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0 Introduction

The triad (groups, Lie algebras, associative bialgebras) plays a prominent role
in mathematics. The relations between Lie groups and Lie algebras, subsumed
in Lie theory, are omnipresent in mathematics wherever there are symmetries.
The relations often pass through associative algebras which have an additional
compatible coalgebra structure, i.e. associative bialgebras. The aim of these
lectures is to expose a generalized version of the triad (groups, Lie algebras,
associative bialgebras), namely (racks, Leibniz algebras, rack bialgebras), and
to explain the links between these structures inherited from the former, notably
concerning the natural cohomologies of these structures.

The outline is the following: after recalling in Section 1 the links between
groups, Lie algebras and associative bialgebras, we will introduce in Section 2
racks, Leibniz algebras and rack bialgebras and the links between these three
algebraic structures. In Section 3, we will explain their cohomology theories.
The main results which we discuss in Section 3 are the algebraic structures on
rack cohomology related to Loday’s conjectural Leibniz K-theory in Section 3.1
(Simon Covez), vanishing results for the Leibniz cohomology of nilpotent Leibniz
algebras (joint work with Jörg Feldvoss) in Section 3.2, and an embedding of
the Leibniz complex into the cohomology complex of rack bialgebras (Alexandre,
Bordemann, Rivière, W.) in Section 3.3. Section 4 closes with final remarks and
an outlook.

1 Groups, Lie algebra and associative bialgebras

Let us denote by Grp the category of groups, by Lie the category of Lie algebras
over a field K of characteristic zero, by Alg the category of associative algebras
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over K and by Bialg the category of associative bialgebras over K, i.e. the
category of associative algebras B which carry a coassociative coproduct 4 :
B → B ⊗B,

4(b) =
∑
(b)

b1 ⊗ b2 = b1 ⊗ b2,

(i.e. in Sweedler notation for the coproduct, we will leave out the sum-sign !)
such that 4 is a morphism of associative algebras:

4(bb′) = 4(b)4(b′),

where the RHS is the associative product in B ⊗B. This relation is sometimes
called Hopf relation. We will often consider unital and counital bialgebras, or
even Hopf algebras, for further informations about these see [12].

The categories Grp, Lie and Bialg are related by some functors. The functor
K− : Grp → Alg sends a group G to its group algebra KG over K. KG is the
K-vector space with basis eg indexed by the elements g ∈ G; it is simply the K-
linearization of the group G. We define an associative product on basis elements
of KG by

eg eh := egh

for all elements g, h ∈ G and extend it by K-linearity to all elements of KG.
In the other direction, there is the functor of units −× : Alg → Grp which

sends an algebra A to the group A× of its invertible elements. Note that we
need a unit in the algebra A in order to have a group A×.

Proposition 1.1. The functor K− : Grp → Alg is left adjoint to the functor
−× : Alg → Grp, i.e. we have for all groups G and all (unital) algebras A a
natural isomorphism

HomAlg(KG,A) ∼= HomGrp(G,A
×).

Proof. A homomorphism of algebras f : KG → A is uniquely specified on the
basis elements eg for g ranging in G. The homomorphism property together

with egeh = egh imply that we obtain a group homomorphism f̃ : G → A×

by defining f̃(g) := f(eg). All elements in the image of f̃ are invertible, thus

f̃ has its image included in A×. Conversely, a group homomorphism f̃ : G →
A× extends to an algebra homomorphism f : KG → A again because of the
homomorphism property together with egeh = egh. We leave the proof of the
naturality to the interested reader.

Now let us discuss the relation between the categories Alg and Lie. There
is the functor Lie : Alg → Lie associating to a unital associative algebra A its
underlying Lie algebra ALie given by the same vector space as A, but with the
bracket

[a, b] := ab− ba,
for all elements a, b ∈ A. In the reverse direction, there is the functor of the
universal enveloping algebra U : Lie → Alg sending a Lie algebra g to its
universal enveloping algebra Ug. As before, we have

2



Proposition 1.2. The functor U : Lie → Alg is left adjoint to the functor

Lie : Alg→ Lie, i.e. we have for all algebras A and all Lie algebras g a natural
isomorphism

HomAlg(Ug, A) ∼= HomLie(g, ALie).

Proof. The adjointness follows right away from the universal property of the
universal enveloping algebra which reads as follows: Given any Lie algebra
homomorphism f̃ : g→ ALie, there exists a unique homomorphism of associative
algebras f : Ug→ A such that f restricts to f̃ on g ⊂ Ug. Again, the proof of
the naturality is left to the reader.

Combining these functors, we obtain also functors between the categories
Lie and Grp, sending a Lie algebra g to the unit group (Ug)× of its universal
enveloping algebra, and sending a group G to the Lie algebra KGLie underly-
ing its group algebra. Note that the group (Ug)× is just K×, thus not very
interesting. In fact, it becomes interesting after completion.

Note that both left adjoints, namely G 7→ KG and g 7→ Ug, take values in the
category Bialg of associative bialgebras. The associative algebra KG becomes
a bialgebra declaring that all basis elements eg for g ∈ G are group-like, i.e.

4eg = eg ⊗ eg.

The universal enveloping algebra Ug carries a coproduct such that all elements
x of g are primitive, i.e. 4x = x ⊗ 1 + 1 ⊗ x. Thus there are two more
functors, this time relating the category of bialgebra Bialg with Grp and Lie:
The functor of primitives, P : Bialg→ Lie sends a bialgebra B to its primitives
P (B) := {x ∈ B |4x = x⊗1+1⊗x}. The Lie bracket underlying the associative
algebra B descends to P (B). There is also the functor of group-like elements
Bialg→ Set, sending a bialgebra B to the set of its group-like elements x ∈ B
such that 4x = x ⊗ x. For a Hopf algebra possessing an invertible antipode,
this functor takes values in Grp, see Prop. III.3.7 in [12].

A pivot in Lie theory is the relation between a Lie group and its associated
Lie algebra. Here a Lie group is a group G which carries the structure of a
differentiable manifold such that group multiplication G×G→ G, (g, h) 7→ gh,
and inversion map G → G, g 7→ g−1, are smooth maps with respect to the
manifold structure. There are (at least) two ways of associating a Lie algebra to
a Lie group. First of all, the left-invariant vector fields on G are closed under the
bracket of vector fields and become thus a Lie subalgebra. But a left-invariant
vector field on G is uniquely determined by its values on the tangent space T1G
at the unit 1 ∈ G. Thus the tangent space T1G becomes a Lie algebra, denoted
g and called the Lie algebra of the Lie group G. It is interesting to note that
the Lie bracket can be obtained in the following way: Given two smooth curves
γ : [−1, 1]→ G and η : [−1, 1]→ G with η(0) = γ(0) = 1 and γ̇(0) = x ∈ T1G,
η̇(0) = y, the brackets [x, y] can be obtained by differentiation of the conjugation
ηγη−1 with respect to the two parameters of the two curves.

