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Abstract
Calibration methods have been widely studied in survey sampling over the last

decades. Viewing calibration as an inverse problem, we extend the calibration tech-
nique by using a maximum entropy method. Finding the optimal weights is achieved
by considering random weights and looking for a discrete distribution which maxi-
mizes an entropy under the calibration constraint. This method points a new frame
for the computation of such estimates and the investigation of its statistical prop-
erties.
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Introduction

Calibration is a well spread method to improve estimation in survey sampling, using
extra information from auxiliary variables. This method provides approximately unbiased
estimators with variance smaller than that of the usual Horvitz-Thompson estimator.
Calibration has been introduced by Deville and Särndal in [3], extending an idea of [4].
For general references, we refer to [20] and for an extension to variance estimation to [22].
Finding the solution to a calibration equation involves minimizing a distance under some
constraint. More precisely, let s be a random sample of size n drawn from a population
U of size N , y be the variable of interest and x be a given auxiliary vector variable, for
which the total tx over the population is known. Further, let d ∈ Rn be the standard
sampling weights (that is the Horvitz-Thompson ones). Calibration derives an estimator
t̂y =

∑
i∈swiyi of the population total ty of y. The weights wi are chosen to minimize a

dissimilarity (or distance) D(., d) on Rn with respect to the Horvitz-Thompson weights
di and under the constraint ∑

i∈s

wixi = tx. (1)

Following [23], we will view here calibration as a linear inverse problem. In this paper,
we use Maximum Entropy Method on the Mean (MEM) to build the calibration weights.
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Indeed, MEM is a strong machinery for solving linear inverse problems. It tackles a
linear inverse problem by finding a measure maximizing an entropy under some suitable
constraint. It has been extensively studied and used in many applications, see for example
[1], [12], [10], [14], [9], [7] or [13].
Let us roughly explain how MEM works in our context. First we fix a prior probability
measure ν on Rn with mean value equal to d. Then, the idea is to modify the standard
weights d in order to get a representative sample for the auxiliary variable x, but still being
as close as possible to d, which have the desirable property of yielding an unbiased estimate
for the population total. So, we will look for a posterior probability measure minimizing
the entropy (or Kullback information) with respect to ν and satisfying a constraint related
to (1). It appears that the MEM estimator is in fact a specific calibration estimator for
which the corresponding dissimilarity D(., d) is determined by the choice of the prior
distribution ν. Hence, the MEM methodology provides a general Bayesian frame to
fully understand calibration procedures in survey sampling where the different choices of
dissimilarities appear as different choices of prior distributions.
An important problem when studying calibration methods is to understand the amount
of information contained in the auxiliary variable. Indeed, the relationships between the
variable to be estimated and the auxiliary variable are crucial to improve estimation
(see for example [18], [26] or [25]). When complete auxiliary information is available,
model calibration proposed by Wu and Sitter [26] aims to increase the correlation
between the variables by replacing the auxiliary variable x by some function of it,
say u(x). We consider efficiency issues for a collection of calibration estimators,
depending on both the choice of the auxiliary variable and the dissimilarity. Finally,
we provide an optimal way of building an efficient estimator using the MEM methodology.

The article falls into the following parts. The first section recalls the calibration
method in survey sampling, while the second exposes the MEM methodology in a general
framework, and its application to calibration and instrument estimation. Section 3 is
devoted to the choice of a data driven calibration constraint in order to build an efficient
calibration estimator. It is shown to be optimal under strong asymptotic assumptions on
the sampling design. Proofs are postponed to Section 4.

1 Calibration Estimation of a linear parameter

Consider a large population U = {1, ..., N} and an unknown characteristic y =
(y1, ..., yN) ⊂ RN . Our aim is to estimate its total ty :=

∑
i∈U yi when only a ran-

dom subsample s of the whole population is available. So the observed data are (yi)i∈s.
Each sample s has a probability p(s) of being observed. The distribution p(.) is called
sampling design. We assume that πi := p(i ∈ s) =

∑
s, i∈s p(s) is strictly positive for

all i ∈ U so that di = 1/πi is well defined. A standard estimator of ty is given by the
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Horvitz-Thompson estimator:

t̂HTy =
∑
i∈s

yi
πi

=
∑
i∈s

diyi.

This estimator is unbiased and is widely used for practical cases, see for instance [11].

Suppose that it exists an auxiliary vector variable x = (x1, ...,xN) entirely observed
and set tx =

∑
i∈U xi ∈ Rk. If the Horvitz-Thompson estimator of tx, t̂HTx =

∑
i∈s dixi is

far from the true value tx, we may reasonably assume that the sample will not adequately
reflect the behavior of the variable of interest in the whole population. So, to prevent
inefficient estimation due to bad sample selection, inference on the sample can be achieved
by considering a modification of the weights of the individuals chosen in the sample.

One of the main methodology used to correct this effect is the calibration method,
(see [3]). The bad sample effect is corrected by replacing the Horvitz-Thompson weights
di by new weights wi close to di. Let w 7→ D(w, d) be a dissimilarity between w and the
Horvitz-Thompson weights that is minimal for wi = di. The method consists in choosing
weights ŵi minimizing D(., d) under the constraint∑

i∈s

ŵixi = tx.

Then, consider the new weighted estimators t̂y =
∑

i∈s ŵiyi.

