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Model of two compressible immiscible flow

Two compressible and immiscible flow

Secondary recovery of oil.
The secondary recovery consists to inject water (waterflooding) or gas into an oil
reservoir through specially distributed injection wells. The purpose of this method is to
displace hydrocarbons toward the production wells. The successive use of primary
recovery and secondary recovery in an oil reservoir produces about 15 percent to 40
percent of the original oil in place.

Water–Oil or Water–Gas flow in porous media.
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Two compressible and immiscible flow

CO2 capture and storage.
The aim is to prevent the release of large quantities of CO2 into the atmosphere. The
process consists of capturing waste CO2 and transporting it to a storage site.
Various forms have been conceived for storage CO2 into deep geological formations :
• CO2 is sometimes injected into declining oil fields to increase oil recovery.
This option is attractive because the geology of hydrocarbon reservoirs is generally
well understood and storage costs may be partly offset by the sale of additional oil
that is recovered.

Gas ≈ 90% CO2 =⇒ Oil–Gas model.
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Two compressible immiscible flow

The formulation describing the immiscible displacement of two compressible fluids is
given by the mass conservation of each phase. We consider a porous media saturated
by a liquid and a gas fluids.

• Mass conservation of each phase : α = l, g

Φ∂t(ρα(pα)sα) + div(ρα(pα)Vα) = fα

• Darcy’s law for velocities

Vα = −Λ(x)Mα(sα)∇pα

Φ = porosity
ρα(pα) = density of the α phase
sα = saturation of the α phase

pα = pressure of the α phase
Vα = velocity of the α phase
fα= source term
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Two compressible immiscible flow

The formulation describing the immiscible displacement of two compressible fluids is
given by the mass conservation of each phase. We consider a porous media saturated
by a liquid and a gas fluids.

• Mass conservation of each phase : α = l, g

Φ∂t(ρα(pα)sα) + div(ρα(pα)Vα) = fα

• Darcy’s law for velocities

Vα = −Λ(x)Mα(sα)∇pα

Capillary pressure
pc(sl) = pg − pl.
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Model of two compressible immiscible flow

Two compressible immiscible flow

The formulation describing the immiscible displacement of two compressible fluids is
given by the mass conservation of each phase. We consider a porous media saturated
by a liquid and a gas fluids.

• Mass conservation of each phase : α = l, g

Φ∂t(ρα(pα)sα) + div(ρα(pα)Vα) = fα

• Darcy’s law for velocities

Vα = −Λ(x)Mα(sα)∇pα

Capillary pressure
pc(sl) = pg − pl.

Boundary conditions : ∂Ω = Γl ∪ Γimp

{

pα(t, x) = 0 on (0, T )× Γl,

ραVα · n = 0 on (0, T )× Γimp.

Water
injection

Hydrocarbons
production
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Two compressible immiscible flow

Darcy law :

Vα(t, x) = −Λ(x)Mα(sα(t, x))∇pα(t, x), α = l, g

Λ(x) : Tensor of permeabilitiy, pα : pressure of the α phase

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,25

0,5

0,75

1

Ml(sl) mobility of liquid phase

Mg(sl) mobility of gas phase
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Totale mobility : M = Ml + Mg ≥ m0

The mobility of each phase vanishes in the region where the phase is missing
Mα(sα = 0) = 0.
It is not possible to control the gradient of pressures in the whole domain regardless of
the presence or the disappearance of the phases (degenerate problem).
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Model of two compressible immiscible flow

General motivation

Is there a convergent scheme (FV, FE, dG,...) for the two compressible and immiscible
flow ?
Develop and analysis of efficient numerical methods.

In M. Saad, B. Saad. Study of full implicit petroleum engineering finite volume scheme for

compressible two phase flow in porous media, SIAM J. Numer. Anal., 51(1), pp. 716-741, 2013,

we have shown for a homogeneous and isotropic medium that a upwind finite volume
(FV4) is convergent under the assumption that the mesh satisfying the orthogonal
property.

Here, we present a combined FV–FE method for inhomogeneous and anisotropic
diffusion tensors and for general meshes
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A comparison between Finite volumes and Finite elements

Consider the diffusion-transport equation :

−div(Λ∇u) + div(cu) = 0 in Ω, u = 0 on Ω.