The second construction is a little less known, it appears e.g. in [24]. The Lie
group G is in particular a pointed manifold, i.e. a manifold with a distinguished
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point 1 ∈ G. As such, there is an associated bialgebra of distributions (in the
sense of the continuous dual of the space of functions) on G supported in the
point 1. The primitives in this bialgebra form a Lie algebra which gives back
the Lie algebra g of the Lie group G.

We will restrain ourselves to the integration of Lie algebras into Lie groups
in the framework of Lie groups (and will not speak about the integration of Lie
algebras over the complex numbers into algebraic groups). Namely, given a real
finite-dimensional Lie algebra g, there exists a unique 1-connected Lie group G
such that its Lie algebra is the Lie algebra g we started with. The procedure
obtaining G from g is functoriel.

2 Racks, Leibniz algebras and rack bialgebras

2.1 Racks and Leibniz algebras

The notion of a rack results from axiomatizing the properties of group conjuga-
tion:

Definition 2.1. A (left) rack consists of a set X equipped with a binary opera-
tion denoted (x, y) 7→ xBy such that for all x, y, and z ∈ X, the map y 7→ xBy
is bijective and

xB (y B z) = (xB y) B (xB z).

The identity xB(yBz) = (xBy)B(xBz) is called self-distributivity relation,
because it expresses the fact that the operation B is distributive with respect
to itself.

The conjugation in a group G gives rise to a (left) rack operation given by
(g, h) 7→ ghg−1. Other examples (see [10]) include the following:

Example 2.2. Any union of conjugacy classes in a group can be viewed as a
rack (although in general, it is not a group !). For example, the dihedral rack is
the set of reflections in the dihedral group.

Continuing with reflections, the plane R2 can be viewed as a rack with the
reflection operation, i.e. for two point p and q, define p B q to be the point q
reflected in p, meaning pB q = 2p− q in vector notation.

Example 2.3. Let Λ = Z[t, t−1] be the ring of Laurent polynomials. Any Λ-
module M has the structure of a rack by defining a B b := ta + (1 − t)b for all
a, b ∈ M . This rack is called the Alexander rack. For M = R2 the plane and
the action of t given by multiplication by −1, one gets back the reflection rack
on the plane.

Remark 2.4. Racks appeared in knot theory, see [10]. In fact, the fundamental
rack of a codimension 2 link is a finer invariant than the corresponding group.
For exemple, in the construction of the Wirtinger presentation of the knot group,
one associates generators in the free group to any arc and conjugation relations
to crossings. Taking instead the free rack with crossing relations expressed in
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terms of the rack product gives a finer invariant, because one did not quotient
out the relations which imply that the product is a group product.

The notion of a unit leads to pointed racks.

Definition 2.5. A pointed rack (X,B, 1) consists of a set X equipped with a
binary operation B and an element 1 ∈ X satisfying:

1. xB (y B z) = (xB y) B (xB z),

2. For all a, b ∈ X, there exists a unique x ∈ X such that aB x = b,

3. 1 B x = x and xB 1 = 1 for all x ∈ X.

Once again, the conjugation rack of a group is an example of a pointed rack.

Definition 2.6. A map f : R → S between two racks R and S is called a
morphism of racks in case for all r, r′ ∈ R, we have

f(r B r′) = f(r) B f(r′).

In the usual way, we will speak about iso- and automorphisms of racks.

Let us denote the conjugation rack underlying the group G by Conj(G).
Denote by Racks the category of racks, i.e. the category whose objects are
racks and whose morphisms are rack morphisms as defined above. Then, Conj
is a functor from the category of groups Grp to Racks.

Definition 2.7. Let R be a rack. The associated group to R, denoted As(R),
is the quotient of the free group F (R) on the set R by the normal subgroup
generated by the elements xy−1x−1(xBy) for all x, y ∈ R. Denote the canonical
morphism of racks by i : R→ As(R).

Example 2.8. Consider the set R := {x, y} consisting of two elements x and
y with an operation given by

xB x = y, xB y = x, y B y = x, y B x = y.

It is easy to verify that R is indeed a rack. The relation xBy = xyx−1 in As(R)
implies that x = y in As(R). It turns out that As(R) is isomorphic to Z, thus
the canonical map i : R→ As(R) is not necessarily injective.

The importance of the associated group As(R) of a rack R comes from the
following universal mapping property:

Lemma 2.9. Let R be a rack and G be a group. For any morphism of racks
f : R → Conj(G), there exists a unique group morphism g : As(R) → G such
that g ◦ i = f .
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Proof. By freeness of the free group on the set R, a morphism of racks R →
Conj(G) induces a group homomorphism F (R)→ G. This morphism sends all
elements xy−1x−1(xB y) to 1 ∈ G, because both the commutator in F (R) and
the rack product are sent to the commutator in G. The first assertion is true
because F (R)→ G is a group homomorphism, and the second assertion is true
because R → Conj(G) is a rack morphism. Thus F (R) → G factors through a
morphism As(R)→ G. This group homomorphism is unique, because it is fixed
on the generators of As(R).

From this, one can deduce that the functor As : Racks → Grp from the
category of racks to the category of groups is left adjoint to the functor Conj :
Grp→ Racks which associates to a group its underlying conjugation rack.

Remark 2.10. In fact, the unit of the adjunction is just the map i. By standard
arguments, the unit of the adjunction is injective, but only as a map

i : Conj(G)→ Conj(As(Conj(G)))

for a group G.

We observe that the compositions Conj(As(R)) for a racksR and As(Conj(G))
for a group G are, in general, far from being equal to R or G respectively. For
example, for an abelian group A, the conjugation rack Conj(A) is the set A with
the trivial rack product, while As(Conj(A)) is the free abelian group generated
by the set A.

Definition 2.11. Let G be a group and X be a G-set. We say that X together
with a map p : X → G is an augmented rack in case it satisfies the augmentation
identity, i.e.

p(g · x) = g p(x) g−1

for all g ∈ G and all x ∈ X.

We observe that for any augmented rack p : X → G, one may define a rack
operation on X as xBx′ := p(x) ·x′ for all x, x′ ∈ X. Then, the map p becomes
an equivariant morphism of racks (with respect to the given G-action on X and
the conjugation action on the group G). Augmented racks are in fact the Yetter-
Drinfel’d modules over the Hopf algebra G (in the symmetric monoidal category
of sets), or in other words, the Drinfel’d center of the symmetric monoidal
category of G-modules, see [11].