A typical dissimilarity is the χ2 distance w 7→
∑

i∈s(πiwi − 1)2/(qiπi) for (qi)i∈s some
known positive sequence. In most applications, the qi’s are taken equal to 1 which gener-
ally warrants a consistent estimator. Nevertheless unequal weights can be used as treated
in Example 1 in [3], in order to lay more or less stress on the distance between some of
the the weights and the original Horvitz-Thompson ones. The new estimator is defined
as t̂y =

∑
i∈s ŵiyi, where the weights ŵi minimizes D(w, d) =

∑
i∈s(πiwi − 1)2/qiπi un-

der the constraint
∑

i∈s ŵixi = tx. Denote by at the transpose of a, the solution of this
minimization problem is given by

t̂y = t̂HTy + (tx − t̂HTx )tB̂,

where B̂ =
[∑

i∈s qidixix
t
i

]−1∑
i∈s qidiyixi. Note that this is a generalized regression

estimator. It is natural to consider alternative dissimilarities, see for instance [3]. We
first point out that the existence of a solution to the constrained minimization problem
depends on the choice of the dissimilarities. Then, different choices can lead to weights
with different behaviors, different ranges of values for the weights that may be found
unacceptable by the users. We propose an approach where dissimilarities are given a
probabilistic interpretation.
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2 Maximum Entropy for Survey Sampling

2.1 MEM methodology

Consider the problem of recovering an unknown measure µ on a measurable space X
under moment conditions. This issue belongs to the class of generalized moment problems
with convex constraints (we refer to [5] for general references). This inverse problem has
been widely studied and in particular it can be solved using the maximum entropy on the
mean (MEM).
Here, we aim at estimating µ from random observations T1, ..., Tn ∼ µ and knowing that,
there exists a given function x̃ : X → Rk and a known quantity tx ∈ Rk, such that∫

X
x̃dµ = tx. (2)

Solving this problem using the MEM framework amounts to approximate the inverse
problem (2) by a sequence of finite dimensional problems which are obtained by a dis-
cretization of the space X using the random sample T1, . . . , Tn. For this, first consider the
empirical distribution µn = n−1

∑n
i=1 δTi

, δ standing for the Dirac mass. The general idea
is to modify µn in order to take into account the additional information on µ given by
the moment equation (2). For this, we associate to each observation Ti a random weight
Pi and consider the corresponding random weighted version of the empirical measure

µ̃n =
1

n

n∑
i=1

PiδTi
.

Choosing properly the weights is the second step of the MEM procedure. The under-
lying idea is to incorporate some prior information by choosing P = (P1, ..., Pn), drawn
from a finite measure ν∗ close to a prior ν, and looking at the weighted measures satisfy-
ing the constraint in mean. This prior distribution conveys the information that µ̂n must
be close, in a given sense, to the empirical distribution µn. More precisely, let first define
the relative entropy or Kullback information between two finite measures Q,R on a space
(Ω,A) by setting

K(Q,R) =

{∫
Ω

log
(
dQ
dR

)
dQ−Q(Ω) + 1 if Q� R

+∞ otherwise.

Since this quantity is not symmetric, we will call it the relative entropy of Q with respect
to R. Note also that, among the literature in optimization, the relative entropy is often
defined as the opposite of the entropy defined above, which explains the name of max-
imum entropy method, while with our notations, we consider the minimum of the entropy.
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Given our prior ν, we now define ν∗ as the measure minimizingK(., ν) under the constraint
that the linear constraint holds in mean:

Eν∗ [n−1
∑n

i=1 Pix̃i] =
1

ν∗(Rn)

∫
Rn

[n−1
∑n

i=1 pix̃i] dν
∗(p1, ..., pn) = tx,

where we set x̃i = x̃(Ti). We then build the MEM estimator as

µ̂n =
1

n

n∑
i=1

p̂iδTi
=

1

n

n∑
i=1

Eν∗(Pi)δTi
.

So, for a fixed n, µ̂n is the maximum entropy reconstruction of µ with reference ν?.
This method provides an efficient way to estimate some linear parameter ty =

∫
X ỹdµ

for ỹ : X → R a given map. The empirical mean
∫
X ỹdµn is an unbiased and consistent

estimator of ty but may not have the smallest variance in this model. However, integrating
ỹ against µ̂n provides an asymptotically unbiased estimate of ty with a lower variance
than the empirical mean (see [10]).

In many actual situations, the function x̃ is unknown and only an approximation
to it, say x̃m, is available. Under regularity conditions, the efficiency properties of the
MEM estimator built with the approximate constraint have been studied in [15] and [16],
introducing the approximate maximum entropy on the mean method (AMEM). More
precisely, the AMEM estimate of the weights is defined as the expectation of the variable
P under the distribution ν∗m minimizing K(., ν) under the approximate constraint

Eν∗m [n−1
∑n

i=1 Pi x̃m(Ti)] = tx. (3)

It is shown that, under assumptions on x̃m, the AMEM estimator of ty obtained in this
way is consistent as n and m tend to infinity. This procedure enables to increase the
efficiency of a calibration estimator while remaining in a Bayesian framework, as shown
in Section 3.2. This situation occurs for instance, when dealing with inverse problem
with unknown operators which still can be approximated either using another sample or
directly from the data. For instance, in econometric, when dealing with instrumental
variables the operator which corresponds here to the function x̃ is unknown but can be
estimated, see [2]. The practical case of aerosol remote sensing is tackled in [15].

2.2 Maximum entropy method for calibration

Recall that our original problem is to estimate the population total ty =
∑

i∈U yi
based on the observations {yi, i∈s} and auxiliary information {xi, i∈U}. We introduce
the following notations:

ỹi = ndiyi, x̃i = ndixi, pi = πiwi.
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The variables of interest are rescaled to match the MEM framework. The weights (pi)i∈s
are now identified with a discrete measure on the sample s. The Horvitz-Thompson
estimator t̂HTy =

∑
i∈s diyi = n−1

∑
i∈s ỹi is the preliminary estimator we aim at improving.

The calibration constraint n−1
∑

i∈s pix̃i = tx stands for the linear condition satisfied by
the discrete measure (pi)i∈s. In these settings, it appears that the calibration problem
follows the pattern of maximum entropy on the mean. Let ν be a prior distribution on
the vector of the weights (pi)i∈s. The solution p̂ = (p̂i)i∈s is the expectation of the random
vector P = (πiWi)i∈s drawn from a posterior distribution ν∗, defined as the minimizer
of the Kullback information K(., ν) under the condition that the calibration constraint
holds in mean

Eν∗
[
n−1

∑
i∈s Pix̃i

]
= Eν∗

[∑
i∈sWixi

]
= tx. (4)

We take the solution p̂ = Eν∗(P ) and define the corresponding MEM estimator t̂y as

t̂y = n−1
∑
i∈s

p̂iỹi =
∑
i∈s

ŵiyi,

where we set ŵi = dip̂i for all i ∈ s. Under the following assumptions, we will show in
Theorem 2.1 that maximum entropy on the mean provides a Bayesian interpretation of
calibration methods.