Finite elements. Find uh ∈ Vh ⊂ H0
1 (Ω) such that

∫

Ω
Λ∇uh · ∇φh −

∫

Ω
cuh · ∇φh = 0, ∀φh ∈ Vh

The + and - of FE
+ discretization of full diffusion tensor
+ no restrictions on the mesh
- instabilities in the transport dominated case (no maximum principle)
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FV versus FE for diffusion-transport equation

Finite volume. Let Th be a partition of Ω, for all K ∈ Th,

−

∫

∂K

Λ∇u · n+

∫

∂K

uc · n = 0,

The question is how to discretize the full diffusion tensor ? Consider the simple case
Λ = Id and admissible mesh of Ω in the sense of Eymard–Gallouët–Herbin.

L

xK

dK,L
σK,L

xL

K

∫
σK,L

∇u · nK,L ≈
|σK,L|

dK,L

(uL − uK)

∫
σK,L

u c·nK,L ≈ uK(c·nK,L)++uL(c·nK,L)−
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FV versus FE for diffusion-transport equation

The + and - of VF
- restriction on the mesh
- how to discretize the diffusion tensor
+ upwind techniques, no oscillations and stabilities in the transport dominated
case
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FV versus FE for diffusion-transport equation

The + and - of VF
- restriction on the mesh
- how to discretize the full tensor diffusion tensor
+ upwind techniques, no oscillations and stabilities in the transport dominated
case

Combined scheme : FE/ FV

−div(Λ∇u)
︸ ︷︷ ︸

Finite Element

+ div(cu)
︸ ︷︷ ︸

Finite Volume

= 0

There is many schemes to handle with this problem. We present a combined
FV–nonconforming FE scheme.
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Combined FV–nonconforming FE : primal mesh

•K •L

Figure : Primal mesh. Triangles K,L ∈ Th

Primal mesh. we perform a triangulation
Th of the domain Ω, consisting of closed
simplices such that Ω = ∪K∈Th

K.
We define

h := size(Th) = max
K∈Th

diam(K),

There exists a constant θT > 0

max
K∈Th

diam(K)

ρK
≤ θT ,∀h > 0 , (1)

where ρK is the diameter of the largest
ball inscribed in the simplex K.
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Combined FV–nonconforming FE : Dual mesh

L

E
DK

Figure : Dual mesh D,D ∈ Dh , dual volumes
associated with edges

Dual mesh. We define a dual partition Dh

s.t. Ω̄ = ∪D∈Dh
D̄. There is one dual element

D associated with each side σD = σK,L ∈

Eh.

We construct it by connecting the barycenters

of every K ∈ Th that contains σD through

the vertices of σD .
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Combined FV–Nonconforming FE : Dual Mesh
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D
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QE

K

•

•

•
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•
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•
•

•
•

•

•

σD,E

Figure : •The unknown are on edges

We use the following notations :

|D| = meas(D) and |σ| = meas(σ).

QD the barycenter of the side σD .

N (D) the set of neighbors of the
volume D.

dD,E := |QE − QD |

σD,E : interface between D and E

ηD,E : the unit normal vector to σD,E

outward to D.

Dint
h and Dext

h are respectively the set
of all interior and boundary dual
volumes.
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Combined FV–Nonconforming FE : Diffusion-Transport

We define the nonconforming finite-dimensional spaces :

Xh := {ϕh ∈ L2(Ω);ϕh|D is linear ∀K ∈ Th, ϕh is continuous at QD, D ∈ Dint
h } ,

X0
h := {ϕh ∈ Xh;ϕh(QD) = 0, ∀D ∈ Dext

h } .

(ϕD)D∈Dh
the basis of Xh s.t. ϕD(QE) = δDE , E ∈ Dh.

Combined scheme.

−
∑

E∈N (D)

ΛD,E(UE − UD) +
∑

E∈N (D)

G(UD , UE ; δCD,E) = 0

where the stiffness matrix is

ΛD,E = −
∑

K∈Th

∫

K

Λ(x)∇ϕE · ∇ϕD dx (nonconforming FE)

and the numerical flux G is defined by

G(UD, UE ; δCD,E) = UD(δCD,E)+ + UE(δCD,E)− (upwind finite volume)

where δCD,E =
∫

σD,E
c · nD,E dσ.
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Combined FV–nonconforming FE : Diffusion-transport

−
∑

E∈N (D)

ΛD,E(UE − UD) +
∑

E∈N (D)