Remark 2.12. There are many examples of augmented racks. For example,
for each rack R, the canonical morphisms R → Aut(R) and i : R → As(R) are
augmented racks.

Definition 2.13. Let R be a rack and X be a set. We say that R acts on X or
that X is an R-set in case there are bijections (r·) : X → X for all r ∈ R such
that

r · (r′ · x) = (r B r′) · (r · x)

for all x ∈ X and all r, r′ ∈ R.
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Obviously, this definition is the prototype of a module action and adapts to
different algebraic situations: In case X is an abelian group, X becomes a rack
module over the rack R if R acts on X (in the sense of the previous definition)
by Z-linear maps (r·) for all r ∈ R.

Lemma 2.14. An action of R on X is equivalent to a morphism of racks
µ : R → Bij(X) with values in the conjugation rack underlying the group of
bijections on X.

Proof. Indeed, the defining equation in Definition 2.14 can be written

(r·) ◦ (r′·) ◦ (r·)−1(y) = (r B r′) · (y)

for all r, r′ ∈ R and all y ∈ X. This shows that the rack product in R is sent to
the rack product in Conj(Bij(X)).

The following structure is the analogue of the semi-direct product of a group
G by a G-module. As it is only ”half of the structure” (the term concerning x
is missing), it is termed hemi-semidirect product, see [13].

Definition 2.15. Let R be a rack and X be an R-set. The hemi-semidirect
product rack consists of the set X ×R equipped with the rack product

(x, r) B (x′, r′) := (r · x′, r B r′)

for all x, x′ ∈ X and all r, r′ ∈ R.

The following definition is the Lie-group-version of a rack:

Definition 2.16. A Lie rack is a pointed rack M with the structure of a smooth
manifold such that for all x, y ∈M , the rack operation (x, y) 7→ xBy is a smooth
map M ×M →M and the map y 7→ xB y is a diffeomorphisms of M .

A morphisms of Lie racks φ : M → M ′ is a map of pointed manifolds
satisfying for all x, y ∈ M the condition φ(x B y) = φ(x) B′ φ(y). The class of
all Lie racks forms a category called LieRack.

Let us now come to Leibniz algebras: Leibniz algebras have been invented
by A. M. Blokh [3] in 1965, and then rediscovered by J.-L. Loday in 1992 in
the search of an explanation for the absence of periodicity in algebraic K-theory
[17, p.323, Equation (10.6.1.1)’]. We will come back to this point later.

Definition 2.17. A Leibniz algebra (over K) is a K-vector space h equipped
with a linear map [ , ] : h ⊗ h → h, written x ⊗ y 7→ [x, y] such that the (left)
Leibniz identity holds for all x, y, z ∈ h[

x, [y, z]
]

=
[
[x, y], z

]
+
[
y, [x, z]

]
(1)

A morphism of Leibniz algebras f : h → h′ is a K-linear map preserving
brackets, i.e. for all x, y ∈ h we have f

(
[x, y]

)
=
[
f(x), f(y)

]′
. Note first that

each Lie algebra is a Leibniz algebra giving rise to a functor i from the category
LieAlg of Lie algebras to the category Leib of Leibniz algebras.

The following relation of Lie racks to R-Leibniz algebras is due to M.Kinyon
[14]:
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Proposition 2.18. Let (M, 1,B) be a Lie rack and h = T1M . Define the
following bracket [ , ] on h by

[x, y] =
∂

∂t
T1La(t)(y)

∣∣∣∣
t=0

(2)

where t 7→ a(t) is any smooth curve defined on an open real interval containing
0 satisfying a(0) = 1, (da/dt)(0) = x ∈ h and La(t) = a(t) B − means the
left translation by a(t) (with respect to the rack product B). Then we have the
following

1.
(
h, [ , ]

)
is a real Leibniz algebra.

2. Let φ : (M, 1,B) → (M ′, 1′,B′) be a morphism of Lie racks. Then T1φ :
h→ h′ is a morphism of Leibniz algebras.

Proof. (a) Since for each a ∈M , we have La(1) = 1, it follows that the tangent
map T1La maps the tangent space T1M to T1M . Therefore the curve t 7→
T1La(t) is a curve of R-linear maps T1M → T1M , whence Equation (2) defines
a well-defined real bilinear map h× h→ h.

Let x, y, z ∈ h, and let t 7→ a(t) and t 7→ b(t) two smooth curves of an open
interval (containing 0) into M such that a(0) = 1 = b(0) and (da/dt)(0) = x,
(db/dt)(0) = y. We compute[

x, [y, z]
]

=

=
∂2

∂s∂t

(
T1La(s)

(
T1Lb(t)(z)

))∣∣∣∣
s,t=0

=
∂2

∂s∂t
T1

(
La(s) ◦ Lb(t)

)
(z)

∣∣∣∣
s,t=0

=
∂2

∂s∂t
T1

(
La(s)Bb(t) ◦ La(s)

)
(z)

∣∣∣∣
s,t=0

=
∂2

∂s∂t

(
T1La(s)Bb(t)

(
T1La(s)(z)

))∣∣∣∣
s,t=0

=
∂2

∂s∂t
T1La(s)Bb(t)

∣∣∣∣
s,t=0

(
T1La(0)(z)

)
+

∂

∂t
T1La(0)Bb(t)

∣∣∣∣
t=0

(
∂

∂s

(
T1La(s)(z)

))∣∣∣∣
s=0

.

Since a(0) = 1, we have T1La(0)(z) = z and a(0) B b(t) = b(t), whence the last

term equals
[
y, [x, z]

]
. Since for each s the curve t 7→ a(s) B b(t) is equal to 1

at t = 0, we get

∂2

∂s∂t
T1La(s)Bb(t)

∣∣∣∣
s,t=0

(
T1La(0)(z)

)
=

[
∂

∂s
T1La(s)(y)

∣∣∣∣
s=0

, z

]
=
[
[x, y], z

]
proving the Leibniz identity.

(b) Since φ maps 1 to 1′, its tangent map T1φ maps T1M to T1′M
′. We get

for all x, y ∈ h = T1M , where t 7→ a(t) is a smooth curve in M with a(0) = 1
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and (da/dt)(0) = x:

T1φ
(
[x, y]

)
= T1φ

(
∂

∂t
T1La(t)(y)

∣∣∣∣
t=0

)
=

∂

∂t

(
T1

(
φ ◦ La(t)

)
(y)
)∣∣∣∣
t=0

=
∂

∂t

(
T1

(
L′φ(a(t)) ◦ φ

)
(y)
)∣∣∣∣
t=0

=
∂

∂t
T1′L

′
φ(a(t))

∣∣∣∣
t=0

(
T1φ(y)

)
=

[
T1φ(x), T1φ(y)

]
.