The random weights Pi, i ∈ s (and therefore the Wi, i ∈ s) are taken independent. We
denote by νi the prior distribution of Pi. It follows that ν = ⊗i∈sνi. Moreover, all prior
distributions νi are probability measures with mean 1. This last assumption conveys the
information that p̂i must be close to 1, equivalently, ŵi = dip̂i must be close to di.
Let ϕ : R→ R be a closed convex map, the convex conjugate ϕ∗ of ϕ is defined as

∀s ∈ R, ϕ∗(s) = sup
t∈R

(st− ϕ(t)).

For ν a probability measure on R, we denote respectively by Λν and Λ∗ν the log-Laplace
transform and Cramer transform of ν:

Λν(s) = log

∫
esxdν(x),

Λ∗ν(s) = sup
t∈R

(st− Λν(t)), s ∈ R.

Moreover, denote by Sν the interior of the convex hull of the support of ν and let D(ν) =
{s ∈ R : Λν(s) <∞}. In the sequel, we will always assume that Λνi

is essentially smooth
(see [19]) for all i, strictly convex and that νi is not concentrated on a single point. The
last assumption means that if D(νi) = (−∞;αi), (αi ≤ +∞), then Λ′νi

(s) goes to +∞
whenever αi < +∞ and s goes to αi. Under these assumptions, Λ′νi

is an increasing

bijection between the interior of D(νi) and Sνi
. So, denote by ψi = Λ′νi

−1 its inverse
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function, the Cramer transform Λ∗νi
of νi, which is defined as the convex conjugate of Λνi

,
satisfies

Λ∗νi
(s) = sψi(s)− Λνi

(ψi(s)).

Classical choices of priors νi lead to easily computable functions Λ∗νi
in most cases. Some

examples are given at the end of the section.

Definition : We say that the optimization problem is feasible if there exists a vector
δ = (δi)i∈s ∈ ⊗i∈sSνi

such that: ∑
i∈s

δixi = tx. (5)

Under the last assumptions, the following proposition claims that the solutions (ŵi)i∈s
are easily tractable.

Theorem 2.1 (survey sampling as MEM procedure) Assume that the optimiza-
tion problem is feasible. The MEM estimator ŵ = (ŵ1, ..., ŵn) minimizes over Rn

(w1, ..., wn) 7→
∑
i∈s

Λ∗νi
(πiwi)

under the constraint
∑

i∈s ŵixi = tx.

Hence, we point out that maximum entropy on the mean method leads to calibration
estimation, where the dissimilarity is determined by the Cramer transforms Λ∗νi

, i ∈ s of
the prior distributions νi. Conditions we require on the priors in the MEM procedure
correspond to regularity conditions on the dissimilarity. Indeed, taking priors νi with
mean 1 yields Λ∗νi

(1) = Λ∗νi

′(1) = 0, which is a classical condition in calibration,
see for instance [3] or Theorem 2.7.1 in [8]. To see that, apply Jensen inequality to
Λν(t) = log

∫
etxdν(x) to show that Λν(t) ≥ t, which implies Λ∗ν(1) = 0. Since Λ∗ν is

smooth, non negative and strictly convex by construction, we also get Λ∗ν
′(1) = 0.

Note that we require feasibility condition (5) since we only consider here exact con-
straints in (4). An alternative would have been to consider a weakened constraint of the
form

‖Eν∗m [n−1
∑n

i=1 Pi x̃m(Ti)]− tx‖ ≤ ε

for a well chosen ε.

Remark : (relationship with Bregman divergences) Taking the priors νi in a cer-
tain class of measures may lead to specific dissimilarities known as Bregman divergences
(see [13]). The definition of a Bregman divergence requires a strictly convex function,
which in our situation, is given by the Cramer transform Λ∗ν of some probability measure
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ν. Since we know that Λ∗ν(1) = Λ∗ν
′(1) = 0, taking equal priors νi = ν for all i ∈ s leads

to a dissimilarity that can be written

D(w, d) =
∑
i∈s

Λ∗ν(πiwi) =
∑
i∈s

[
Λ∗ν(πiwi)− Λ∗ν(1)− Λ∗ν

′(1)(πiwi − 1)
]
.

Here, we recognize the expression of the Bregman divergence between the weights
{πiwi, i ∈ s} and 1 associated to the convex function Λ∗ν .
Another possibility is to take prior distributions νi lying in some suitable exponential
family. More precisely, define the prior distributions as

dνi(x) = exp(αix+ βi)dν(dix), i ∈ s,

where βi = −Λν(Λ
∗
ν
′(di)) and αi = diΛ

∗
ν
′(di) are taken so that νi is a probability measure

with mean 1. We recover after calculation the following dissimilarity

D(w, d) =
∑
i∈s

[
Λ∗ν(wi)− Λ∗ν(di)− Λ∗ν

′(di)(wi − di)
]
,

which is the Bregman divergence between w and d associated to Λ∗ν .

2.3 Bayesian interpretation of calibration using MEM

The two basic components of calibration are the set of constraint equations and
the choice of a dissimilarity. Here, the latter is justified by prior measures (νi)i∈s on
the weights. We now see the probabilistic interpretation of some commonly used distances.

Stochastic interpretation of some usual calibrated survey sampling estimators

1. Generalized Gaussian prior.
For a given positive sequence qi, i∈s, take νi ∼ N (1, πiqi). We get

∀t ∈ R, Λνi
(t) =

qiπit
2

2
+ t ; Λ∗νi

(t) =
(t− 1)2

2πiqi

The calibrated weights in that cases minimize the criterion

D1(w, d) =
∑
i∈s

(πiwi − 1)2

qiπi
.

