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Abstract

We study a parametric estimation problem related to moment condition models.
As an alternative to the generalized empirical likelihood (GEL) and the generalized
method of moments (GMM), a Bayesian approach to the problem can be adopted,
extending the MEM procedure to parametric moment conditions. We show in par-
ticular that a large number of GEL estimators can be interpreted as a maximum
entropy solution. Moreover, we provide a more general field of applications by
proving the method to be robust to approximate moment conditions.

1 Introduction

We consider a parametric estimation problem in a moment condition model. Assume
we observe an i.i.d. sample X1, ..., Xn drawn from an unknown probability measure µ0

defined on a space X . We are interested in recovering a parameter θ0 ∈ Θ ⊂ Rd, defined
by a set of moment conditions ∫

X
Φ(θ0, x)dµ0(x) = 0, (1)

where Φ : Θ × X → Rk is a known map. This model is involved in many problems
in Econometry, notably when dealing with instrumental variables. We refer to [Cha87],
[Han82], [QL94], [Owe91] and [DIN09]. Two main approaches to the problem have been
studied in the literature, namely the generalized method of moments (GMM) and the
generalized empirical likelihood (GEL). While the main advantage of GMM relies in its
computational feasibility, likelihood-related methods have appeared to be the most effi-
cient in term of small-sample properties. In its original form, the empirical likelihood (EL)
of Owen [Owe91] defines an estimator by a maximum likelihood procedure on a discretized
version of the model. As an alternative, GEL replaces the Kullback criterion relative to
EL by a f -divergence, thus providing a large choice of solutions. A number of estimators
corresponding to particular choices of f -divergences have emerged in the literature over
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the last decades, such as the exponential tilting (ET) of Kitamura and Stutzer [KS97]
and the continuous updating estimator (CUE) of Hansen, Yeaton and Yaron [HHY96].

While an attractive feature of GEL is its wide range of solutions, a number of f -
divergence used in the computation of the GEL estimators are mainly justified by em-
pirical studies and lack a probabilistic interpretation. This issue can be solved by incor-
porating some prior information to the problem using a Bayesian point of view, as made
for example in [PR94]. In this paper, we investigate a different Bayesian approach to the
inverse problem, known as maximum entropy on the mean (MEM). Although the method
was originally introduced in the frame of exact moment condition models (as opposed
here to parametric moment conditions), it appears to provide a natural solution to the
problem, expressed as the minimizer of a convex functional on a set of discrete measures
and subject to linear constraints. When applied in a particular setting, we show that
the MEM approach leads to a GEL solution for which the f -divergence is determined
by the choice of the prior. As a result, the method gives an alternate point of view on
some widely spread estimators such as EL, ET or CUE, as well as a general Bayesian
background to GEL.

In many actual situations, the true moment condition is not exactly known to the
statistician and only an approximation is available. It occurs for instance when Φ has a
complicated form that must be evaluated numerically. Simulation-based methods have
been implemented to deal with approximate constraints in [CF00] and [McF89], in the
frame of the generalized method of moments. To our knowledge, the efficiency of GEL
in a similar situation has not been studied. In [LP08], the MEM procedure is shown
to be robust to approximate moment conditions, introducing the approximate maximum
entropy on the mean estimator. Seeing GEL as a particular case of MEM, we extend the
model in a situation where only an approximation Φm of the true constraint function Φ is
available. We provide sufficient conditions under which the GEL method remains efficient
asymptotically when replacing Φ by its approximation.

This paper falls into the following parts. Section 2 is devoted to the position of the
problem. We introduce the maximum entropy method for parametric moment condition
models and discuss its close relationship with generalized empirical likelihood in Section
2.2. In Section 3, we discuss the asymptotic efficiency of the method when dealing with
an approximate constraint. Proofs are postponed to the Appendix.