Let Leibfd denote the category of finite-dimensional real Leibniz algebras.
The preceding proposition shows that there is a functor T∗R : LieRack →
Leibfd which associates to any Lie rack M its tangent space T1M at the dis-
tinguished point 1 ∈M equipped with the Leibniz bracket Equation (2).

Furthermore, recall that each Leibniz algebra has two canonical subspaces

Q(h) :=
{
x ∈ h | ∃ N ∈ N \ {0}, ∃ λ1, . . . , λN ∈ K, ∃ x1, . . . , xN

such that x =

N∑
r=1

λr[xr, xr]
}
, (3)

z(h) :=
{
x ∈ h | ∀ y ∈ h : [x, y] = 0

}
. (4)

It is not hard to deduce from the Leibniz identity that both Q(h) and z(h) are
two-sided abelian ideals of (h, [ , ]), that Q(h) ⊂ z(h), and that the quotient
Leibniz algebras

h := h/Q(h) and h/z(h) (5)

are Lie algebras. The ideal Q(h) is called the ideal of squares and z(h) is called
the left center of h. Since the ideal Q(h) is clearly mapped into the ideal Q(h′)
by any morphism of Leibniz algebras h → h′ (which is a priori not the case
for z(h) !), there is an obvious functor h → h from the category of all Leibniz
algebras to the category of all Lie algebras.

It is easy to observe that in both cases of the above Lie algebras h and h/z(h),
the following structure is present:

Definition 2.19. A quintuple
(
h, p, g, [ , ]g, ρ̇

)
is called an augmented Leibniz

algebra if the following holds:

1.
(
g, [ , ]g

)
is a Lie algebra.

2. h is a K-vector space which is a left g-module via the linear map ρ̇ : g⊗h→
h written ρ̇x(h) = x · h for all x ∈ g and h ∈ h.

3. p : h→ g is a morphism of g-modules, i.e. for all x ∈ g and h ∈ h

p(x · h) =
[
x, p(h)

]
g
. (6)

A morphism of augmented Leibniz algebras
(
h, p, g, [ , ]g, ρ̇

)
→
(
h′, p′, g′, [ , ]′g, ρ̇

′)
is a pair (F, f) of linear maps where f : g → g′ is a morphism of Lie algebras,
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F : h→ h is a morphism of Lie algebra modules over f , i.e. for all h ∈ h and
x ∈ g

F (x · h) = f(x) · F (h). (7)

Moreover the obvious diagram commutes, i.e.

p′ ◦ F = f ◦ p. (8)

The following properties are immediate from the definitions:

Proposition 2.20. Let
(
h, p, g, [ , ]g, ρ̇

)
be an augmented Leibniz algebra. De-

fine the following bracket on h:

[x, y]h := p(x) · y. (9)

1.
(
h, [, ]h

)
is a Leibniz algebra on which g acts as derivations. If (F, f) is a

morphism of augmented Leibniz algebras, then F is a morphism of Leibniz
algebras.

2. The kernel of p, ker(p), is a g-invariant two-sided abelian ideal of h satis-
fying Q(h) ⊂ ker(p) ⊂ z(h).

3. The image of p, im(p), is an ideal of the Lie algebra g.

Proof. We just check the Leibniz identity: Let x, y, z ∈ h, then, writing [ , ]h =
[ , ],[

x, [y, z]
]

= p(x) ·
(
p(y) · z

)
= p(x) ·

(
p(y) · z

)
− p(y) ·

(
p(x) · z

)
+ p(y) ·

(
p(x) · z

)
=

[
p(x), p(y)

]
g
· z +

[
y, [x, z]

] (6)
= p

(
p(x) · y

)
· z +

[
y, [x, z]

]
=

[
[x, y], z

]
+
[
y, [x, z]

]
.

It follows that the class of augmented Leibniz algebras forms a category
LeibA. There is a forgetful functor from LeibA to Leib associating(

h, p, g, [ , ]g, ρ̇
)
7→
(
h, [ , ]h

)
where the Leibniz bracket [ , ]h is defined in Equation (9).

On the other hand there is a functor from Leib to LeibA associating to
each Leibniz algebra

(
h, [ , ]

)
the augmented Leibniz algebra

(
h, p, h̄, [ , ]h̄, ad′

)
where p : h → h̄ is the canonical projection and the representation ad′ of the
Lie algebra h̄ on the Leibniz algebra h is defined by (for all x, y ∈ h)

ad′p(x)(y) := adx(y) = [x, y]. (10)

Remark 2.21. There exists an inverse to the construction in Proposition 2.18,
namely an integration process which integrates finite-dimensional real (aug-
mented) Leibniz algebras into (augmented) Lie racks. In order to make this
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meaningful, one also imposes that the integration process is such that finite-
dimensional Lie algebras are integrated into the standard simply-connected Lie
group associated to a finite-dimensional real Lie algebra. Such an integration
procedure exists (see [7], [4]), but with some drawbacks: The procedure in [7]
is natural and functorial and gives a nice link between Leibniz cohomology and
rack cohomology. Unfortunately, it works only locally.

In the search of globalizing this local procedure, for the moment, the only
known global procedure in [4] is not functorial in general. It is functorial only for
morphisms of Leibniz algebras which reduce the spectrum of the ad-operators.

2.2 Racks, Leibniz algebras and rack bialgebras

We now come to the notion which is analogous to the notion of the group
algebra in the framework of racks. First, let us recall some basic notions about
coalgebras. We shall always assume that Q ⊂ K, i.e. that the field K is of
characteristic zero.

Let C be a K-vector space. Recall that a linear map 4 : C → C ⊗ C is
called a coassociative comultiplication in case

(
4⊗ idC

)
◦ 4 =

(
idC ⊗4

)
◦ 4,

and the pair (C,4) is called a (coassociative) coalgebra. In Sweedler’s notation,
the coproduct on elements is written as

4(a) = a1 ⊗ a2.

Recall that this notation implies a sum over all tensors which form 4(a).
Let (C ′,4′) be another coalgebra. The coalgebra (C,4) is called cocom-

mutative if τ ◦ 4 = 4 where τ : C ⊗ C → C ⊗ C denotes the canonical flip
map. Recall furthermore that a linear map ε : C → K is called a counit for the
coalgebra (C,4) in case

(
ε⊗ idC

)
◦4 =

(
idC⊗ε

)
◦4 = idC . The triple (C,4, ε)

is called a counital coalgebra. Moreover, a counital coalgebra (C,4, ε) equipped
with an element 1 is called coaugmented if 4(1) = 1⊗ 1 and ε(1) = 1 ∈ K. Re-
call that a morphism φ : (C,4, ε, 1) → (C ′,4′, ε′, 1′) of counital coaugmented
coalgebras is a K-linear map satisfying (φ ⊗ φ) ◦ 4 = 4′ ◦ φ, ε′ ◦ φ = ε, and
φ(1) = 1′. Moreover, for any counital coaugmented coalgebra the K-submodule
of all primitive elements is defined by

P (C) := {x ∈ C | 4(x) = x⊗ 1 + 1⊗ x}. (11)

The analogue of the notion of a bialgebra in the framework of racks is the
notion of a rack bialgebra.

