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Signed networks have long been used to represent social relations of amity (+) and enmity (-)
between individuals. Group of individuals who are cyclically connected are said to be balanced if
the number of negative edges in the cycle is even and unbalanced otherwise. In its most natural
formulation, the balance of a social network is thus defined from its simple cycles, cycles which do
not visit any vertex more than once. Because of the inherent difficulty associated with finding such
cycles on very large networks, social balance has always been studied via other, less-direct means. In
this article we present the balance as measured from the simple cycles and primitive orbits of social
networks. We use a Monte Carlo implementation of a novel exact formula for counting the simple
cycles on any weighted directed graph. We show that social networks exhibit strong inter-edge
correlations favoring balanced situations and we determine the corresponding correlation length ξ.
For longer simple cycles, the percentage of unbalanced simple cycles undergoes a rapid transition to
values expected from an uncorrelated model. Our method is more generally applicable to evaluate
arbitrary functions over the simple cycles and simple paths of any weighted directed graph and can
also answer vertex-specific questions.

PACS numbers: 89.75.Fb, 89.65.Ef

I. INTRODUCTION

A. Balance in networks

Relations of amity and enmity between individuals are
well represented by signed networks, where an edge is as-
signed a positive value if two individuals are acquainted
and in good terms, and a negative one if there are instead
enemies [1–5]. Such networks provide a natural setting to
study inter-personal relationships and their correlations.
For example, one could expect that people are friendly to-
wards the friends of their friends, a situation that is said
to be “balanced”. More generally, on signed networks,
a group of individuals who are cyclically connected—i.e.
forming a triangle, a square, a pentagon etc.—are said to
be balanced if the number of negative edges in the cycle
is even. Otherwise the cycle is said to be unbalanced.
Sociologists have suggested that such negative cycles are
the cause of tension and thus, that social networks should
evolve into a state where balanced cycles are largely pre-
dominant [1, 2, 6]. The question of wether this holds for
real-social networks and if not, by how much this fails to
be true, arose from these considerations in the 1940s [1].

Mathematically speaking, this sociological question
translates into the following problem: on a signed net-
work G, determine for all ` the percentage of negative
simple cycles of length `. This problem remains largely
unsolved owing to its natural formulation in terms of
simple cycles—cycles which do not visit any vertex more
than once. Unfortunately, enumerating all the simple cy-
cles of a network exactly is computationally intractable
since, for example, the problem of determining if a Hamil-
tonian cycle exists in a graph is NP-complete.

For this reason, we need to seek more efficient meth-
ods, which inevitably lead to some approximations. Two

strategies are implemented in this work: i) approximate
the balance of the network to within any desired accuracy
by evaluating the balance on a large sample of subgraphs
of the network; or ii) compute the balance exactly from
objects which are not simple cycles, but should carry a
similar information.

We successfully implemented the first strategy thanks
to a novel exact formula for counting simple cycles on any
(weighted directed) graph in conjunction with a Monte
Carlo approach. This method is presented in Section II.
It effectively solves the mathematical problem enunciated
earlier since the quality of the obtained approximation is
controlled and can be improved at will. For the second
strategy, we relied on the primitive orbits of the graph,
cycles which contain no backtracking steps or tail, and
are not the multiple of any other cycle. This is presented
in Section III. The results produced by both approaches
on four social networks are discussed and compared in
Section IV.

B. Notation

Throughout this article, we consider signed directed
networks G = (V; E), of which undirected networks are a
special case. The adjacency matrix of G is denoted AG

or simply A. Each edge of the network is weighted with
a value +1 or -1 indicating a positive or negative interac-
tion. A cycle is positive if the product of its edge values
is positive, and otherwise it is negative. A cycle is simple
if it does not visit any vertex more than once. The start-
ing point of a simple cycle is irrelevant but its orientation
is retained. For example, v0v1v2v0 and v1v2v0v1 repre-
sent the same triangle, which is however distinct from
v0v2v1v0. The number of positive and negative simple
cycles of length ` on G are designated by N+

` and N−` ,



2

respectively.
When discussing the balance of a network, we refer to

the ratio R` of the number of negatively signed simple
cycles of length ` to the total number of simple cycles of
length `, i.e.

R` :=
N−`

N−` +N+
`

.

In particular, R` = 0 when the network is perfectly bal-
anced for length `, while R` = 1 indicates a totally un-
balanced situation.

C. Existing approach using walks

As noted earlier, since counting all the simple cycles
of a large graph exactly is intractable, one may instead
count objects which are not simple but carry a similar in-
formation when it comes to balance. In this vein, Estrada
and Benzi [9] proposed the use of

D = Tr exp(A) =
∞∑
`=1

1
`!

Tr A`, (1)

as a method of counting the number of balanced and un-
balanced cycles, also known as closed walks, in a network.
They show that, by computing the ratio K = D/|D|, the
ratio of negative to positive cycles can be obtained as

Uwalks :=
1−K
1 +K

.