So, we recover the χ2 distance discussed in Section 1. This is one of the main
distance used in survey sampling. The qi’s can be seen as a smoothing sequence
determined by the variance of the Gaussian prior. The larger the variance, the less
stress is laid on the distance between the weights and the original Horvitz-Thompson
weights.
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2. Exponential prior.
We take a unique prior ν with an exponential distribution with parameter 1. That
is, ν = ν⊗n. We have in that case

∀t ∈ R∗+, Λ∗ν(t) = − log t+ t− 1.

This corresponds to the following dissimilarity

D2(w, d) =
∑
i∈s

− log(πiwi) + πiwi.

We here recognize the Bregman divergence between (πiwi)i∈s and 1 associated to
Λ∗ν , as explained in the previous remark. A direct calculation shows that this is also
the Bregman divergence between w and d associated to Λ∗ν . The two distances are
the same in that case.

3. Poisson prior.
If we choose for prior νi = ν,∀i ∈ s, where ν is the Poisson distribution with
parameter 1, then we obtain

∀t ∈ R∗+, Λ∗ν(t) = t log t− t+ 1.

So we have the following contrast

D3(w, d) =
∑
i∈s

πiwi log(πiwi)− πiwi.

So we recover the Kullback information where (πiwi)i∈s is identified with a discrete
measures on s.

MEM leads to a classical calibration problem where the solution is defined as a minimizer
of a convex function subject to linear constraints. The following result gives another
expression of the solution for which the computation may be easier in practical cases.

Proposition 2.2 Assume that the optimization problem is feasible, the MEM estimator
ŵ is given by:

∀i ∈ s, ŵi = diΛ
′
νi

(λ̂tdixi)

where λ̂ minimizes over Rk λ 7→
∑

i∈s Λνi
(λtdixi)− λttx.

We endow y with new weights obtaining the MEM estimator t̂y =
∑

i∈s ŵiyi.
Note that the function t 7→ Λ′νi

(dit) corresponds to Deville and Särndal’s function Fi in
[3], while taking identical priors νi = ν for all i ∈ s recovers the particular case Λ′ν = F
with qi = di according to their notations.
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Calibration using maximum entropy turns into a general convex optimization program
which can be easily solved. Indeed, computing the new weights wi, i ∈ s, only involves a
two step procedure. First, we find the unique λ̂ ∈ Rk such that∑

i∈s

diΛ
′
νi

(diλ̂
txi)xi − tx = 0. (6)

This is achieved by optimizing a scalar convex function. Then, compute the new weights
ŵi = diΛ

′
νi

(diλ̂
txi).

2.4 Extension to generalized calibration and instrument estima-
tion

Computing a calibration estimator requires that (6) has a unique solution. This con-
dition follows from the convexity of the functions Λνi

, i ∈ s. Aiming to provide wider
possibilities of estimation, the method of generalized calibration (GC) considered in [21]
consists in replacing the functions λ 7→ Λ′νi

(diλ
txi) by more general functions fi : Rk → R.

Assume that the equation

F (λ) =
∑
i∈s

difi(λ)xi = tx (7)

has a unique solution λ̂. Assume also that the fi are continuously differentiable at 0, and
are such that fi(0) = 1 so that F (0) = t̂HTx . Then, take as the solution to the generalized
calibration procedure, the weights:

∀i ∈ s, ŵi = difi(λ̂).

Calibration is of course a particular example of generalized calibration where we set
fi : λ 7→ Λ′νi

(diλ
txi) to recover a calibration problem seen in Section 2.2. An interesting

example of GC is to take affine functions λ 7→ 1+ztiλ, where (zi)i∈s is a sequence of vectors
of Rk. The zi’s are called instruments (see [21]). If the matrix Xn := N−1

∑
i∈s dizix

t
i

is invertible, the resulting estimator t̂y, referred to as the instrument estimator obtained
with the instruments zi, is given by:

t̂y = t̂HTy + (tx − t̂HTx )tX−1
n

∑
i∈s diziyi. (8)

Remark : (dimension reduction) As remarked in [24] in the case zi = xi, the estima-
tor of the population total is identical to the one obtained with one-dimensional auxiliary
variable B̂tx, where B̂ is estimated by least squares. More generally, reducing the dimen-
sion of the auxiliary variable to one is always possible when using instruments. The new
auxiliary variable and instruments are linear transformations B̂tx and B̂tz of the original
variables x and z, where

B̂ =
[∑

i∈s dizix
t
i

]−1∑
i∈s diyizi.
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This points out the relationship between calibration and linear regression discussed in [3].
The method implicitly aims at constructing a variable ỹ = y− B̂tx with a lower variance
than that of y (at least for sufficiently large samples), and for which the population total
is known up to ty. The calibrated estimator t̂y can be written

t̂y =
∑
i∈s

diỹi + B̂ttx,

that is, t̂y is the Horvitz-Thompson estimator (up to a known additive constant, here

B̂ttx) of the variable ỹ.

Instrument estimators play a crucial role when studying the asymptotic properties
of generalized calibration estimation. A classical asymptotic framework in calibration
is to consider that n and N simultaneously go to infinity while the Horvitz-Thompson
estimators of the mean converge at a rate of convergence of

√
n, as described in [3] and

[24] for instance. Hence, we assume that

N−1‖t̂HTx − tx‖ = O(n−1/2) and N−1(t̂HTy − ty) = O(n−1/2),

further assumptions on our asymptotic framework are made in Section 3.

Definition We say that two GC estimators t̂y and t̃y are asymptotically equivalent if

N−1(t̂y − t̃y) = o(n−1/2).

Proposition 2.3 Let t̂y and t̃y be the GC estimators obtained respectively with the func-
tions fi, i ∈ s and gi, i ∈ s. If for all i ∈ s, ∇fi(0) = ∇gi(0) = zi, and if the matrix
Xn := N−1

∑
i∈s dizix

t
i converges toward an invertible matrix X, then t̂y and t̃y are asymp-

totically equivalent. In particular, two MEM estimators are asymptotically equivalent as
soon as their prior distributions have the same respective variances.