Definition 2.22. A rack bialgebra (B,4, ε, 1, µ) is a coassociative, counital,
coaugmented coalgebra (B,4, ε, 1) together with a product B : B × B → B
which is a morphism of coalgebras (and satisfies in particular 1 B 1 = 1) such
that the following identities hold for all a, b, c ∈ B

1 B a = a, (12)

aB 1 = ε(a)1, (13)

aB (bB c) = (a1 B b) B (a2 B c). (14)

11



The last condition (14) is called the self-distributivity condition.

Note that we do not demand that the coalgebra B should be cocommutative.
Note furthermore that the self-distributivity condition here is the linearized
version of the self-distributivity relation of a rack.

Example 2.23. Any coassociative, counital, coaugmented coalgebra (C,4, ε, 1)
carries a trivial rack bialgebra structure defined by the left-trivial multiplicaton

aB b := ε(a)b (15)

which in addition is easily seen to be associative and left-unital, but in general
not unital.

Example 2.24. Let (H,4H , εH , µH , 1H , S) be a cocommutative Hopf algebra
over K. Then it is easy to see (cf. also the particular case B = H and Φ = idH
of Proposition 2.28) that the new product B : H ⊗H → H defined by the usual
adjoint representation

hB h′ := adh(h′) := h1h
′S(h2), (16)

equips the coassociative, counital, coaugmented coalgebra (H,4H , εH , 1H) with
a rack bialgebra structure.

In general, the adjoint representation does not preserve the coalgebra struc-
ture if no cocommutativity is assumed.

Example 2.25. Any Leibniz algebra h gives rise to a rack bialgebra on the K-
vector space K⊕h by putting xBy := [x, y] for all x, y ∈ h and that all elements
of h are primitive.

Example 2.26. Let (X, 1) be a pointed rack. Then there is a natural rack
bialgebra structure on the vector space KX which has the elements of X as a
basis. KX carries the usual coalgebra structure such that all x ∈ X are set-like:
4(x) = x ⊗ x for all x ∈ X. The product B is then the linearization of the
rack product. By functoriality, B is compatible with 4 and 1. Observe that this
construction differs slightly from the construction in [5], Section 3.1.

As in the case of Leibniz algebras and Lie racks, there is an associated
augmented structure:

Definition 2.27. An augmented rack bialgebra is a quadruple (B, p,H, `) con-
sisting of a coassociative, counital, coaugmented coalgebra (B,4, ε, 1), of a co-
commutative Hopf algebra (H,4H , εH , 1H , µH , S), of a morphism of coalgebras
p : B → H, and of a left action ` : H ⊗B → B of H on B which is a morphism
of coalgebras (i.e. B is a H-module-coalgebra) such that for all h ∈ H and
a ∈ B

h.1 = εH(h)1 (17)

p(h · a) = adh
(
p(a)

)
. (18)
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where ad denotes the usual adjoint representation for Hopf algebras, see e.g.
Equation (16).

We shall define a morphism (B, p,H, `)→ (B′, p′, H ′, `′) of augmented rack
bialgebras to be a pair (φ, ψ) of K-linear maps where φ : (B,4, ε, 1)→ (B′,4′, ε′, 1′)
is a morphism of coalgebras, and ψ : H → H ′ is a morphism of Hopf algebras
such that the obvious diagrams commute:

p′ ◦ φ = ψ ◦ p, and `′ ◦ (ψ ⊗ φ) = φ ◦ ` (19)

An immediate consequence of this definition is the following

Proposition 2.28. Let (B, p,H, `) be an augmented rack bialgebra. Then the
coassociative, counital, coaugmented coalgebra (B, ε, 1) will become a rack bial-
gebra by means of the product

aB b := p(a) · b (20)

for all a, b ∈ B. In particular, each cocommutative Hopf algebra H becomes an
augmented rack bialgebra via (H, idH , H, ad). In general, for each augmented
rack bialgebra the map p : B → H is a morphism of rack bialgebras.

Proof. We check first that B is a morphism of coalgebras B ⊗ B → B: Let
a, b ∈ B, then we have, using the fact that the action ` and the maps p are
coalgebra morphisms:

4(aB b) = 4
(
p(a) · b

)
=
(
p(a)1 · b1

)
⊗
(
p(a)2 · b2

)
=

(
p(a1) · b1

)
⊗
(
p(a2) · b2

)
=

(
a1 B b1

)
⊗
(
a2 B b2

)
whence B is a morphism of coalgebras. Clearly

ε(aB b) = ε
(
p(a) · b

)
= εH

(
p(a)

)
ε(b) = ε(a)ε(b)

whence B preserves counits. Let us next compute both sides of the self-distributivity
identity (14). We have for all a, b, c ∈ B

aB (bB c) = p(a).
(
p(b) · c

)
=
(
p(a)p(b)

)
· c,

and

(a1 B b) B (a2 B c) =
(
p(a1) · b

)
B
(
p(a2) · c

)
=

(
p
(
p(a1) · b

))
·
(
p(a2) · c

)
=

(
p
(
p(a1) · b

)
p(a2)

)
· c,

and we compute, using the fact that p is a morphism of coalgebras,

p
(
p(a1) · b

)
p(a2) = p

(
p(a)1 · b

)
p(a)2

(18)
= adp(a)1

(
p(b)

)
p(a)2

= p(a)1p(b)S
(
p(a)2

)
p(a)3

= p(a)1p(b)εH
(
p(a)2

)
= p(a)p(b),
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which proves the self-distributivity identity. Moreover we have

1B B a = p(1).a = 1H .a = a,

and

aB 1 = p(a).1
(17)
= εH

(
p(a)

)
1 = εB(a)1.

This shows that the coassociative, counital, coaugmented coalgebra B becomes
a rack bialgebra.

Remark 2.29. Exactly in the same way as a pointed rack gives rise to a rack
bialgebra KX, an augmented pointed rack p : X → G gives rise to an augmented
rack bialgebra p : KX → KG.