This is an extremely efficient method which simply re-
quires the evaluation of the eigenvalues of the adjacency
matrix.

Expression (1) counts all closed walks (weighted by a
factor 1/`! for a walk of length `). Because of this, back-
tracking steps and multiple cycles are counted. For exam-
ple, the non-simple cycle v0v1v2v0v1v2v0 = (v0v1v2v0)2 is
part of the sum. Such cycles are positive, and so they do
not upset the balance of an already balanced network,
but they do have an effect on the (global) balance ra-
tio(s) for an unbalanced network. In other words, the
cycle-sum embodied in (1) contains non-simple cycles at
order 2 and higher effectively mixing the balance ratios
R` at all lengths. In addition, the global signature of bal-
ance Uwalks further mixes the contributions of the various
cycles lengths. Figure 1 illustrates this issue in a triad.
Whilst the network is completely unbalanced for trian-
gles, we get Uwalks = 0.106, a number that is not easy to
interpret.

These difficulties cannot be resolved easily using walks.
In an attempt to better account for the length depen-
dency of the balance, we define D` := Tr A`, K` :=
D`/|D`|, Uwalks

` := (1−K`)/(1 +K`) and

Rwalks
` :=

Tr |A|` − Tr A`

2 Tr |A|`
. (2)

-+

+

FIG. 1: An unbalanced network of three vertices. The dotted
line represents a negative relationship. The exponential un-
balanced ratio is Uwalks = 0.106 while in fact R2 = 1/3 and
R3 = 1.

These quantities only take walks of length ` into account
when calculating the balance. Yet, since short cycles
and their multiples are typically much more abundant
than long cycles, the values of Uwalks

` and Rwalks
` are still

largely dominated by the contributions from self-loops,
backtracks and triangles. Consequently Rwalks

` will be
depressed as compared to the true balance ratio R`, that
is, Rwalks

` overestimates the proportion of balanced cy-
cles. We demonstrate this concretely in Section IV, Fig-
ures (2) and (3), where we compare Rwalks

` with R` cal-
culated from the simple cycles on two social networks.

While one may empirically argue that long cycles are
less relevant than short ones in real social networks
[9, 10], it seems better to offer as detailed a mathemat-
ical analysis as possible before deciding this issue. For
these reasons, we found it necessary to abandon the use
of walks and rather recur either to the simple cycles them-
selves or to primitive orbits.

II. BALANCE FROM SIMPLE CYCLES

A. Core combinatorial engine

One possible strategy to estimate the balance ratios R`
consists of approximating them from a large sample of
subgraphs of the network under study. The main novelty
permitting this straightforward approach in practice is
a recently developed mathematical formula for counting
simple cycles of any length on weighted directed graphs.
Rather than sampling the simple cycles directly, the for-
mula allows for a rapid and exact evaluation of the bal-
ance ratios on subgraphs of the original network. We
show below that this strategy is much better from a com-
putational standpoint than sampling the simple cycles
themselves.

1. Formula for counting simple cycles

Let P (z) be the ordinary generating function of the
simple cycles of any weighted directed graph G, that is

P (z) :=
∑

c: simple cycle

w(c) z`(c),
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where w(c) is the weight of c, that is the product of the
weights of its edges, z is a formal variable and `(c) is the
length of c. By exploiting algebraic structures associated
with walks on graphs, P (z) can be shown to be

P (z) =
∫

1
z

∑
H≺G

H connected

Tr
((
zAH

)|H|(
I− zAH

)|N(H)|
)
dz.

(3)
In this expressionH is a connected induced subgraph ofG
[23], AH its adjacency matrix, |H| the number of vertices
in H and |N(H)| the number of neighbours of H in G.
A neighbour of H in G is a vertex v of G which is not in
H and such that there exists at least one edge, possibly
directed, from v to a vertex of H or from a vertex of H to
v. The result of Eq. (3), as well as further exact formulas
for P (z), is presented in [7] and shall not be proven here.

2. Computational cost

Let nH(G) be the number of connected induced
subgraphs of a graph G and let nc(G) be the total
number of simple cycles on G. The main advantage of
Eq. (3) is that a brute force algorithm for finding the
connected induced subgraphs of a graph, for example by
breadth-first search, necessitates O(nH(G)) operations.
In comparison a direct search of the simple cycles them-
selves will require O(nc(G)) operations. Eq. (3) thus
represents a substantial speed-up, as can be seen on the
complete graph KN on N vertices—which is the worst
case scenario. On KN we have nc(G) ' e × (N − 1)!,
while nH(G) = 2N is “only” exponential [24]. Fur-
thermore, in practice, the computational cost is much
smaller.