G(UD , UE ; δCD,E) = 0

• P. Angot, V. Dolejsi, M. Feistauer and J. Felcman,
Analysis of a combined barycentric finite volume-nonconforming finite element method
for nonlinear convection-diffusion problems. Appl.Math.,43(4), p. 263-310, 1998.
• R. Eymard, D. Hilhorst and M. Vohralik, A combined finite
volume-nonconforming/mixed hybrid finite element scheme for degenerate parabolic
problems. Numer.Math., 105 : p. 73-131, 2006.
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Maximum principle
Energy estimates
Discrets technical Lemma
A priori estimates

Nonconforming FE/Implicit upwind scheme

K

 L

E

D
×QD

σD

×
QE

σE

σD

σD,E

We integrate the mass conversation law over the diamond D

Φ∂t(ρα(pα)sα)− div(Λ(x)Mα(sα)∇pα) = fα

and we use :
• Fully implicit scheme
• The mobility of each phase is decentred according to discrete gradient of the
pressure on the interface σD,E

• Nonconforming FE for permeability tensor
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For α = l, g, for all D ∈ Dh, for all n ≥ 1

|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt

−
∑

E∈N (D)

ρnα,D,E Mα(s
n
α,D,E) ΛD,E δnD,E(pα) = fn

α,D (2)

This system is completed by the capillary pressure

pc(s
n
l,D) = png,D − pnl,D. (3)

The approximation of each term is important to handle with the energy estimates.
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|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt

−
∑

E∈N (D)

ρnα,D,E Mα(s
n
α,D,E) ΛD,E δnD,E(pα) = fn

α,D (4)

Discrete Gradient of pressure

δnD,E(pα) = pnα,E − pnα,D
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|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt

−
∑

E∈N (D)

ρnα,D,E Mα(s
n
α,D,E) ΛD,E δnD,E(pα) = fn

α,D (4)

Permeability on interfaces by FE

ΛD,E = −
∑

K∈Th

∫

K

Λ(x)∇ϕE · ∇ϕD dx
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|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt

−
∑

E∈N (D)

ρnα,D,E Mα(s
n
α,D,E) ΛD,E δnD,E(pα) = fn

α,D (4)

Upwind technics for the mobilities
The numerical fluxes, where Mα(snα,D,E) denote the upwind discretization of

Mα(sα) on the interface σD,E as

Mα(s
n
α,D,E) =

{

Mα(snα,D) if
(

pnα,E − pnα,D

)

≤ 0,

Mα(snα,E) otherwise
(5)
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|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt

−
∑

E∈N (D)

ρnα,D,E Mα(s
n
α,D,E) ΛD,E δnD,E(pα) = fn

α,D (4)

Mean value of densities on interfaces

The mean value of the density of each phase on the interfaces is not classical since it
is given as

1

ρnα,D,E

=







1
pn
α,E

−pn
α,D

∫ pnα,E

pn
α,D

1

ρα(ζ)
dζ if pnα,D 6= pnα,E ,

1
ρn
α,D

otherwise.

(5)

Source term

fn
α,D = −|D| ρl(p

n
l,D)snl,Dfn

P,D + |D| ρl(p
n
l,D)(sIl,D)nfn

I,D,
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Convective term : Gn
α,D,E ≈ −Mα(sα)∇pα · n on σD,E

Upwind scheme according to −∇pα · n on interfaces

Gn
α,D,E = −Mα(s

n
α,D,E)δnD,E(pα)

= −Mα(s
n
α,E) (δnD,E(pα))

+ +Mα(s
n
α,D)(δnD,E(pα))

−

= Gα(s
n
α,D , snα,E , δnD,E(pα))

The scheme reads to

|D|φD

ρα(pnα,D)snα,D − ρα(p
n−1
α,D )sn−1

α,D

δt
−

∑

E∈N (D)

ρnα,D,E ΛD,EGn
α,D,E = fn

α,D

Main properties on the numerical flux functions Gα

Monotony : s 7→ Gα(s, ·, ·) is non-decreasing, s 7→ Gα(·, s, ·) is non-increasing

Consistency : Gα(s, s, q) = −Mα(s) q

Conservation : Gα(a, b, q) = −Gα(b, a,−q)

Boundness : |Gα(a, b, q)| ≤ C
(
|a|+ |b|

)
|q|.
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Proposition (Maximum principle)

Suppose ΛD,E ≥ 0, for all D,E. Let (s0α,D)D∈Dh
∈ [0, 1]. Then, the saturation

(snα,D)D∈Dh, remains in [0, 1] for all D ∈ Dh, n ∈ {1, . . . , N}.