This proposition is a consequence of Result 3 in [3]. It states that first order asymptotic
behavior of GC estimators in only determined by the gradient vectors zi = ∇fi(0), i ∈ s,
where the fi’s are the functions used in (7). As a result, all GC estimator can be shown
to have an asymptotically equivalent instrument estimator.
The frame of calibration and MEM estimation corresponds to instruments of the form
zi = qixi. This particular case is discussed in [3] where the authors prove that a cali-
bration estimator can always be approximated by a regression estimator under regularity
conditions. A different proof of this result is also given in Theorem 2.7.1 in [8]. Thus, a
MEM estimator t̂y obtained with prior distributions νi, i∈s with respective variances πiqi
satisfies

t̂y = t̂HTy + (tx − t̂HTx )tB̂ + o(Nn−1/2)
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where B̂ =
[∑

i∈s diqixix
t
i

]−1∑
i∈s diqixiyi. The negligible term is null for Gaussian priors,

leading to a χ2 dissimilarity in the frame of calibration (see Example 1 in Section 2.3) and
to the instrument estimator built with instruments zi = qixi. This choice of instruments,
and in particular the case qi = 1 for all i ∈ s, is often used in practice since it provides a
consistent estimate which can be easily computed.

3 Efficiency of calibration estimator with MEM

method

The accuracy of the estimator heavily relies on the linear correlation between y and
the auxiliary variable x. If a relationship other than linear prevails, x may not be an
efficient choice of calibration variable. When complete information is available, model
calibration proposed by Wu and Sitter aims to generalize the calibration procedure by
considering an auxiliary variable of the form u(x) for u : Rk → Rd a given function. Their
objective is to increase the linear correlation between the variables, leading to a better
efficiency of the estimation. In [26], Wu and Sitter assume that the optimal calibration
function u belongs to a known parametric class of functions for which the true value of the
parameter is estimated from the data. Montanari and Ranalli [18] discuss the estimation
of the optimal choice for the function u in a non parametric model.
With complete information, the choice of the calibration function u and the instruments
are the two main aspects of the estimation of ty in an asymptotic framework. In this
section, we first study the influence of the instruments z when the calibration function
u is fixed. Then, we discuss ways of improving the estimation by allowing both the
instruments and the calibration variable to vary with the observations.

3.1 Asymptotic efficiency

We consider the usual asymptotic framework in survey sampling where there is a
sequence of sampling designs and finite populations, indexed by r. The population size
and the sample size, denoted respectively by Nr and nr, both grow to infinity as r → +∞.
The asymptotic framework is to be understood in the sense that r → +∞, but, in the
following, the index r will be suppressed to simplify notation. We consider the population
measurements {(xi, yi), i = 1, ..., N} as independent realizations of a random variable
(X, Y ) from a superpopulation model ξ.
For u : Rk → Rd a given function, we note ui = u(xi) and

tu =
∑
i∈U

ui, t̂uπ =
∑
i∈s

diui.

In the sequel, we assume that E(|Y |3) < ∞ and E(‖u(X)3‖) < ∞, where E denotes
the expectation with respect to the distribution of (X, Y ). In a general setting where the
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auxiliary variable takes the form u(x), instrument estimators have the following expression

t̂y = t̂y(u) = t̂HTy + (tu − t̂uπ)tB̂u,

where B̂u =
[∑

i∈s diziu
t
i

]−1∑
i∈s diyizi is assumed to be well defined. Furthermore, define

the joint inclusion probabilities πij =
∑

s: i,j∈s p(s) and set ∆ij := πijdidj − 1.

The nonlinearity of t̂y makes it difficult to evaluate its quadratic risk. Following [6], easier
is to consider its linear asymptotic expansion t̂y,lin(u) := t̂HTy + (tu− t̂uπ)Bu where Bu is a

vector, independent from the sample s, such that ‖B̂u−Bu‖ = o(1). The linear expansion
t̂y,lin(u) is design unbiased and is asymptotically equivalent to t̂y. As proved in [17], the
variance of t̂y,lin(u), which is given by

varp(t̂y,lin(u)) =
∑
i,j∈U

∆ij (yi −Bt
uui)(yj −Bt

uuj),

depends on the instruments only through the value of Bu and is minimal for Bu = B∗u
given by

B∗u =
[
varp(t̂uπ)

]−1
covp(t̂uπ, t̂

HT
y ) =

[∑
i,j∈U ∆ij uiuj

]−1∑
i,j∈U ∆ij ujyi,

where varp and covp denote respectively the variance and covariance under the sampling
design p. We make the following assumptions

A1: The sampling design p(.) is weakly dependent of ξ in the sense that for any sequence
{a(xi, yi)}i∈U = {ai}i∈U such that N−1

∑
i∈U |ai|3 = O(1),

E(
∑

i,j∈U ∆ij aiaj) =
∑

i,j∈U ∆ij E(aiaj) + o(N2n−1).

A2: There exists 0 ≤ π < 1, such that lim sup
r→∞

nN−1 = π.

A3: limnN−2
∑

i∈U ∆ii = − limnN−2
∑

i∈U
∑

j 6=i ∆ij = 1− π.

The first assumption conveys the information that no design weight is disproportionately
large compared to the others. It holds for instance if p and ξ are independent and if∑

i∈U ∆2
ii = o(N4n−2) and

∑
i∈U
∑

j 6=i ∆
2
ij = o(N3n−2).

Assumption 2 is not restrictive, it simply states that the number of unobserved data
never becomes negligible compared to the population size. This is a classical assumption
in survey sampling, see for instance [18].
The last assumption is essentially made to ensure the existence of efficient estimators
as shown further. It is fulfilled for the uniform sampling design, that is when every
sample s ⊂ U has the same probability of being observed, provided that the sample size
and the population size remain of the same order. In that case, the Horvitz-Thompson
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weights are πi = n/N , πij = n(n − 1)/N(N − 1),∀i 6= j, yielding ∆ii = N/n − 1 and
∆ij = −(N − n)/n(N − 1).