2 Estimation of the parameter

Let X be an open subset of Rq, endowed with its Borel field B(X ) and let P(X ) denote
the set of probability measures on (X ,B(X )). We observe an i.i.d. sample X1, ..., Xn

drawn from the unknown distribution µ0. We want to estimate the parameter θ0 ∈ Θ ⊂ Rd
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defined by the moment condition∫
X

Φ(θ0, x)dµ0(x) = 0, (2)

where Φ : Θ×X → Rk (k ≥ d) is a known map. To avoid a problem of identifiability, we
assume that θ0 is the unique solution of (2). This problem has been widely studied in the
literature in Econometry, see for instance [Cha87], [Han82] and [QL94]. The information
given by the moment condition (2) can be interpreted to determine the setM of possible
values for µ0 (the model). The true value of the parameter being unknown, the distribution
of the observations can be any probability measure µ for which the map θ 7→

∫
Φ(θ, .)dµ

is null for a unique θ = θ(µ) ∈ Θ. The model is therefore defined as

M =

{
µ ∈ P(X ) : ∃! θ = θ(µ) ∈ Θ,

∫
X

Φ(θ, .)dµ = 0

}
,

where the map µ 7→ θ(µ), defined on M, is the parameter of interest. Let us introduce
some notations and assumptions. For µ a measure and g a function, we shall note µ[g] =∫
gdµ. Let E be an Euclidean space and let ‖.‖ denote an Euclidean norm in E. For a

function f : Θ→ E and a set S ⊆ Θ, we note

‖f‖S = sup
θ∈S
‖f(θ)‖.

We assume that the following conditions are fulfilled.

A.1. Θ is a compact subset of Rd.

A.2. The true value θ0 of the parameter lies in the interior of Θ.

A.3. For all x ∈ X , θ 7→ Φ(θ, x) is continuous on Θ and the map x 7→ ‖Φ(., x)‖Θ is
dominated by a µ0-integrable function.

A.4. For all x ∈ X , θ 7→ Φ(θ, x) is twice continuously differentiable in a neighborhood N
of θ0 and we note ∇Φ(θ, x) = ∂Φ(θ, x)/∂θ ∈ Rd×k and Ψ(θ, x) = ∂2Φ(θ, x)/∂θ∂θt ∈
Rd×d×k. Moreover, we assume that x 7→ ‖∇Φ(., x)‖N and x 7→ ‖Ψ(., x)‖N are
dominated by a µ0-integrable function.

A.5. The matrices

D :=

∫
X
∇Φ(θ0, x)dµ0(x) ∈ Rd×k and V :=

∫
X

Φ(θ0, x)Φt(θ0, x)dµ0(x) ∈ Rk×k

are of full rank.

Some issues for estimating θ0 may be due to the indirect definition of the parameter and
these assumptions ensure that the map θ(.) is sufficiently smooth in a neighborhood of µ0

for the total variation topology, which will make the asymptotic properties of the GEL
estimator easily tractable.
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2.1 Generalized empirical likelihood

Generalized empirical likelihood (GEL) was first applied to this problem in [QL94],
generalizing an idea of [Owe91]. An estimate µ̂ of µ is obtained as an entropic projection
of the empirical measure Pn onto the model M. Precisely, for two probability measures
µ and ν and f a convex function such that f(1) = f ′(1) = 0, define

Df (ν|µ) =

∫
X
f

(
dν

dµ

)
dµ if ν � µ, Df (ν|µ) = +∞ otherwise.

Moreover, we define for A ⊂ P(X ), Df (A|µ) = infν∈ADf (ν|µ). The GEL estimator µ̂ of
µ0 is the element of the model that minimizes a given f -divergence Df (.,Pn) with respect
to the empirical distribution. Noticing that the model can be written as M = ∪θ∈ΘMθ

where Mθ := {µ ∈ P(X ) : µ[Φ(θ, .)] = 0}, the GEL estimator θ̂ = θ(µ̂) follows by

θ̂ = arg min
θ∈Θ
Df (Mθ,Pn).

Since the set of discrete measures inMθ is closed and convex, the entropy Df (Mθ,Pn) is
reached for a unique measure µ̂(θ) in Mθ, provided that Df (Mθ,Pn) is finite. Then, it
appears that computing the GEL estimator involves a two-step procedure. First, build for
each θ ∈ Θ, the entropic projection µ̂(θ) of Pn ontoMθ. Then, minimizeDf (µ̂(θ),Pn) with
respect to θ. Since µ̂(θ) is absolutely continuous w.r.t. Pn by construction, minimizing
Df (.,Pn) reduces to finding the proper weights w1, ..., wn to allocate to the observations
X1, ..., Xn. This turns into a finite dimensional problem, which can be solved by classical
convex optimization tools (see for instance [Kit06]). In fact, the GEL estimator θ̂ can be
expressed as the solution to the saddle point problem

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Pn

[
f ∗(γ + λtΦ(θ, .))