Indeed, most importantly for applications, Eq. (3) is
well suited to truncations: only those connected induced
subgraphs H of G for which |H| ≤ ` ≤ |H|+ |N(H)| can
possibly contribute to the coefficient of z` in P (z). This
means that if one is interested in the first ` terms of
P (z)—that is in the simple cycles of length up to `—it
suffices to consider those connected induced subgraphs
of G with |H| ≤ `. Since furthermore only the small
adjacency matrices AH enter Eq. (3), each term of the
equation costs O(|H|3) ≤ O(`3) to evaluate. Thus,
when N � `, getting the first ` terms of P (z) from
Eq. (3) costs O

(
`3nH(`)

)
= O(`3N `) operations in the

worst case scenario, and far less on sparse graphs. A
good rule of thumb to evaluate the computational cost
on sparse graphs is as follows: let ∆ be the average
vertex-degree on the network. Then we can expect
N∆`−1 connected induced subgraphs on at most `
vertices. Thus Eq. (3) should produce P (z) exactly up
to order ` in O

(
`3N∆`−1

)
operations [25].

To give concrete examples, with an Intel Core i7-4790
CPU @ 3.60 GHz desktop computer, evaluating Eq. (3)
on the complete graph on 15 vertices took on average

∼ 18 sec, yielding 255, 323, 504, 932 ' 2.5 × 1011 for
the total number of simple cycles, which we verify
analytically to be exact. This went up to ∼ 10 min for
the complete graph on 20 vertices where a mind-boggling
349, 096, 664, 728, 623, 336 ' 3.5 × 1017 simple cycles
were found, a number that is, once again, exact. In both
cases about half of the computer time was spent looking
for the connected induced subgraphs and the other
half implementing Eq. (3). For the real-world networks
analysed below, a randomly chosen induced subgraph
on 30 vertices is typically analysed in 0.001− 0.3 seconds
on the same computer, depending on its sparsity.

B. Monte Carlo implementation

When the size of the network to study is large—
what “large” means here strongly depends on the graph
sparsity—an exact calculation of the desired terms of
P (z) from Eq. (3) becomes intractable and the core
combinatorial engine must be supplemented by a Monte
Carlo approach.

The reader may have noticed upon close inspection of
Eq. (3) that P (z) results from subtle cancellations be-
tween the contributions of the various connected induced
subgraphs H of G. For this reason, Eq. (3) is not directly
amenable to a Monte Carlo method which would consist
of randomly selecting a sample of connected induced sub-
graphs H of the whole network G and estimating P (z)
from this sample. Eq. (3) can however be evaluated very
quickly on graphs of “reasonable” size—once again this
depends on the sparsity of the underlying graph and the
available computational resources.

Our strategy is therefore to sample N induced sub-
graphs of the network under study and to calculate the
balance ratios R` exactly up to the desired length ` on
each of these samples via Eq. (3). The average value of
all the R` then converges to that of the whole network as
N grows. The quality of this approximation is appraised
by repeating the whole procedure N ′ times and extract-
ing the standard deviation on the averaged R`. If this
deviation is too large, the number N of samples is in-
creased and the standard deviation is reevaluated. Once
the deviation is below the desired accuracy, the method is
deemed to have converged. We also systematically tested
the method against bias by comparing it with exact re-
sults whenever available, see Appendix A.

III. BALANCE FROM PRIMITIVE ORBITS

A. Background

A primitive orbit [26] on a network is a cycle which
contains no backtracking steps or tail, and is not a re-
currence of any other cycle, e.g. (v0v1v2v0)2 [11]. It is
important to note that this is not the same as a simple
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cycle—for example if c1 and c2 are simple cycles sharing
an edge, then c1c2 is a primitive orbit. However, primi-
tive orbits are identical to simple cycles up to order 5 [27].
The (inverse) Ihara zeta function of a graph is given by
[12]

ζ−1
|G|(z) =

∏
c∈[C]

(
1− z`(c)

)
, (4)

where `(c) is the length of the primitive orbit and |G|
denotes the unsigned version of G. The notation [C] des-
ignates the set of equivalence classes of primitive orbits,
i.e. the set of primitive orbits where all starting points
on the same cycle are considered equivalent. The zeta
function ζ−1

|G|(z) can be expanded into terms represent-
ing each primitive orbit; to first order the expansion is
ζ−1
|G|(z) = 1 −

∑
c∈[C] z

`(c) + O(z6). Therefore, up to or-
der 5, the zeta function corresponds to a sum over simple
cycles, and non-simple cycle contamination only occurs
at order 6 and higher. Because of this, the Ihara zeta
function will provide a more precise measure of balance
than a walk-based one.