Lemma: Suppose that Assumptions 1 and 2 hold. Then,

nN−2 E(Ep(ty − t̂y(u))2) ≥ (1− π)var
(
Y −Bt

uu(X)
)

+ o(1),

with equality if, and only if, Assumption 3 also holds.

The proof is a direct consequence of Lemma 4.1 in the Appendix.
This result provides a natural criterion of asymptotic efficiency. Indeed, finding instru-
ments for which the right term of the inequality is minimal appears as a natural objective,
whether the sampling design satisfies Assumption 3 or not. So, the variance lower bound
is defined as the minimum V ∗(u) of (1−π)var(Y −Btu(X)) as B ranges over Rd. We say
that an estimator t̂y(u) is asymptotically efficient if the expectation of its design quadratic
risk converges towards V ∗(u). This is an analog of optimal calibration in [17], where in
our framework, optimality requires that

lim B̂u = [var(u(X))]−1 cov(Y, u(X)), (9)

assuming that var(u(X)) is invertible. In this case, we get

V ∗(u) = (1− π)var
(
Y − cov(Y, u(X))t [var(u(X))]−1 u(X)

)
. (10)

Note that this lower bound can not be reached if Assumption 3 is not fulfilled.

Estevao and Särndal [6] propose the instruments z∗i =
∑

j∈U ∆ij uj as a natural choice
by identification, noticing that the optimal value B∗u for a fixed N verifies

B∗u =
[∑

i,j∈U ∆ij uiuj

]−1∑
i,j∈U ∆ij ujyi =

[∑
i∈U uiz

∗
i

]−1∑
i∈U yiz

∗
i .

In our framework, these instruments satisfy condition (9), as a consequence of Lemma
4.1. However, a noticeable drawback is that the calculation of each instrument z∗i involves
the whole population (xi)i∈U , yielding a computationally expensive estimate.

The simple choice zi = ui, i ∈ s provides a good alternative. As shown in Proposi-
tion 2.3, the resulting estimator is asymptotically equivalent to MEM estimators built
using prior distributions νi with variance πi. The consistency of the Horvitz-Thomspon
estimates leads to

B̂u =
[∑

i∈s diuiu
t
i

]−1∑
i∈s diyiui −→ [E(u(X)u(X)t)]

−1 E(Y u(X)).

Although condition (9) for optimality is not fulfilled for most functions u, the problem
can easily be solved by adding the constant variable 1 in the calibration constraint. We
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then consider the MEM estimator t̂y(v) where v = (1, u)t : Rk → Rd+1, the calibrated
weights now satisfy the constraints∑

i∈s

wiui = tu,
∑
i∈s

wi = N.

Here, the matrix var(v(X)) is not invertible although it is simple algebra to see that
V ∗(v) = V ∗(u). So, the auxiliary variable is modified but the asymptotic lower bound
is unchanged. As a result of the dimension reduction property of calibration, adding the
constant in the calibration constraint reduces to use the instruments zi = ui− t̂uπ up the
a negligible term. A direct calculation shows that these instruments now satisfy condition
(9).

3.2 Approximate Maximum Entropy on the Mean

We now turn to the question of the optimal auxiliary variable. By minimizing the
asymptotic variance lower bound V ∗(u) with respect to u, the conditional expectation
Φ(xi) = E(Y |X = xi) appears as the optimal choice since Φ(.) is the unique (up to affine
transformations) minimizer of the functional u 7→ V ∗(u) in Equation (10) (u is taken real-
valued without loss of generality). This confirms the result stated in Theorem 1 in [24],
where Wu proves the variable Φ(xi), i ∈ U to be optimal. In that case, the asymptotic
lower bound is given by:

V ∗ = (1− π)E(Y − E(Y |X))2.

Note that, since this optimal choice depends on the unknown distribution of (X, Y ), this
result does not provide a tractable estimator. A natural solution is to replace Φ by an
estimate Φm, and then plug it into the calibration constraint. Under regularity conditions
that will be made precise later, we show that this approach enables to compute an
asymptotically optimal estimator of ty, in the sense that its asymptotic expected design
variance is equal to the lower bound V ∗ defined above.

In this section, t̂y(u) will denote a MEM estimator of ty obtained with auxiliary variable
(u(x), 1)t and prior distributions νi with variance πi. We recall that for any measurable
function u, t̂y(u) is

√
n-consistent with asymptotic variance V ∗(u).

Assume that we observe approximations (Φm)m∈N of Φ, we define the AMEM estimator
as t̂y(Φm), i.e., the MEM estimator calibrated with the variable (Φm(x), 1)t.

Theorem 3.1 Suppose that Assumptions 1 to 3 hold. Let (Φm)m∈N be a sequence of
functions independent with ξ and such that

E(Φ(X)− Φm(X))2 = O(ϕ−1
m ) with lim

m→∞
ϕm = +∞.

Then, the AMEM estimator t̂y(Φm) is asymptotically optimal among all GC estimators
in the sense that nN−2E(Ep(ty − t̂y(Φm))2) converges toward V ∗ as (r,m)→∞.
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When applied to this context, approximate maximum entropy on the mean increases
the efficiency of calibration estimators when an additional information is available, namely,
an external estimate of the conditional expectation function Φ is observed. Nevertheless,
in our model, it is possible to obtain similar properties under weakened conditions.

Corollary 3.2 Suppose that Assumptions 1 to 3 hold. Let (Φm)m∈N be a sequence of
functions satisfying

i) nN−2E(Ep(t̂Φπ− tΦ − (t̂Φmπ − tΦm))2) −→ 0

ii) B̂Φm =
[∑

i∈s diΦm(xi)
2
]−1∑

i∈s diyiΦm(xi) −→ 1,

as (r,m)→∞. Then, the estimator t̂y(Φm) is asymptotically optimal.