The link to Leibniz algebras is contained in the following proposition:

Proposition 2.30. Let (B,4, ε, 1, µ) be a rack bialgebra. Then its subspace of
all primitive elements, P (B) =: h, is a subalgebra with respect to to the product
B satisfying the Leibniz identity

xB (y B z) = (xB y) B z + y B (xB z) (21)

for all x, y, z ∈ h = P (B). Hence the pair (h, [ , ]) with [x, y] := x B y for
all x, y ∈ h is a Leibniz algebra over K. Moreover, every morphism of rack
bialgebras maps primitive elements to primitive elements and thus induces a
morphism of Leibniz algebras.

Proof. Let x ∈ h and a ∈ B. Since µ is a morphism of coalgebras and x is
primitive, we get

4(aB x) = (a1 B x)⊗ (a2 B 1) + (a1 B 1)⊗ (a2 B x)

(13)
=

(
(a1ε(a2)) B x

)
⊗ 1 + 1⊗

(
(ε(a1)a2) B x

)
= (aB x)⊗ 1 + 1⊗ (aB x),

whence aB x is primitive.
It follows that h is a subalgebra with respect to B. Let x, y, z ∈ h. Then since

x is primitive, it follows from 4(x) = x ⊗ 1 + 1 ⊗ x and the self-distributivity
identity (14) that

xB (y B z) = (xB y) B (1 B z) + (1 B y) B (xB z)
(12)
= (xB y) B z + y B (xB z).

proving the left Leibniz identity. The morphism statement is clear, since each
morphism of rack bialgebras is a morphism of coalgebras and preserves primi-
tives.

As an immediate consequence, we get that the functor P induces a functor
from the category of all rack bialgebras to the category of all Leibniz algebras
over K.
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Remark 2.31. Define set-like elements to be elements a in a rack bialgebra B
such that 4(a) = a⊗a. Thanks to the fact that B is a morphism of coalgebras,
the set of set-like elements Slike(B) is closed under B. In fact, Slike(B) is a shelf
(the not-necessarily-bijective version of a rack product, i.e. the map y 7→ xBy is
not necessarily invertible - in order to express invertibility, one needs an antipode
!), and one obtains in this way a functor Slike : RackBialg→ Shelves.

Proposition 2.32. The functor of set-likes Slike : RackBialg → Shelves has
the functor K− : Shelves→ RackBialg (see Example 2.26) as its left-adjoint.

Proof. This follows from the adjointness of the same functors, seen as functors
between the categories of pointed sets and of coassociative, counital, coaug-
mented, cocommutative coalgebras, observing that the coalgebra morphism in-
duced by a morphism of racks respects the rack product.

Observe that the restriction of Slike : RackBialg→ Shelves to the subcat-
egory of cocommutative Hopf algebras Hopf (where the Hopf algebra is given
the rack product defined in Equation (16)) gives the usual functor of group-like
elements.

We will now associate to a Leibniz algebra h a rack bialgebra, i.e. construct
an inverse process to Proposition 2.30. First of all, recall that each Leibniz
algebra has two canonical ideals Q(h) and z(h) (see Equations (3) and (4))
with Q(h) ⊂ z(h) such that the corresponding quotient Leibniz algebras are Lie
algebras.

In order to perform the following constructions of rack bialgebras for any
given Leibniz algebra h, choose first a two-sided ideal z ⊂ h such that

Q(h) ⊂ z ⊂ z(h), (22)

let g denote the quotient Lie algebra h/z, and let p : h → g be the natural
projection.

The Lie algebra g naturally acts as derivations on h by means of (for all
x, y ∈ h)

p(x) · y := [x, y] =: adx(y) (23)

because z ⊂ z(h). Note that

h/z(h) ∼=
{

adx ∈ HomK(h, h) | x ∈ h
}
. (24)

as Lie algebras. Then (h, p, g, [, ]g, ·) is an augmented Leibniz algebra.
Consider now the coassociative, counital, coaugmented, cocommutative coal-

gebra (B = S(h),4, ε, 1) which is actually a commutative cocommutative Hopf
algebra over K with respect to the symmetric multiplication. The linear map
p : h→ g induces a unique morphism of Hopf algebras

p̃ : S(h)→ S(g) (25)

satisfying
p̃(x1 · · · · · xK) = p(x1) · · · · · p(xK) (26)
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for any nonnegative integer K and x1, . . . , xK ∈ h. In other words, the asso-
ciation S : V → S(V ) is a functor from the category of all K-vector spaces
to the category of all commutative unital coassociative, counital, coaugmented,
cocommutative coalgebras. Consider the universal enveloping algebra Ug of the
Lie algebra g. Since we now assume Q ⊂ K, the Poincaré-Birkhoff-Witt Theo-
rem holds. More precisely, the symmetrisation map ω : S(g)→ Ug, defined by

ω(1S(g)) = 1Ug, and ω(x1 · · · · · xK) =
1

K!

∑
σ∈SK

xσ(1) · · ·xσ(K), (27)

is an isomorphism of coassociative, counital, coaugmented, cocommutative coal-
gebras (in general not of associative algebras). We now need an action of the
Hopf algebra H = Ug on B, and an intertwining map p : B → Ug. In order to
get this, we first look at g-modules: The K-module h is a g-module by means
of Equation (23), the Lie algebra g is a g-module via its adjoint representation,
and the linear map p : h→ g is a morphism of g-modules since p is a morphism
of Leibniz algebras. Now S(h) and S(g) are g-modules in the usual way, i.e. for
all K ∈ N \ {0}, x, x1, . . . , xK ∈ g, and h1 . . . , hK ∈ h

x · (h1 · · · · · hK) :=

K∑
r=1

h1 · · · · · (x · hr) · · · · · hK, (28)

x · (x1 · · · · · xK) :=

K∑
r=1

x1 · · · · · [x.xr] · · · · · xK, (29)

and of course x ·1S(h) = 0 and x ·1S(g) = 0. Recall that Ug is a g-module via the
adjoint representation adx(u) = x · u = xu− ux for all x ∈ g and all u ∈ U(g).
It is easy to see that the map p̃ in Equation (26) is a morphism of g-modules,
and it is well-known that the symmetrization map ω (27) is also a morphism of
g-modules. Define the K-linear map p : S(h)→ Ug by the composition

p := ω ◦ p̃. (30)

Then p is a map of coassociative, counital, coaugmented, cocommutative coalge-
bras and a map of g-modules. Thanks to the universal property of the universal
enveloping algebra, it follows that S(h) and Ug are left Ug-modules, via (for all
x1, . . . , xK ∈ g, and for all a ∈ S(h))

(x1 · · ·xK) · a = x1.(x2.(· · ·xK · a) · · · ) (31)

and the usual adjoint representation (16) (for all u ∈ Ug)

adx1···xK(u) =
(
adx1

◦ · · · ◦ adxK

)
(u), (32)

and that p intertwines the Ug-action on C = S(h) with the adjoint action of
Ug on itself. Finally it is a routine check using the above identities (28) and
(16) that S(h) becomes a module coalgebra. We can resume the preceding
considerations in the following proposition:
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Proposition 2.33. Let h be a Leibniz algebra over K, let z be a two-sided ideal
of h such that Q(h) ⊂ z ⊂ z(h), let g denote the quotient Lie algebra g := h/z,
and let p : h→ g be the canonical projection.