To approximate the balance ratios R` using primitive
orbits, we begin by introducing a modified version of the
Ihara zeta function for signed networks

ζ−1
G (z) =

∏
c∈[C]

(
1− s(c)z`(c)

)
, (5)

where s(c) is the sign of the primitive orbit c. We now
need an efficient way of evaluating the zeta function. This
can be achieved using its determinant form

ζ−1
G (z) = det (I− zT) ,

where T is the Hashimoto matrix of the network. This
matrix is the adjacency of the oriented line graph (OLG),
and so T has vertices corresponding to (directional) edges
of the original graph. Vertices are connected if there is
an allowed two-step walk along the corresponding edges
in the original graph. Backtracking steps are not allowed
(so ab, bc is allowed if ab and bc are edges, but ab, ba is not
allowed). To incorporate the edge signs into the matrix,
we use forward sign assignment. Since all terms in the
zeta function are cycles, we can uniquely place the sign
of edge ab into any edge in T which begins from ab, and
the sign of the cycle in T will be the same as the sign of
the original cycle.

B. Computation

In principle, the number of primitive orbits of any
length is easily determined from traces of powers of T.
We have the following result, which we prove in Appendix
B.

Proposition III.1. Let G be a signed directed graph, T
its Hashimoto adjacency matrix and N+

ob; ` and N−ob; ` be

the number of positive and negative primitive orbits of
length ` on G, respectively. Then

N+
ob; ` −N

−
ob; ` =

1
`

∑
d|`

µ(`/d) Tr Td,

where µ(.) is the number-theoretic Möbius function. A
similar result holds for N+

ob; ` + N−ob; ` upon replacing T
by |T|.

This formula is particularly revealing as to the con-
nection between the Hashimoto matrix and the primitive
orbits. Traces of powers of T count all cycles in the OLG,
i.e. the backtrackless closed walks, including the so-called
power orbits, e.g. (c1)2 and (c1c2)2, which are not prim-
itive. The set of cycles of length ` contains such power
orbits if and only if there are orbits whose length is a
divisor of `. These divisors are removed via a Möbius in-
version in the above sum. For moderately sized graphs, it
is straightforward to compute T and its spectrum, and so
to compute the number of primitive orbits of any length.
However, since T is the adjacency of the OLG, its size is
equal to the number of edges in the original network. In
practice, it can therefore become difficult to compute the
eigenvalues of this matrix. Since Tr T = Tr T2 = 0, we
need only concern ourselves with third and higher powers
of the eigenvalues. The spectrum can therefore be effec-
tively truncated, considering only the largest magnitude
eigenvalues, thereby reducing the computational burden.
Nevertheless, this can be computationally demanding for
large networks.

For undirected unsigned graphs, Stark and Terras [13]
provide a way to compute the number of all orbits (i.e.
Tr T`), which we adapted to count the number of positive
and negative primitive orbits in a signed but undirected
network. Let D be the diagonal degree matrix of |G|
and let Q = D − I. Further let A+ be the adjacency
of only the positive edges in G and similarly A− be the
adjacency of only the negative edges in G (coded as -
1). Then the following iteration counts the number of
positive and negative backtrackless closed walks (orbits)
between any two vertices, denoted W+

ob; ` and W−ob; `,

A+
2 = A+A+ + A−A− − (Q + I),

A−2 = A−A+ + A+A−,
A+
` = A+

`−1A
+ + A−`−1A

− −A+
`−2Q,

A−` = A−`−1A
+ + A+

`−1A
− −A−`−2Q,

W+
ob; ` = Tr

A+
` − (Q− I)

(`−1)/2∑
j=1

A+
`−2j

 ,

W−ob; ` = Tr

A−` − (Q− I)
(`−1)/2∑
j=1

A−`−2j

 .

SinceW+
ob; `−W

−
ob; ` = Tr T` andW+

ob; `+W
−
ob; ` = Tr |T|`,

using these results in conjunction with Proposition III.1
counts the primitive orbits. This method is very efficient
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thanks to its use of A rather than T, but remains
limited to undirected networks.

Armed with the number of positive and negative prim-
itive orbits of length `, we compute the primitive-orbits-
based ratios Rob

`≥3 := N−ob; `/(N
−
ob; ` + N+

ob; `). We will
see that these provide better approximations of the true
balance ratios R` than walk-based ones Rwalks

` .

IV. RESULTS

A. Data sets

Following the precedent studies by Facchetti et al. [14]
and Estrada and Benzi [9], we have analysed four so-
cial networks: i) Gahuku-Gama with 16 vertices [15]; ii)
WikiElections with 8297 vertices [16]; iii) Slashdot with
82,144 vertices [17]; and iv) Epinions with 131,828 ver-
tices [18]. Note that among these, only the Gahuku-
Gama network is undirected.