This corollary does not rule out that the functions Φm are estimated using the data,
which was not the case in Theorem 3.1. Hence, it becomes possible to compute an
asymptotically efficient estimator of ty with a single sample. A data driven estimator Φn

provides as well an asymptotically efficient estimator of ty, as soon as the two conditions
of Corollary 3.2 are fulfilled.
Remark that although this natural way to extend calibration to non parametric proce-
dures can be claimed to be asymptotically optimal, the resulting estimator may still be
highly unstable for relatively small samples or under irregular sampling designs.

Many non parametric methods could be used in the frame of calibration, see for in-
stance [18]. Here, we study an approach where the conditional expectation Φ is estimated
by projection onto finite dimensional subspaces. Let φ = (1, φ1, φ2, ...) be a sequence of
linearly independent functions, total in the space of square integrable functions. This
sequence is referred to as a projection basis. Typically, it can be polynomials if X takes
values in a compact subset of Rk or wavelets but other forms may be chosen, depending
on the situation.
Denote by φm = (1, φ1, ..., φm) the vector of the first m + 1 components of φ, we build a
projection estimator Φm of Φ by considering a suitable linear combination B̂t

mφ
m of the

functions, the vector B̂m being generally obtained by least squares on the variables y and
φm(x). In the context of calibration, it is natural to consider design based estimates Φm.
As a result of a reciprocal effect of the dimension reduction property, taking Φm = B̂t

mφ
m

with
B̂m = B̂φm =

[∑
i∈s diφ

m
i φ

m
i
t
]−1∑

i∈s diyiφ
m
i ,

leads to the estimator calibrated with the vector variable φm(x) up to a negligible term.
Indeed, the auxiliary variable Φm(x) = B̂t

mφ
m(x) is obtained as the one dimensional

equivalent of φm(x) discussed in Section 2.4. So, we point out that calibration is here
extended to non parametric procedures by simply increasing the number of auxiliary
variables. The estimator calibrated with a χ2 dissimilarity can be expressed as

t̂y(Φm) = t̂HTy + (tΦm − t̂Φmπ) = t̂HTy + (tφm − t̂φmπ)tB̂φm ,
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which illustrates the equivalence between auxiliary variables Φm(x) and φm(x). With the
notations of Corollary 3.2, the vector B̂Φm corresponding to Φm(x) is equal to 1 for all
m and therefore satisfies the condition ii) in the corollary. The condition i) can also be
fulfilled with this method, although, a proper number of constraints must be chosen. If m
is fixed, we know that t̂y(Φm) converges towards ty with an asymptotic variance V ∗(φm).
The convergence of (V ∗(φm))m∈N towards V ∗ warrants the existence of a sequence of
integers (m(n))n∈N such that Φm(n) undergoes the first condition of Corollary 3.2. Note
however that finding such a sequence is a difficult task and belongs to the class of model
selection issues.
Asymptotic results of non parametric methods are to be taken with care since it may
require a large number of observations before the method becomes really effective. Here we
assumed strong regularity conditions on the sampling design, allowing good consistency
of the non parametric estimation with relatively small samples. AMEM procedures in
survey sampling have the advantage to enable to implement non parametric procedures
while remaining in a Bayesian framework.

4 Appendix

4.1 Technical lemma

Lemma 4.1 Under Assumptions 1 and 2, for any sequence {a(xi, yi)}i∈U = {ai}i∈U such
that N−1

∑
i∈U |ai|3 = O(1),

nN−2E(
∑

i,j∈U(∆ij aiaj)) ≥ (1− π)var(a(X, Y )) + o(1)

with equality if and only if Assumption 3 also holds. Moreover, under Assumptions 1 to 3,
the quantity nN−2

∑
i,j∈U ∆ij aibj converges in probability towards cov(a(X, Y ), b(X, Y ))

for all sequence {bi}i∈U satisfying the same conditions as {ai}i∈U .

Proof of Lemma 4.1:
For such a sequence a = {ai}i∈U , Assumptions 1 and 2 yield:

nN−2
∑

i,j∈U ∆ij aiaj = nN−2
∑

i∈U ∆ii a
2
i + nN−2

∑
i 6=j ∆ij aiaj

=
(
nN−2

∑
i∈U ∆ii

)
E(a(X, Y )2) +

(
nN−2

∑
i 6=j ∆ij

)
E(a(X, Y ))2 + o(1)

Denote by Pn(U) the set of all subsamples s of U with n elements. By Jensen inequality,∑
i,j∈U ∆ij =

∑
s∈Pn(U)

(∑
i∈s di

)2
p(s)−N2 ≥

[∑
s∈Pn(U)

(∑
i∈s di

)
p(s)

]2

−N2 ≥ 0

which implies that
∑

i 6=j ∆ij ≥ −
∑

i∈U ∆ii. Thus:

nN−2
∑

i,j∈U ∆ij fifj ≥
(
nN−2

∑
i∈U ∆ii

)
var(f(X, Y )) + o(1).
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Since
∑

i∈U πi = n, we know that nN−2
∑

i∈U ∆ii ≥ 1 − nN−1 by convexity of x 7→ 1/x
on R∗+. Hence

nN−2
∑

i,j∈U ∆ij aiaj ≥ (1− π)var(a(X, Y )) + o(1)

without equality for all sequence a if Assumption 3 is not true. The end of the lemma
follows directly by using the same guideline applied to a and b. In particular, it holds
when a = b.

4.2 Proofs

Proof of Theorem 2.1:
For all w ∈ Rn, let fw : Rn → R+ be the unique minimizer of the functional f 7→ K(fν, ν)
on the set Fw =

{
f :
∫

Rn(τ − πw)f(τ)dν(τ) = 0
}

. We have:

fw = argmin
f∈Fw

∫
Rn f(log(f)− 1)dν.

We calculate the Lagrangian L(λ, f) associated to the problem:

L(λ, f) =
∫

Rn [f(τ) log(f(τ))− f(τ)]dν(τ)− λt
∫

Rn(τ − πw)f(τ)dν(τ)

where λ ∈ Rn is the Lagrange multiplier. The first order conditions are:

∀τ ∈ Rn, log(f(τ)) = λt(τ − πw).