Proof by induction on n. Suppose sn−1
α,D ≥ 0 for all D ∈ Dh. Let

snl,D = min {snl,E}
E∈Dh

and we seek that snl,D ≥ 0

Multiply the scheme by −(sn
l,D

)−, we obtain

− |D|φD

ρα(pnα,D)snα,D − ρl(p
n−1
α,D )sn−1

α,D

δt
(snα,D)−

−
∑

E∈N (D)

ρnα,D,E ΛD,E Gα(s
n
α,D , snα,E ; δnD,E(pl))(s

n
α,D)−

︸ ︷︷ ︸

≤ 0, since Gα is monotone

= fn
α,D(snl,D)−

︸ ︷︷ ︸

≤0

.

Then, we deduce that

ρα(p
n
α,D)|(snα,D)−|2 + ρα(p

n−1
α,D

)sn−1
α,D

(snα,D)− ≤ 0,

and snα,D ≥ 0 for all D ∈ Dh.
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Energy estimates in the continuous case.

Let us recall how to obtain the energy estimates in the continuous case. For that,

consider gα(pα) =

∫ pα

0

1

ρα(z)
dz as a test function, then

∫

Ω
φ(∂t(ρlsl)gl + ρgsg)gg)

︸ ︷︷ ︸

= d
dt

∫
Ω

Hdx

+

∫

Ω
Λ(x)(Ml(sl)|∇pl|

2 +Mg(sg)|∇pg|
2)

︸ ︷︷ ︸

bounded

≤ rhs

Estimates on the velocities
∫

Ω
Λ(x)

(

Ml(sl)|∇pl|
2 +Mg(sg)|∇pg|

2
)

≤ C

we cannot control the gradient of pressure since the mobility of each phase vanishes in
the region where the phase is missing Mα(sα = 0) = 0. So, we use the feature of
global pressure to obtain uniform estimates on the gradient of the global pressure and
on a function of the capillary term B.
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Discrete Lemma

Continuous case.
The global pressure p can be written as

p = pl + p̃(sl) = pg + p̄(sl),

with the deviation pressures p̄ and p̃ :

p̃(sl) = −

∫ sl

0

Mg(z)

M(z)
p
′

c(z)dz and p(sl) =

∫ sl

0

Ml(z)

M(z)
p
′

c(z)dz.

Total mobility : M(sl) = Ml(sl) +Mg(sl) ≥ m0 > 0.
From the definition of the global pressure we have :

Ml(sl)|∇pl|
2 +Mg(sl)|∇pg|

2 = M(sl)|∇p|2 +
Ml(sl)Mg(sl)

M(sl)
|∇pc(sl)|

2.

The control of velocities ensures the control of the gradient of the global pressure.

Discrete case.
In the discrete case, this relationship is not obtained in a straightforward way. This
equality is replaced by three discrete inequalities which we state in the following
lemma.
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Discrete lemma

Continuous case : M(sl)|∇p|2 ≤ Ml(sl)|∇pl|
2 +Mg(sl)|∇pg|2

Lemma (Total mobility and global pressure)

Mn
l,D|E +Mn

g,D|E ≥ m0, ∀(D,E) ∈ E, ∀n ∈ [0, N ],

m0

(

δnD,E(p)
)2

≤ Mn
l,D|E

(

δnD,E(pl)
)2

+Mn
g,D|E

(

δnD,E(pg)
)2

.

Continuous case : |∇B(sl)|
2 =

MlMg

M
|∇pc|2 ≤ Ml(sl)|∇pl|

2 +Mg(sg)|∇pg|2.

Lemma (Capillary term)

(δnD,E(B(sl)))
2 ≤ Mn+1

g,K|L

(

δnD,E(pg)
)2

+Mn+1
l,K|L

(

δnD,E(pl)
)2

.
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A priori estimates

We show the discrete version of
∫ T
0

∫

Ω Λ(x)Mα∇pα · ∇pα dtdx ≤ C .