B. Null-hypothesis

In order to meaningfully determine if social networks
are balanced, we compare our results to the balance that
would be obtained on a graph with the same propor-
tion p of negative directed edges than the real network
under study, but where the sign of any directed edge is
negative with probability p. In particular, in the null-
hypothesis model, the signs of any two directed edges
are independent random variables. Then the probability
that a simple cycle c of length ` be negative is

Prob(c negative) =
d`/2e−1∑
i=0

(
`

i

)
p2i+1(1− p)`−2i−1. (6)

Supposing for simplicity that the signs of any two sim-
ple cycles are independent random variables then the
probability distribution for N−` /(N

−
` +N+

` ) in the null-
hypothesis is a binomial law with expectation value Rnull

`
given by Eq. (6). Consequently, in this simple model the
null-hypothesis is compatible up to a near 95% confidence
level with any value of R` within the 2σ interval

Rnull
` ± 2

√
Rnull
` (1−Rnull

` )√
N−` +N+

`

. (7)

The assumption that the signs of any two simple cy-
cles are independent random variables is not true on real
social networks. Calculating the null-hypothesis without
this assumption is very difficult in practice however. In-
deed, a more accurate null model is given by evaluating
the average balance ratios of all lengths over all random
shufflings of the edges-signs from the social network un-
der study. We implemented this more accurate model on

Null hypothesis
Exact Rℓ

Rℓ
ob

Rℓ
walks

Fit Rℓ
model

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

Cycle length

Rℓ(%)

FIG. 2: Exact percentage R` of negatively signed simple cy-
cles on the Gahuku-Gama network calculated from Eq. (3)
(red squares) as compared to the null-hypothesis (blue cir-
cles). The dashed black curve is a simple exponential fit of
R` yielding the correlation length ξ ' 2.08. Also shown are
the percentages Rwalks;` (blue triangles on dashed curve) and
Rob;` (black diamonds) calculated from the walks and primi-
tive orbits, respectively.

the WikiElections network and found it to yield null bal-
ance ratios that are up to 9% lower than the values pre-
dicted by Eq. (6) when ` <∼ 10, while differences diminish
for longer simple cycles. Yet, all the conclusions that can
be drawn from comparing the simple null model Eqs. (6,
7) with the computed balance ratios are unchanged, since
the relative positions of the two are unaltered by the more
accurate model.

C. Gahuku-Gama network

The Gahuku-Gama network represents the relation be-
tween sixteen tribes living in the eastern central high-
lands of New-Guinea [19]. Since the network is very
small, the Monte Carlo approach is not necessary and
we obtained the exact balance from simple cycles of all
length thanks to Eq. (3). The results are shown on
Fig. (2). They demonstrate how the balance ratio Rwalks

`
obtained from the walks strongly overestimates the pro-
portion of balanced cycles. The ratio Rob

` obtained from
the primitive orbits suffers from the same issue, but to
much lesser extend.

The exact results show that up to length ` = 7, the
actual ratio R` is well below that of the null-hypothesis,
indicating strong inter-edges correlation in favor of bal-
anced cycles. This observation can be made more precise
on noting that the balance is well fitted by a simple ex-
ponential model

Rmodel
` =

(
1− e−(`−2)/2ξ

)
, (8)

where ξ ' 1.04 is the correlation length. Note, the max-
imum distance between any two vertices on a cycle of
length ` is b`/2c, hence Eq. (8) fits 2ξ. This indicates
that tribes of the Gahuku-Gama network are mostly sen-
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Null hypothesis
Rℓ

Rℓ
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Rℓ
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FIG. 3: Computed percentage of negatively signed simple cy-
cles on the WikiElection network for cycle length up to 17
(red line and error bars). The blue shaded region bordered
by dashed blue lines shows the values of R` compatible with
the null-hypothesis, as determined by Eqs. (6, 7). Also shown
are the percentages Rwalks

` (blue triangles) and Rob
` (black

diamonds) calculated from the walks and primitive orbits, re-
spectively. In inset, a subgraph of the WikiElections network.

sitive to the relations with all their first degree neigh-
bours. Furthermore, while the network is less balanced
than might seem to be the case when considering only
the triangles, Fig. (2) shows that much of the imbalance
is shifted to long-length simple cycles. In particular, the
rebound of R` above 50% for 7 < ` <∼ 13 suggests that so-
cial tensions are less potent when distributed over many
actors.

D. WikiElections network

The WikiElections network represents the votes of
wikipedia users during the elections of other users to ad-
minship. The network is obtained as follows: when a
user votes against the candidate, an edge with a negative
weight is created from the voting user to the candidate.
If instead the user is neutral or supports the candidate,
a positive weight is given to this edge.

The network counts 8,297 vertices and is thus too
large for a direct exact calculation of the balance ratio
R` and we employed a Monte Carlo approach in tandem
with Eq. (3). In total we evaluated the balance on
1,800,000 graphs on 20 vertices. The results are shown
on Fig. (3) and given in full in Appendix C, Table II.