]}
,

where f ∗(x) = supy {xy − f(y)} denotes the convex conjugate of f .

Note that if the choice of the f -divergence plays a key role in the construction of
the estimator, it has no influence on its asymptotic efficiency. Indeed, it is shown in
[QL94] that all GEL estimators are asymptotically efficient, regardless of the f -divergence
used for their computation. Nevertheless, some situations justify the use of specific f -
divergences. The empirical likelihood estimator introduced by Owen in [Owe91] uses the
Kullback entropy K(., .) as f -divergence, pointing out that minimizing K(.,Pn) reduces to
maximizing likelihood among multinomial distributions. Newey and Smith [NS04] remark
that a quadratic f -divergence leads to the CUE estimator of Hansen Heaton and Yaron
[HHY96].
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2.2 Maximum entropy on the mean

In this section, we study a Bayesian approach to the inverse problem, known as max-
imum entropy on the mean (MEM) [GG97]. The method was developed to estimate a
measure µ0 based the observation of some of its moments. In this framework, it turns
out that the MEM estimator of µ0 can be used to estimate efficiently the parameter θ0.
We shall briefly recall the MEM procedure. Consider an estimator of µ0 in the form of a
weighted version of the empirical measure Pn,

Pn(w) =
1

n

n∑
i=1

wi δXi ,

for w = (w1, ..., wn)t ∈ Rn a collection of weights. Then, fix a prior distribution ν0

on the vector of weight w so that each solution Pn(w) can be viewed as a realization
of the random measure Pn(W ), where W is drawn from ν0. This setting enables to
incorporate some prior knowledge on the shape or support of µ0 through the choice of the
prior ν0, as discussed in [GG97]. Here, the observations X1, ..., Xn are considered fixed.
Actually, it is the moment condition that is used to built the estimator a posteriori. In this
framework where the true value θ0 of the parameter is unknown, the information provided
by the moment condition reduces to the statement µ0 ∈ M. So, in order to take this
information into consideration, the underlying idea of MEM is to build the estimator µ̂
as the expectation of Pn(W ) conditionally to the event {Pn(W ) ∈M}. However, we may
encounter some difficulties if this conditional expectation is not properly defined. To deal
with this issue, the MEM method replaces the possibly ill-defined conditional expectation
by a well-defined estimator, whose construction is motivated by large deviation principles.
Precisely, construct the posterior distribution ν∗ as the entropic projection of ν0 onto the
set

Π(M) = {µ ∈ P(Rn), Eµ [Pn(W )] ∈M} ,

where Eµ [Pn(W )] denotes the expectation of Pn(W ) when W has distribution µ. The
MEM solution to the inverse problem is defined as the expectation of Pn(W ) under the
posterior distribution ν∗,

µ̂ = Eν∗ [Pn(W )] = Pn(Eν∗(W )).

This construction is justified by Theorem 2.3 in [GG97], which establishes the asymptotic
equivalence between µ̂ and the conditional expectation Eν0(Pn(W )| Pn(W ) ∈M), when-
ever it is well defined. The existence of the MEM estimator requires the problem to be
feasible in the sense that there exists at least one solution δ in the interior of the convex
hull of the support of ν0, such that Pn(δ) ∈ M. This assumption warrants that the set
Π(M) is non-empty and therefore allows the construction of the posterior distribution ν∗.
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The MEM estimator µ̂ lies in the model M by construction. As a result, there exists
a solution θ̂ to the moment condition µ̂[Φ(θ, .)] = 0. This solution is precisely the MEM
estimator of θ0. In Theorem 2.1 below, we give an explicit expression for the MEM
estimator θ̂. We note 1 = (1, ..., 1)t ∈ Rn, Φ(θ,X) = (Φ(θ,X1), ...,Φ(θ,Xn))t ∈ Rn×k and
as previously, Λν denotes the log-Laplace transform of ν.

Theorem 2.1 If the problem is feasible, the MEM estimator θ̂ is given by

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{nγ − Λν0(γ1 + Φ(θ,X)λ)} .

In particular, if ν0 has equal orthogonal marginals, i.e. ν0 = ν⊗n for some probability
measure ν on R, then

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Pn

[
Λν(γ + λtΦ(θ, .))

]}
.

