logn/n by random graphs, as depicted in Proposition (3| We
now present the proof of this fact. Let w(n) — oo and set

p1 :=(1/n)(logn+loglogn + w(n)/2),
p2 = w(n)/(2n).
Let G and G® be two independent Erdés-Rényi graphs such that
GV~ Gn,p)) AL G ~G(n,py).

As shown in Corollary 8.12 in [[Bol98]] for instance, one knows that IP{GISU is hamiltonian}
tends to 1 as n goes to infinity. Given a hamiltonian cycle C, of length n in G one can
construct a kite of length n using edges of G® to connect a pair of vertices at distance 2 on
the cycle C,. Invoke the independence of G and G® to get that this latter probability is

P{{k,k + 2} is an edge of G for some k} = P{B(n, p,) > 0},

where B(n, p,) denotes the binomial law. Using Poisson approximation one gets that this
probability tends to 1 as n goes to infinity. We deduce that the probability that the graph
G= Gr(ll) + GT(IZ) has at least a kite tends to 1. Observe that G is an Erd6s-Rényi graph of size
n and parameter p = p; + p, — p1P2 < p, Which concludes the proof.

A.3 Proof of Theorem 4

Combining Proposition (3| and Theorem we deduce the first point. In view of the first
point of Theorem we see that it is sufficient to find two isolated vertices to prove non-
identifiability. Indeed, in this case, the kernel of the adjacency matrix has co-dimension at
least 2 showing that all sub-graphs of size N —1 are not invertible. Furthermore, one knows
(see Theorem 3.1 in [[Bol98]] for instance) that the event “there is at least two isolated points”
has sharp threshold function logn/n. It proves the second point.

B Support reconstruction

B.1 Proof of Theorem 5

Define & :={Se€ . :|S| <|S*|,S #S*} and & := {S € & : |S| > |S*|}, clearly it holds
S ={S"}U A US. We want to control the terms P{S € &} and P{S € #} separately
and conclude in view of

P{S#S5*}=P{Se S} +P{Se}.
Since the Frobenius norm is sub-multiplicative, it holds, for all A € &(F),

IAK —K) = (K= K)A[l, < IAK = KI5 + [I(K— KA, < 2[|All,[IK = K],
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Thus, the quantity ||/-\R — R/—\Hz for A € &(F) can be bounded from below and above by
IAK — KAl — 2[|Allo[K = K]l < [AK = KA, < [AK — KAl + 2[|All[K—=Kllp.  (3)
To bound the term P{S € %}, we use to remark that for all S € ¥,

_ IAK—KAl, _ IAK=KAl, . =
S)= min —+7L 52 min _=—2 K—K .
Qs) AcssNO} Al nlS| Acss\{0}  [IAll, | Iz
It follows
. . IAK—KAJ|, o -
> R — — — _
QQQ(S)—?QQAG%R{O} AT 2[[K=Klly = co — 2K = K]]5. 4

The constant ¢ is positive by F-identifiability of W. Moreover, observe that

WK — KW,

IAK — KAl
Q(s") = 2
IWIl,

= min +A,18* < 2K =K]ly + A,|S*],
Acsis 0oy Al " 2o

(5)
where we used both Eq. and the fact that WK — KW = 0. Combining (4) and (5)), we
get

+ 4,87 <

N ) . ~ co— AnlS™|
P{Se %} < P{ggng(S) <Qs)} < P{IIK=K|l, > T}.

To control the term P(S € %), we use that gng; Q(S) = A, gngl IS| = A,(|S*| + 1). By Eq.
€S €S
(5D, it follows

P{Ses} <P minQ(s) < s}

<P{2,(Is"|+1) < 2[K— K|l + 2,/S"I}
—~ }Ln
=P{IIK—Kll, > 7'}.

The proof of Theorem|5]follows directly by (Hy). The corollary is a direct consequence using
Borel-Cantelli’s Lemma.

B.2 Proof of Theorem [7]

Since A(K)®j is of full rank, the value Es = (A(R)@S)TA(R)aO is the unique solution to Eq.
with probability tending to one asymptotically. Since the value of /35 does not depend
on a, € ./, one can take ay = w in view of S* € S. We obtain

Bs = (A(K)@s) ARW = —(A(K)®s) AWK,

The result follows from Slutsky’s lemma, using that (A(R)@S)J" converges in probability
towards (A(K)®g)" and

V1 (AWE — A(W)K) %OJ (0, AMW)ZAMW)T).
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B.3 Proof of Proposition

For a support S such that $* C S, remark that .o/ = {w—&¢b : b € RI™(95)} Thus, by least
square minimization, we get

. Y2 . % 2 _ N 2,112
min [AR)al? = min JAK)w—@5b)I* = N0y o0, YAKIWI

Rdim(dg)
Let Eg g = Im(A(K)®g) NIm(A(K)®s )t = Im(A(K)®s) Nker(®],A(K)), we obtain

. RNAN2 s K)ql12 — . % 2
[nin IAK)all min IAK)al|” = [ITTg,,  A(K)wl|.
Write HES/,SA(R)W =11 ES,’SA(R)W + (Hfs/,s —1Ilg, )A(R)w. We have by assumption
= ~ d
Vi, A(K)w =—v/n Ty, AW)(k—k) — H(0,Tg ).

= d
It follows that n||1'IES,SA(K)w||2 — XZ(I‘S/’S). So, to prove the result, it remains to show
that the approximation of Mg, instead of Ig,  is negligible with

n(IMg,  ARWI? = [T, AKIW?) = 0p(1).
Write
M1, AW = Tz, ARWI? < (Mg, — Tz, JAKWI (g,  ARWI + M5, AR)wWI)
< lIMg,,, —Tig,, [l x 2 AR )W,

where |||.||| denotes the operator norm. Because S and S’ both contain the true model S*,
A(K)®g and A(K)®g are of full rank and Iz, converges in probability to Ilg, .. Since

VAllAK)W]| = 0p(1), it follows that [[g,  A(K)w||* — I, AK)WI[? = 0p(n™"), which
ends the proof. ’
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