We find the balance ratio R` to evolve with ` in three
major phases. Remarkably, we will see that these phases
are also present on the Slashdot and Epinions networks.
For short simple cycles ` <∼ 12, R` increases slowly and
smoothly with ` and is also well approximated by the
primitive orbits results. In addition, within this range
of cycle lengths, R` is always much smaller than pre-
dicted by the null-hypothesis, witnessing a strong inter-
edge correlation in favor of balance. A sharp transition
to R` values circa 50% then occurs around ` ∼ 12 − 14.

Null hypothesis
Rℓ

Rℓ
ob

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

60

Simple cycle length

Rℓ(%)

FIG. 4: Computed percentage of negatively signed simple
cycles on the Slashdot network for cycle length up to 18 (red
line and error bars). The blue shaded region bordered by
dashed blue lines shows the values of R` compatible with the
null-hypothesis, as determined by Eqs. (6, 7). Also shown is
the percentage Rob

` determined from the primitive orbits of
the graph (black diamonds).

We verified that this transition is not an artifact of our
algorithm, see Appendix A for details.

The transition demonstrates that at ` ∼ 12 − 14, the
simple cycle length becomes longer than twice the inter-
edge correlation length ξ, which must thus be around
6 − 7. Indeed, although the network is directed, many
of its edges are bidirectional so that the maximum dis-
tance between any two vertices on a cycle of length ` is
around b`/2c. We emphasise that ξ = 6 − 7 does not
mean that individuals participating in the WikiElections
network are sensitive to all the relations between their
neighbours up the 6th or 7th degree. Rather, ξ only pro-
vides an upper bound on the depth of the correlation.
This is because simple cycles of length ` typically sustain
shortcuts which lower the average distance between the
individuals participating in the cycle. The inset of Fig. 3
illustrates this phenomenon with a subgraph of the Wiki-
Elections network sustaining an octagon, but where the
average distance between any two vertices is only ∼ 2.5.

Following the sharp transition, R` is reliably found to
be over 50%, only to slowly decay to results consistent
with null-hypothesis [28]. This last behavior, which is
also present on the Gahuku-Gama network, suggests that
much of the imbalance is shifted to long simple cycles for
which edges signs appear to be weakly correlated in favor
of imbalance. This in turn, tends to suggest that conflict-
ual situations are less potent when distributed over many
actors.

E. Slashdot network

The Slashdot network is a large directed graph on
82,144 vertices representing relations of amity/enmity
between the users of the Slashdot website [20, 21].

For the Monte Carlo implementation of Eq. (3), we
sampled 20,000,000 graphs on 20 vertices from this net-
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FIG. 5: Computed percentage of negatively signed simple
cycles on the Epinions network for cycle length up to 15 (red
line and error bars). The blue shaded region bordered by
dashed blue lines shows the values of R` compatible with the
null-hypothesis, as determined by Eqs. (6, 7).

work. We present the balance ratio R` up to ` = 20 on
Fig. (4) and give the full numerical results in Appendix C,
Table III.

The balance ratio on this network exhibit a behavior
similar to that observed on the WikiElection network: at
first R` increases smoothly with ` ≤ 10. Then R` under-
goes a rapid transition to higher values broadly consis-
tent with the null hypothesis. This indicates a correlation
length between the edges of ξ ' b11/2c = 5 and thus a
correlation depth of 5 or less. It is also remarkable that
the balance ratios for 14 ≤ ` ≤ 16 are once more notably
higher than 50%, indicating, as in the Gahuku-Gama and
WikiElections networks, that much of the imbalance is
shifted to long-length cycles.

F. Epinions

The Epinions network is a large directed graph on
131,828 vertices representing relations between the users
of the consumer review website Epinions.com.

For the Monte Carlo implementation of Eq. (3), we
sampled 1,000,000,000 (one billion) graphs on 30 vertices
from this network. We present the resulting balance ratio
R` up to ` = 15 on Fig. (5). We give the full numerical
results up to ` = 20 on Appendix C, Table IV. We were
not able to compute the balance ratio Rob

` using primitive
orbits, owing to the very large size of this network.

Broadly speaking, the balance ratio R` behaves simi-
larly on this network as it does on the WikiElections and
Slashdot ones. The transition of R` from small to high
values indicates a correlation length ξ circa 10/2 = 5,
and thus a correlation depth of 5 or less. Strikingly, for
4 ≤ ` ≤ 9, R` is almost constant around 15% witness-
ing a very strong, almost length-independent, inter-edge
correlation.