The MEM estimator θ̂ can be expressed as the solution to a saddle point problem, specific
to generalized empirical likelihood. Actually, this result points out that maximum entropy
on the mean with a particular form of prior ν0 = ν⊗n leads to a GEL procedure, for which
the criterion is the log-Laplace transform of ν. This approach provides a general Bayesian
interpretation of GEL. Regularity conditions on the criterion Λν in the GEL framework
are reflected through conditions on the prior ν. Indeed, the usual normalization conditions
Λ′ν(0) = Λ′′ν(0) = 1 corresponds to taking a prior ν with mean and variance equal to one,
while the normalization Λν(0) = 0 is imposed by the condition ν ∈ P(R).

An interesting choice of prior is the exponential distribution dν(x) = e−xdx for x > 0.
Indeed, observe that if the Wi are i.i.d. with exponential distribution, the likelihood of
Pn(W ) is constant over the set of probability discrete measures {Pn(w) :

∑n
i=1wi = n}.

Hence, an exponential prior can be roughly interpreted as a non-informative prior in this
framework. The discrepancy associated to this prior is Λν(s) = − log(1−s), s < 1, which
corresponds to the empirical likelihood estimator of Owen [Owe91].

The MEM approach also provides a new probabilistic interpretation of some commonly
used specific GEL estimators. The exponential tilting of Kitamura and Stutzer [KS97] is
obtained for a Poisson prior of parameter 1, for which we have Λν(s) = es − 1. Another
example is the Gaussian prior ν ∼ N (1, 1), leading to the continuous updating estimator
of Hansen, Yeaton and Yaron [HHY96], as we have in this case Λν(s) = 1

2
(s − 1)2. The

Gaussian prior allows the discrete measure Pn(W ) to have negative weights wi and must
be handled with care. Remark however that this is generally not an issue in practice since
the solution µ̂ is implicitly chosen close to the empirical distribution Pn and will have all
its weights wi positive with high probability. There are more examples of priors leading
to usual discrepancies which can be found in [GG97].
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3 Dealing with an approximate operator

In many actual applications, only an approximation of the constraint function Φ is
available to the practitioner. This occurs for instance if the moment condition takes a
complicated form that can only be evaluated numerically. In [McF89], McFadden sug-
gested a method dealing with approximate constraint in a similar situation, introducing
the method of simulated moments (see also [CF00]). In [LP08] and [LR09], the authors
study a MEM procedure for linear inverse problems with approximate constraints. Here,
we propose to extend the results of [LP08] and [LR09] to the GEL framework, using the
connections between GEL and MEM.

We assume that we observe a sequence {Φm}m∈N of approximate constraints, indepen-
dent with the original sample X1, ..., Xn and converging toward the true function Φ at a
rate ϕm. We are interested in exhibiting sufficient conditions on the sequence {Φm}m∈N
under which estimating θ0 by the GEL procedure remains efficient when the constraint
is replaced by its approximation. We discuss the asymptotic properties of the resulting
estimates in a framework where both indices n and m simultaneously grow to infinity.

The approximate estimator is obtained by the GEL methodology, replacing the constraint
function Φ by its approximation Φm,

θ̂m = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Pn

[
Λ(γ + λtΦm(θ, .))

]}
, (3)

where Λ : R → R is a strictly convex, twice differentiable function such that Λ′(0) =
Λ′′(0) = 1 and Λ(0) = 0. As previously, the existence of θ̂m requires the feasibility
condition that the supremum of γ − Pn [Λ(γ + λtΦm(θ, .))] is reached for a finite value of
(γ, λ) ∈ R × Rk, for at least one value of θ ∈ Θ. This condition relies essentially on the
domain of Λ being sufficiently widespread. We make the following additional assumptions.

A.6. The functions x 7→ ‖Φ(., x)‖Θ, x 7→ ‖∇Φ(., x)‖N and x 7→ ‖Ψ(., x)‖N are dominated
by a function κ such that

∫
κ4(x)dµ0(x) <∞.

A.7. For all x ∈ X and for sufficiently large m, the map θ 7→ Φm(θ, .) is twice contin-
uously differentiable in N and we note ∇Φm(θ, .) = ∂Φm(θ, .)/∂θ and Ψm(θ, .) =
∂2Φm(θ, .)/∂θ∂θt.