Hence, ∀τ, fw(τ) = eλ
t
w(τ−πw) where λw verifies:∫

Rn(τ − πw)eλ
t(τ−πw)dν(τ) = 0⇐⇒ λw = argmin

λ∈Rn

∫
Rn e

λt(τ−πw)dν(τ)

Let S =
{

(wi)i∈s : N−1
∑

i∈s xiwi = tx
}

, we notice that

ŵ = Eν∗(W ) = argmin
w∈S

{
minf∈Fw

∫
Rn f(log(f)− 1)dν

}
= argmin

w∈S

{∫
Rn fw(log(fw)− 1)dν

}
= argmin

w∈S

{
λtw
∫

Rn(τ − πw)eλ
t
w(τ−πw)dν(τ)−

∫
Rn e

λt
w(τ−πw)dν(τ)

}
= argmin

w∈S

{
−minλ∈Rn e−λ

tπw
∫

Rn e
λtτdν(τ)

}
.

by definition of λw. Recall that ν = ⊗i∈sνi. Since the function t 7→ − log t is decreasing,
we have that

min
λ∈Rn

{
e−λ

tπw
∫

Rn e
λtτdν(τ)

}
= exp− sup

λ∈Rn

{∑
i∈s[λiπiwi − log

∫
R e

λiτidνi(τi)]
}
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The supremum being taken for λ ∈ Rn, we see that

sup
λ∈Rn

{∑
i∈s[λiπiwi − log

∫
R e

λiτidνi(τi)]
}

=
∑

i∈s sup
λi∈R

{
λiπiwi − log

∫
R e

λiτidνi(τi)
}

Finally we obtain:

ŵ = argmin
w∈S

− exp
(
−
∑

i∈s Λ∗νi
(πiwi)

)
= argmin

w∈S

∑
i∈s Λ∗νi

(πiwi).

Proof of Proposition 2.2:
This is a classic convex optimization problem. Let L be the Lagrangian associated to the
problem:

L(λ,w) =
∑

i∈s Λ∗νi
(wiπi)− λt

(∑
i∈swixi −Ntx

)
where λ ∈ Rk is the Lagrange multiplier. The solutions to the first order conditions satisfy
for all i ∈ s,

wi = di(Λ
∗
νi

′)−1(λtdixi),

where we recall that the functions Λ∗νi
are assumed to be strictly convex, so that (Λ∗νi

′)−1

exists for all i, and is equal to Λ′νi
. Now it suffices to apply the solutions of the first order

conditions to the constraint to obtain an expression of the solution λ̂:

N−1
∑

i∈s diΛ
′
νi

(λ̂tdixi)xi − tx = 0⇐⇒ λ̂ = argmin
λ∈Rk

∑
i∈s Λνi

(λtdixi)− λttx.

The equivalence is justified by the fact that Λνi
is strictly convex, and therefore, so is

λ 7→
∑

i∈s Λνi
(λtdixi)− λttx. For that reason, λ̂ is uniquely defined. We finally obtain an

expression of the calibrated weights

∀i ∈ s, ŵi = diΛ
′
νi

(λ̂tdixi).

Proof of Proposition 2.3:
Let F : λ 7→ N−1

∑
i∈s difi(λ)xi, and G : λ 7→ N−1

∑
i∈s digi(λ)xi. We call respectively λ̂

and λ̃ the solutions to F (λ) = tx and G(λ) = tx. We have

F (λ̂) = F (0) +Xnλ̂+ o(‖λ̂‖)

and then (tx − t̂HTx ) = Xnλ̂+ o(‖λ̂‖). By assumption, Xn is invertible for large values of
n since it converges towards an invertible matrix X. Thus, whenever t̂HTx is close enough
to tx, there exists λ0 in a neighborhood of 0 such that F (λ0) = tx. By uniqueness of the
solution, we conclude that λ0 = λ̂. Hence, for large values of n,

λ̂ = X−1
n (tx − t̂HTx ) + o(n−1/2).
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A similar reasoning for λ̃ yields ‖λ̃ − λ̂‖ = o(n−1/2). Thus, λ̂ and λ̃ converge toward 0
and by Taylor formula:

fi(λ̂) = 1 + ztiλ̂+ o(n−1/2) = 1 + ztiλ̃+ o(n−1/2) = gi(λ̃) + o(n−1/2).

It follows that t̂y and t̃y are asymptotically equivalent.
We know that MEM estimation reduces to taking fi(.) = Λ′νi

(dix
t
i.) in a GC procedure.

Hence, in that case, ∇fi(0) = diΛ
′′
νi

(0)xi. Since the variance of a probability measure
νi is given by Λ′′νi

(0), two MEM estimators with prior distributions having the same
respective variances are asymptotically equivalent. Furthermore, a Gaussian prior νi ∼
N (1, qiπi) has a log-Laplace transform Λνi

: t 7→ πiqit
2/2+ t which corresponds to fi(λ) =

Λ′νi
(dix

t
iλ) = 1 + qix

t
iλ. The resulting MEM estimator is thus the instrument estimator

obtained with instruments zi = qixi, i ∈ s.

Proof of Theorem 3.1:
We decompose the AMEM estimator as follow

t̂y(Φm) = t̂HTy + (tΦ − t̂Φπ) + (t̂Φπ− tΦ − (t̂Φmπ − tΦm)) + (B̂Φm− 1)(tΦm− t̂Φmπ).

We have by assumption

nN−2E(Ep(t̂Φπ− tΦ − (t̂Φmπ − tΦm))2) = O(ϕ−1
m ) and (B̂Φm− 1) = O(ϕ−1/2

m )

uniformly for all m (see the proof of Lemma 1 in [16]). Therefore, the terms (t̂Φπ− tΦ −
(t̂Φmπ − tΦm)) and (B̂Φm− 1)(tΦm− t̂Φmπ) are asymptotically negligible in comparison to
(tΦ − t̂Φπ) as m→∞. We conclude using Lemma 4.1.

Proof of Corollary 3.2:
Follows directly from the proof of Theorem 3.1.

We are very grateful to an anonymous referee for its helpful comments on survey
sampling.
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