V. CONCLUSION

A. Balance

By analyzing the simple cycles, we have shown that
social networks are indeed strongly balanced. More pre-
cisely, the percentage of negatively signed simple cy-
cles is greatly depressed as compared to an indepen-
dent sampling scenario (the null hypothesis), typically
up to lengths of circa 10. It is interesting that on the
three large networks analysed here (Wikielections, Slash-
dot and Epinions), a rapid transition from balance (small
R` values) to random (R` ∼ Rnull

` ) occurs around ` ∼ 10.
This is a signature of strong inter-edges correlations with
correlation length ξ ' 10/2 = 5. The correlation depth,
which quantifies the degree up to which individuals are
correlated with their neighbours, is thus less than or
equal to 5. A rebound of the balance ratio over 50%
following the transition is also clearly detectable in the
data, indicating that much of the imbalance is shifted to
long simple cycles.

Our results tentatively suggest that the simplest model
for the balance ratio R` on large (sparse) social networks
is a step function, with the step located circa ξ ∼ 5,
that is ` ∼ 10. The value of R` for ` ≤ 2ξ can be
estimated from short cycles—e.g. triads or squares—
while for ` ≥ 2ξ, R` should be around 50%. A bet-
ter, more advanced model could perhaps use an error-
function fit, which should however be justified on socio-
logical grounds. In this respect, we hope that our results
will generate further investigations in the study of inter-
personal relationships.

B. Functions on simple cycles and simple paths

The approach presented here to study the balance in
networks is generally applicable to estimate any function
of the simple cycles of a graph. Furthermore, the core
combinatorial engine of our method immediately extend
to vertex-specific questions, e.g. for evaluating the bal-
ance of the simple cycles passing through some speci-
fied vertex. It also remains valid when asking questions
pertaining to simple paths (also known as self-avoiding
walks). Both of these observations stem from a matrix
extension of Eq. (3) which is presented in [7]. This ex-
tension provides a matrix P(z) whose entry P(z)ij is the
ordinary generating function of the simple paths from i
to j (i 6= j) or of the simple-cycles off i (i = j). Note,
the matrix extension is not obtained upon just remov-
ing the trace from Eq. (3). This matrix formulation,
in conjunction with a Monte Carlo approach as effected
here, should permit the calculation of such functions as
the path vertex-centrality of any vertex v on very large
networks, which is defined as the total number of sim-
ple paths—not just the shortest ones—passing through
vertex v.
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Appendix A: Checking the method against bias

While the convergence of our calculations can be as-
sessed via the standard deviation of the results, Monte
Carlo approaches are not immune to bias. It is thus nec-
essary to verify the quality of the results independently
of the method itself:

i) We computed the exact balance ratios R1, R2 and
R3 via conventional means and verified our results
to be consistent with these, see Appendix C, Ta-
bles II, III and IV.

ii) When available, we used the primitive orbits re-
sults to verify that the balance ratios R4 and R5

predicted by the algorithm were consistent with
the exact results. Indeed, recall that up to ` = 5,
Rob
` = R` exactly.

iii) On the Gahuku-Gama network, we verified that the
Monte Carlo results are consistent with the exact
balance ratios at all lengths.

In addition, we found the WikiElections, Slashdot and
Epinions networks to exhibit sharp transitions of their
balance ratios from low values R` ∼ 10−30% up to values
consistent with the null-hypothesis circa 50%. Given the
importance of this observation, it is necessary to check
that it is not an artifact of the algorithm we employed:

i) In the case of the WikiElections network, we real-
located the edge signs randomly and ran our ap-
proach on the resulting signed graph. The balance
ratios did not exhibit any sharp transition anymore
but rather were consistent with the more accurate
null model. This indicates that the transition is not
an artifact of our method.

ii) We should expect a transition of R` to values con-
sistent with the null hypothesis as the cycle length
becomes longer than the correlation length. Indeed,
if there was no sharp transition, a simple extrapola-
tion of the trend exhibited by the first five (exactly
known) balance ratios, suggests that R` would not
be reach 50% until at least ` >∼ 50. This conserva-
tive estimate would mean that ξ >∼ 25 or more, a
number that is far too large to be plausible.

Appendix B: Proof of Proposition III.1

The proposition results from equating the product and
determinant forms of the Ihara zeta function. Recall that

ζ−1
|G|(z) =

∏
c∈[C]

(
1− z`(c)

)
=
∏
`

(
1− z`

)Nob; `
, (B1)

where Nob; ` = N+
ob; `+N−ob; ` is the total number of prim-

itive orbits of length `. Thus we have

ζ−1
|G|(z) =

∏
`

(
1− z`

)Nob; ` = det (I− z|T|) . (B2)

Now, on taking the logarithm on both sides we obtain

∞∑
i=1

1
i
zi Tr |T|i =

∞∑
j

∞∑
k=1

Nob; j
zkj

k
.

Equating the coefficient of z` on left and right hand sides
then gives

1
`

Tr |T|` =
∞∑
k|`

1
k
Nob; `/k,

and a Möbius inversion finally provides Nob;`

N+
ob; ` +N−ob; ` =

1
`

∑
k|`

µ(`/k) Tr |T|k.