1. Then there is a canonical U(g)-action ` on the coassociative, counital,
coaugmented, cocommutative coalgebra B := S(h) (making it into a module
coalgebra leaving invariant 1) and a canonical lift of p to a morphism of
coalgebras, p : S(h)→ Ug such that Equation (18) holds.

Hence the quadruple (S(h), p, Ug, `) is an augmented rack bialgebra whose
associated Leibniz algebra is equal to h and this is true independently of
the choice of z.

The resulting rack product B of S(h) is also independent on the choice
of z and is explicitly given as follows for all positive integers K, l and
x1, . . . , xK, y1, . . . , yl ∈ h:(
x1 ·· · ··xK)B

(
y1 ·· · ··yl) =

1

K!

∑
σ∈SK

(
adsxσ(1) ◦· · ·◦adsxσ(K)

)(
y1 ·· · ··yl) (33)

where adsx denotes the action of the Lie algebra h/z(h) (see Equation (24))
on S(h) according to Equation (28).

2. In case z = Q(h), the construction mentioned in (a) is a functor h →
UAR∞(h) from the category of all Leibniz algebras to the category of all
augmented rack bialgebras associating to h the rack bialgebra

UAR∞(h) := (S(h),Φ, U(g), `)

and to each morphism f of Leibniz algebras the pair
(
S(f), U(f)

)
where

f is the induced Lie algebra morphism.

Proof. A great deal of the statements has already been proven in the discussion
before the theorem. Note that for all x, y ∈ h we have by definition

[x, y] = p(x) · y = xB y,

independently of the chosen ideal z. Moreover we compute(
x1 · · · · · xK) B

(
y1 · · · · · yl)

=
(
(ω ◦ p̃)(x1 · · · · · xK)

)
·
(
y1 · · · · · yl)

=
1

K!

∑
σ∈SK

(
p(xσ(1)) · · · p(xσ(K))

)
·
(
y1 · · · · · yl),

which gives the desired formula since for all x ∈ h and a ∈ S(h), we have

p(x) · a = adsx(a).
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Let us then show functoriality. For this, let f : h→ h′ be a morphism of Leibniz
algebras, and let f : h→ h′ be the induced morphism of Lie algebras. Hence we
get

p′ ◦ f = f ◦ p (34)

where p′ : h′ → h′ denotes the corresponding projection modulo Q(h′). Let
S(f) : S(h) → S(h′), S(f) : S(h) → S(h′), and U(f) : U(h) → U(h′) be the
induced maps of Hopf algebras, i.e. S(f) (resp. S(f)) satisfies Equation (26)
(with p replaced by f (resp. by f)), and U(f) satisfies

U(f)
(
x1 · · ·xK

)
= f(x1) · · · f(xK)

for all positive integers K and x1, . . . , xK ∈ h. If ω : S(h) → U(h) and ω′ :
S(h′) → U(h′) denote the corresponding symmetrisation maps (27), then it is
easy to see from the definitions that

ω′ ◦ S(f) = U(f) ◦ ω.

Equation (34) implies

p̃′ ◦ S(f) = S(p′) ◦ S(f) = S(f) ◦ S(p) = S(f) ◦ p̃,

and composing from the left with ω′ yields the equation

p′ ◦ S(f) = U(f) ◦ p. (35)

Moreover for all h, h′ ∈ h we have, since f is a morphism of Leibniz algebras,

f
(
p(h) · h′

)
= f

(
[h, h′]

)
=
[
f(h), f(h′)

]′
= p′

(
f(h)

)
· f(h′) = f

(
p(h)

)
· f(h′),

hence for all x ∈ h
f(x · h) = f(x) · f(h),

and upon using Equation (28), we get for all a ∈ S(h)

S(f)
(
x · a

)
= f(x) · S(f)

(
a
)
,

showing finally for all u ∈ Uh and all a ∈ S(h)

S(f)
(
u · a

)
= U(f)(u) · S(f)

(
a
)
. (36)

Associating to every Leibniz algebra h the above defined augmented rack bial-
gebra (S(h),Φ, Uh, `), and to every morphism ψ : h→ h′ of Leibniz algebras the
pair of linear maps

(
S(ψ), U(ψ)

)
, we can easily check that S(ψ) is a morphism

of coalgebras, U(ψ) is a morphism of Hopf algebras, such that the two relevant
diagrams (19) commute which easily follows from (35) and (36). The rest of the
functorial properties is a routine check.

Remark 2.34. This theorem should be compared to Proposition 3.5 in [5].
In [5], the authors construct a rack bialgebra structure on N := K ⊕ h. The
rack product is given by the bracket of the Leibniz algebra. We work in the
preceding theorem with the whole symmetric algebra on the Leibniz algebra.
Thus, in some sense, we extend their Proposition 3.5 “to all orders”.
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The above rack bialgebra associated to a Leibniz algebra h can be seen as
one version of an enveloping algebra of h.

Let us summarize. Given a pointed rack R, there is a rack bialgebra KR
which is the linearization of the rack R. Given a Lie rack M , its tangent space
to the unit 1 is endowed with the structure of a (natural, in general non-trivial)
Leibniz algebra. Leibniz algebras have ”enveloping algebras” which are rack
bialgebras, and every rack bialgebra has as its primitives a Leibniz algebra
and as its set-likes a pointed rack. There are some other links between these
structures which we do not discuss, for example the point-distributions on a
Lie rack supported in 1 form a rack bialgebra. In total, the structures of rack,
rack bialgebra and Leibniz algebra enjoy (largely speaking) the same links as
the structures of group, bi/Hopf algebra and Lie algebra.

3 Cohomology theory of racks, Leibniz algebras
and rack bialgebras

Here we come to the heart of this minicourse: The cohomology theories associ-
ated to racks, Leibniz algebras and rack bialgebras and their relations.

3.1 Cohomology of racks

As racks have been invented for the needs of knot theory, their cohomology
theory or more precisely the rack cocycles are traditionally used to define knot
invariants. We will not talk about this use, but rather about the use of rack
cohomology in the attempt to explain the non-periodicity of algebraic K-theory.
The main reference of this subsection is [6].