Proposition (Discrete velocities)

N−1∑

n=0

δt
∑

D∈Dh

∑

E∈N (D)

ΛD,EMα(s
n
α,D|E)

∣
∣
∣p

n
α,E − pnα,D

∣
∣
∣
2
≤ C. (6)

The proof is based on the choice of the test function :

gα(pα,K) =

∫ pα,K

0

1

ρα(z)
dz
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Consequences

Corollary (Discrete Gradients)

From the preliminary lemmas, we have

N−1∑

n=0

δt
∑

D∈Dh

∑

E∈N (D)

δnD,E(p)|2 ≤ C. → ph ∈ L2(0, T,H1(Ω))

N−1∑

n=0

δt
∑

D∈Dh

∑

E∈N (D)

(δnD,E(B(sl)))
2 ≤ C. → B(sl,h) ∈ L2(0, T,H1(Ω))
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Compactness : translates in space and time estimates

Define the discrete function Uα,h = ρα(pα,h)sα,h constant per cylinder (tn, tn+1) × K. We

derive estimates on translates in space and time of the functions Ūα,h piecewise constant in t and

constant in x for all D.

Lemma (Translates in space and in time)
∫∫

Ω
′
×(0,T )

∣
∣Ūα,h(t, x+ y) − Ūα,h(t, x)

∣
∣dxdt ≤ ω(|y|),

∫∫

Ω×(0,T−τ)

∣
∣Ūα,h(t+ τ, x)− Ūα,h(t, x)

∣
∣2 dx dt ≤ ω̃(τ),

where y ∈ R
3, τ ∈ (0, T ), Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω} and ω satisfies

lim
|y|→0

ω(|y|) = 0 and lim
τ→0

ω̃(τ) = 0.

Strong convergence

The sequence Ūα,h is relatively compact in L1(QT ), α = l, g.

Using Kolmogorov compactness theorem.
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Convergence of FV–FE scheme

Theorem

The sequence (pl,h, pg,h) converges to (pl, pg) (h −→ 0) :

pα ∈ L2(QT )), 0 ≤ sα ≤ 1 a.e in QT ,

p ∈ L2(0, T ;H1(Ω)), B(sl) ∈ L2(0, T ;H1
Γl
(Ω))

such that for all ϕ ∈ C1(0, T ;H1
Γl
(Ω)) with ϕ(T ) = 0,

−

∫

QT

φρα(pl)sα∂tϕdxdt−

∫

Ω
φ(x)ρα(p

0
α(x))s

0
α(x)ϕ(0, x)dx

+

∫

QT

ρα(pl)Ml(sα)Λ∇pα · ∇ϕdxdt−

∫

QT

ΛMα(sl)ρ
2
α(pl)g · ∇ϕdxdt

=

∫

QT

fαϕdxdt,
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Initial and boundary conditions

Water-gas flow.
We simulate the waterflood method. The gas phase is slightly compressible, the water
phase is incompressible.

kl(sl) = s2
l
, kg(sg) = s2g

k = 0.1510−10m2, Φ = 0.206,
µl = 10−3 Pa.s, µg = 9× 10−5 Pa.s,
ρg(pg) = ρr(1 + cr(pg − pr)), ρr = 400 Kg m−3, cr = 0.1bar−1, pr = 1 bar
Lx = 1m, Ly = 1m
Pc(s) = Pmax(1− s), with Pmax = 105Pa.
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Initially sg(x, 0) = 0.9 and pg(x, 0) = 1bar in the whole domain.
Water is injected in the region (x = 0, 0.8 ≤ y ≤ 1) with pressure = 4 bar.
Flow freely at atmospheric pressure in the region where (x = 1, 0 ≤ y ≤ 0.2)

the rest of the boundary is assumed to be impervious (zero fluxes are imposed).

−−−→

−−−→

−−−→

−−−→

−−−→

−−−→

−−−→

−−−→

−−−→

−−−→

Water

Injection

Hydrocarbon

production

Mesh with 896 triangles (2D Benchmark

FVCA5)

The mesh satisfies the orthogonal property. Λ = k Id and k = 0.1510−10m2.
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Water field, T=2.4, 8, 16, 32

We show the diffusive effects of the capillary terms, notably the dissipation of front
due to the parabolic operator.
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Gas pressure field, T = 16 et T = 32
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Water field including capillary terms (left) and without capillary terms (right)

When capillary terms are neglected, the sharp front between the two fluids is then
located and the shock wave maintains the sharp front during the simulation. We
observe also that the water breakthrough time is shorter when capillarity terms are
included.
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Evolution of the water saturation with respect to time at point (0.5,0.5) and (0.75, 0.25)
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Comparison between flow including capillary effect or not.
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