A.8. The functions x 7→ ‖Φm(., x) − Φ(., x)‖Θ, x 7→ ‖∇Φm(., x) −∇Φ(., x)‖N and x 7→
‖Ψm(., x) − Ψ(., x)‖N are dominated by a function κm such that

∫
κ4
m(x)dµ0(x) =

O(ϕ−4
m ).

A.9. The function Λ′′ is bounded by a constant K <∞.
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Assumptions A.6 to A.8 are made to obtain a uniform control over ‖θ̂m− θ̂‖ for all n ∈ N.
The condition A.9 implies that Λ is dominated by a quadratic function. In the MEM
point of view, this condition is fulfilled for the log-Laplace transform Λν of sub-Gaussian
priors ν.

Theorem 3.1 (Robustness of GEL) If Assumptions 1 to 9 hold,

n‖θ̂m − θ̂‖2 = OP (nϕ−2
m ) + oP (1).

Moreover, θ̂m is
√
n-consistent and asymptotically equivalent to the GEL estimator com-

puted with exact constraint function Φ whenever nϕ−2
m tends to zero.

By considering a situation with approximate operator, we extend the GEL model to a
more general framework that gives a more realistic formulation of actual problems. The
previous theorem gives an upper bound of the error caused by the use of the approximation
Φm in place of the true function Φ. By this result, we aim to provide an insight on
convergence conditions that are necessary for asymptotic efficiency when dealing with an
approximate operator.

4 Proofs

4.1 Proof of Theorem 2.1

Let Sθ = {w ∈ Rn : Pn(w) ∈ Mθ} and Fw = {µ ∈ P(Rn) : Eµ(W ) = w}. We use that
infµ∈Fw K(µ, ν0) = Λ∗ν0(w) (see [GG97]). Let Π(Mθ) = {µ ∈ P(Rn), Eµ [Pn(W )] ∈Mθ},
we have the equality

θ̂ = arg min
θ∈Θ

inf
µ∈Π(Mθ)

K(µ, ν0) = arg min
θ∈Θ

inf
w∈Sθ

inf
µ∈Fw

K(µ, ν0),

which can be written

θ̂ = arg min
θ∈Θ

inf
w∈Sθ

Λ∗ν0(w) = arg min
θ∈Θ

inf
w∈Sθ

sup
τ∈Rn
{τ tw − Λν0(τ)}.

The feasibility assumption warrants that the extrema are reached. Hence, using Sion’s
minimax Theorem, we find

θ̂ = arg min
θ∈Θ

sup
τ∈Rn

inf
w∈Sθ
{τ tw − Λν0(τ)},

We know that w = (w1, ..., wn)t ∈ Sθ if and only if
∑n

i=1 wi = n and
∑n

i=1wiΦ(θ,Xi) = 0.
Thus, for a fixed value of τ , the map w 7→ τ tw − Λν0(τ) can be arbitrarily close to −∞
on Sθ whenever τ is not orthogonal to 1 and Φ(θ,X). As a result, we may assume that
τ = γ1 + Φ(θ,X)λ for some (γ, λ) ∈ R× Rk without loss of generality. In this case, the
map w 7→ τ tw−Λν0(τ) is constant over Sθ, equal to nγ−Λν0(γ1+ Φ(θ,X)λ), which ends
the proof. If ν0 = ν⊗n, then Λν0(w) =

∑n
i=1 Λν(wi) and we conclude easily.
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4.2 Proof of Theorem 3.1

The proof of the results relies mainly on the uniform law of large numbers, using that
the set {‖Φm(θ, .)‖, ‖∇Φm(θ, .)‖, ‖Ψm(θ, .)‖, θ ∈ Θ,m ∈ N} is a Glivenko-Cantelli class of
functions, consequently to A.6 and A.8. For all θ ∈ Θ, v ∈ Rk, x ∈ X , let

hn(θ, v) =

(
Pn [Φ(θ, .)Λ′(vtΦ(θ, .))]

Pn [vt∇Φt(θ, .)Λ′(vtΦ(θ, .))]

)
hm,n(θ, v) =

(
Pn [Φm(θ, .)Λ′(vtΦm(θ, .))]

Pn [vt∇Φt
m(θ, .)Λ′(vtΦm(θ, .))]

)
.