The proof is entirely similar on signed networks, where
T replaces |T| and N+

ob; ` − N
−
ob; ` is obtained instead of

N+
ob; ` +N−ob; `.

Appendix C: Full numerical results

In this section we present the full numerical results
obtained on the four networks mentioned earlier. We also
give the exact balance ratios for the self-loops, backtracks
and triangles, which are respectively given by

R1 =
Tr(|A| −A)

2 Tr |A|
, R2 =

Tr(|Ã|2 − Ã2)
2 Tr |Ã|2

,

R3 =
Tr(|Ã|3 − Ã3)

2 Tr |Ã|3
,

where Ã = A−Diag(A).
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Exact 0% 13.24% 27.92% 37.93%

Hexagons R6 Heptagons R7 Octagons R8 Nonagons R9 Decagons R10

Exact 44.47% 48.64% 51.10% 52.33% 52.7%

Hendecagon R11 Dodecagon R12 Tridecagon R13 Tetradecagon R14 Pentadecagon R15

Exact 52.43% 51.77% 51.03% 50.46% 50.09%

Hexadecagon R16 Heptadecagon R17 Octadecagon R18 Enneadecagon R19 Icosagon R20

Exact 49.74%

TABLE I: Exact balance ratios R` for 1 ≤ ` ≤ 20 obtained on the Gama network using Eq. (3).

Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 45.488± 0.048% 3.436± 0.006% 13.075± 0.014% 16.862± 0.098% 20.421± 0.052%

Exact 45.455% 3.438% 13.068%

Hexagons R6 Heptagons R7 Octagons R8 Nonagons R9 Decagons R10

Monte Carlo 23.48± 0.03% 26.22± 0.03% 28.84± 0.19% 31.2± 0.31% 32.82± 0.54%

Hendecagon R11 Dodecagon R12 Tridecagon R13 Tetradecagon R14 Pentadecagon R15

Monte Carlo 33.95± 0.9% 35.89± 0.9% 40.96± 0.9% 50.16± 0.19% 57.3± 0.36%

Hexadecagon R16 Heptadecagon R17 Octadecagon R18 Enneadecagon R19 Icosagon R20

Monte Carlo 54.38± 3.41% 53.85± 4.57%

TABLE II: Computed balance ratios R` for 1 ≤ ` ≤ 20 on the WikiElections network together with twice the standard deviation
exhibited by the Monte Carlo results. We found no octadecagon, enneadecagon and icosagon on this network.

Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 3.9995± 0.001% 6.352± 0.017% 7.108± 0.013% 8.192± 0.013%

Exact 4.0003% 6.3608%

Hexagons R6 Heptagons R7 Octagons R8 Nonagons R9 Decagons R10

Monte Carlo 9.37± 0.06% 10.55± 0.12% 11.82± 0.15% 13.3± 0.09% 15.32± 0.46%

Hendecagon R11 Dodecagon R12 Tridecagon R13 Tetradecagon R14 Pentadecagon R15

Monte Carlo 16.5± 0.8% 21.3± 2.6% 32.7± 1.5% 52.9± 3.6% 58.4± 2.6%

Hexadecagon R16 Heptadecagon R17 Octadecagon R18 Enneadecagon R19 Icosagon R20

Monte Carlo 54.5± 4.3% 50.0± 6.6% 50.0± 9.4%

TABLE III: Computed balance ratios R` for 1 ≤ ` ≤ 20 on the Slashdot network together with twice the standard deviation
exhibited by the Monte Carlo results. We found no enneadecagon and icosagon on this network.
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 6.1082± 0.0002% 2.0857± 0.0003% 11.2355± 0.0016% 14.17± 0.002% 15.61± 0.007%

Exact 6.1082% 2.0858% 11.2343%

Hexagons R6 Heptagons R7 Octagons R8 Nonagons R9 Decagons R10

Monte Carlo 16.07± 0.02% 15.99± 0.12% 15.97± 0.58% 17.30± 1.58% 21.83± 2.84%

Hendecagon R11 Dodecagon R12 Tridecagon R13 Tetradecagon R14 Pentadecagon R15

Monte Carlo 43.8± 2.3% 48.1± 0.5% 52.9± 1.2% 62.2± 0.4% 47.6± 0.4%

Hexadecagon R16 Heptadecagon R17 Octadecagon R18 Enneadecagon R19 Icosagon R20

Monte Carlo 50% 44.4%

TABLE IV: Computed balance ratios R` for 1 ≤ ` ≤ 20 on the Epinions network together with twice the standard deviation
exhibited by the Monte Carlo results. We found no hexadecagon, octadecagon and icosagon on this network. Furthermore, we
were unable to determine the standard deviation of the balance for R17 and R19. Regardless of the accuracy on these results,
the small numbers of simple cycles of such lengths that we found imply that the null-hypothesis is compatible with all values
15% <∼ R`

<∼ 85%, as per Eq. (7).
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