The pair (θ̂m, v̂m) (resp. (θ̂, v̂)) is defined as the unique zero over Θ×Rk of hm,n (resp. hn).
The condition A.9 implies that there exists a constant K > 0 such that Λ′(s) ≤ Ks + 1
for all s ∈ R. Hence, using successively the mean value theorem and Cauchy-Schwarz’s
inequality, we show that the contrast function hm,n converges uniformly on every compact

set toward hn as m→∞, which warrants the convergence of (θ̂m, v̂m) toward (θ̂, v̂). For
all v ∈ Rk, the application θ 7→ ∇hm,n(θ, v) is continuous in a neighborhood on θ∗m for
sufficiently large values of m by the condition A.7, as explicit calculation gives

∇hm,n(θ, v) =

(
Am,n(θ, v) Dm,n(θ, v)
Dt
m,n(θ, v) Vm,n(θ, v)

)
,

where

Am,n(θ, v) = Pn
[
Ψm(θ, .)vΛ′(vtΦm(θ, .)) +∇Φm(θ, .)v vt∇Φt

m(θ, .)Λ′′(vtΦm(θ, .))
]

Dm,n(θ, v) = Pn
[
∇Φm(θ, .)Λ′(vtΦm(θ, .)) +∇Φm(θ, .)vΦt

m(θ, .)Λ′′(vtΦm(θ, .))
]

Vm,n(θ, v) = Pn
[
Φm(θ, .)Φt

m(θ, .)Λ′′(vtΦm(θ, .))
]
.

We define in the same way An(θ, v), Dn(θ, v) and Vn(θ, v) by replacing Φm by Φ in the
expressions above. Using Cauchy-Schwarz’s inequality, A.8 ensures the uniform conver-
gence of ∇hm,n toward ∇hn on every compact set at the rate ϕm. Note ρn the smallest

eigenvalue of ∇hn(θ̂, v̂), we know from Theorem 3.2 in [NS04] that P(ρn > η) = O(n−1)
for sufficiently small η > 0, since A.5 ensures that the limit of ∇hn(θ̂, v̂) as n → ∞ is
positive definite. Thus, for c > 0 sufficiently small, consider the event Ω = {ρn > c}.
Writing the Taylor expansion

hm,n(θ̂, v̂) = ∇hm,n(θ̂m, v̂m)

(
θ̂ − θ̂m
v̂ − v̂m

)
+ o(‖θ̂m − θ̂‖),

we deduce that on Ω,(
θ̂m − θ̂
v̂m − v̂

)
= −

[
∇hn(θ̂, v̂)

]−1

hm,n(θ̂, v̂) +OP (ϕ−1
m ).
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The Schur complement formula gives in particular

θ̂m − θ̂ = −
[
D̂nV̂

−1
n D̂t

n

]−1

D̂nV̂
−1
n Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))] +OP (ϕ−1

m ) + oP (n−1),

where D̂n = Dn(θ̂, v̂) and V̂n = Vn(θ̂, v̂) and where we used that v̂ = OP (n−1) (see for
instance Theorem 3.2 in [NS04]). Thus, on the event Ω,

‖θ̂m − θ̂‖ ≤ c
∣∣∣∣∣∣Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))]

∣∣∣∣∣∣+OP (ϕ−1
m ) + oP (n−1).

By construction, Pn[Φ(θ̂, .)Λ′(v̂tΦ(θ̂, .))] = 0, which yields∣∣∣∣∣∣Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))]
∣∣∣∣∣∣

≤ Pn
[
‖(Φm(θ̂, .)− Φ(θ̂, .))Λ′(v̂tΦm(θ̂, .))‖+ ‖Φ(θ̂, .)[Λ′(v̂tΦm(θ̂, .)− Λ′(v̂tΦ(θ̂, .))]‖

]
≤ K‖v̂‖ Pn

[
‖Φm(θ̂, .)‖ ‖Φm(θ̂, .)− Φ(θ̂, .)‖

]
+ Pn‖Φm(θ̂, .)− Φ(θ̂, .)‖

+K‖v̂‖ Pn
[
‖Φ(θ̂, .)‖ ‖Φm(θ̂, .)− Φ(θ̂, .)‖

]
,

as a consequence of A.9. We conclude that ‖θ̂m − θ̂‖21Ω = OP (ϕ−2
m ) + oP (n−1) by the

condition A.8. On the complement of Ω, ‖θ̂m − θ̂‖ can be bounded by the diameter δ of
Θ, yielding ‖θ̂m − θ̂‖1Ωc = oP (n−1), which ends the proof.
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