J.-L. Loday thought about the problem of the non-periodicity of algebraic
K-theory (in contrast to the periodicity of topological K-theory), see [19]. Over
the rationals, the K-theory K(A) of a unitary K-algebra A can be deduced from
group homology of the inductive limit group GL(A) as primitives of the Hopf
algebra H•(GL(A),Q):

H•(GL(A),Q) ' Λ(K•(A)⊗Q).

The infinitesimal version of K-theory (invented by Loday-Quillen and Feigin-
Tsygan), nowadays called cyclic homology HC•(A), is related to Lie algebra
homology in the same way (this is one way to define cyclic homology or the
Loday-Quillen-Tsygan Theorem):

H•(gl(A),Q) ' Λ(HC•−1(A)).

Now for the cyclic homology, one may identify the failure of periodicity. It
is given by the Hochschild homology according to the Connes exact sequence:

. . .→ HHn(A)→ HCn(A)→ HCn−2(A)→ HHn−1(A)→ . . . .
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Therefore, in order to get back to gl(A), one needs to identify a homology
theory associated to A which is a graded Hopf algebra whose primitives are the
Hochschild groups HH•(A). This is the Leibniz homology of gl(A) according
to the Loday-Cuvier Theorem:

HL•(gl(A),Q) ' T (HH•−1(A)),

where T denotes the tensor algebra. From here, Loday drew his interest in
Leibniz algebras. Thus Loday thought that in case one found an algebraic
structure integrating Leibniz algebra (”coquecigrue problem”), its homology
theory should then quantify the failure of periodicity of algebraic K-theory. The
coquecigrue problem is at the heart of search of the relations between Leibniz
algebras and racks. Loday exposed in [19] different properties such a Leibniz K-
theory should have. My former thesis student Simon Covez showed in [24] that
rack homology has all these properties but one (in fact, rack homology does not
give the correct answer on abelian groups). Moreover, Simon Covez [7] showed
in his thesis how the relation between rack cohomology and Leibniz cohomology
permits to give a functorial answer (in terms of integration of cocycles) to the
coquecigrue problem.

Let R be a rack and A be an R-module. Let us define a cochain complex
(CRn(R,A), dnR)n∈N by

CRn(R,A) := HomSet(R
n, A),

and

dn+1
R f :=

n+1∑
i=1

(−1)i(dn+1
i,0 f − dn+1

i,1 f),

where

dn+1
i,0 f(x1, . . . , xn+1) := f(x1, . . . , xi−1, xi B xi+1, . . . , xi B xn+1),

and

dn+1
i,1 f(x1, . . . , xn+1) := (x1 B . . .B xi) · f(x1, . . . , xi−1, xi+1, . . . , xn+1).

Here x1B. . .Bxi denotes by definition the composition cx1
◦. . .◦cxi denoting

the bijections cx : R→ R, cx(y) := xB y.
The fact that dnR ◦ d

n−1
R = 0 for all n ≥ 1 comes from the cubical identities,

i.e.
dn+1
i,ε ◦ d

n
j−1,ω = dj,ω ◦ dni,ε

for all 1 ≤ i < j ≤ n + 1 and all ε, ω ∈ {0, 1}. The cohomology associated to
this chain complex is called the rack cohomology of R with coefficients in A and
denoted HR•(R,A).

The two properties about the conjectural Leibniz K-theory which Loday
conjectured and which Covez proves in [6] are:

Theorem 3.1 (Covez 2012). Let R be a rack, G a group and A an associative
algebra viewed as a trivial R- and G-module. Then
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(a) HR•(R,A) is a graded dendriform algebra (and therefore becomes a graded
associative algebra).

(b) There exists a morphism of graded algebras

H•(G,A)→ HR•(Conj(G), A)

which is injective for • = 1.

The proofs of these two properties are very technical (in fact combinatorial).
The main idea is to view the cochain complex of rack cohomology as the cubical
nerve of a certain trunk associated to R. The rough explanation is the following:
exactly as one may associate to a group G a simplicial object (the nerve of a
certain category associated to G, leading to the classifying space BG), one may
associate to a rack R a cubical object which is the nerve of a certain trunk
associated to R. All the properties are shown as combinatorial properties on
this cubical object.

Let us draw attention to the fact, shown and used by Simon Covez in his inte-
gration procedure of R-Leibniz algebras into local Lie racks, that Kinyon’s map
from Lie racks to their tangent Leibniz algebras induces a map in cohomology,
see [7].

A more recent development in this area is the collaboration Covez, Farinati,
Lebed and Manchon [8]. They show (drawing also on earlier work by Serre
(1951), Baues (1998), Clauwens (2011), Covez (2012) and Lebed (2017)) that:

Theorem 3.2 (CFLM 2019). (1) The rack cohomology complex with the cup
product is a dg associative graded commutative algebra up to an explicit
homotopy.

(2) The rack cohomology is associative and graded commutative.

(3) In fact, the complex is dendriform and Zinbiel up to an explicit homotopy.

This new approach is based on a certain dg bialgebra

B(R) := Z(x, ey |x, y ∈ R) / 〈(xB y)x− xy, exByx− xey〉,

with ex of degree 1, x of degree zero for x ∈ R, dx = 0, dex = 1− x, x set-like,
ex primitive and ε(ex) = 0, ε(x) = 1.

Furthermore, B(R) is a dg As(R)-bimodule (by multiplication on the left and
on the right). The authors obtain their results by expressing rack homology with
trivial coefficients and with coefficients in the monoid associated to R in terms
of the homology of a quotient B(R) of B(R), resp. B(R) itself.

3.2 Cohomology of Leibniz algebras

The definition of the (co)homology of Leibniz algebras is due to J.-L. Loday
(from his search of quantifying the failure of periodicity of algebraic K-theory)
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and T. Pirashvili, see [18]. We will report in this section on results from [9] (co-
homology of semi-simple Leibniz algebras) and ongoing work with Jörg Feldvoss
on the cohomology of nilpotent Leibniz algebras.

Recall that a (left) Leibniz algebra h is a K-vector space with a bracket
which is a derivation of itself, i.e. for all x, y, z ∈ h, we have:

[x, [y, z]] = [[x, y], z + [y, [x, z]].

The ideal of squares (generated by the [x, x] for x ∈ h) of h is denoted Q(h),
and the resulting quotient Lie algebra is denoted hLie := h /Q(h).

We will briefly discuss left modules and bimodules of left Leibniz algebras.
Let h be a left Leibniz algebra over a field K. A left h-module is a vector space
M over K with an K-bilinear left h-action h ×M → M , (x,m) 7→ x ·m such
that

(xy) ·m = x · (y ·m)− y · (x ·m) (37)

is satisfied for every m ∈M and all x, y ∈ h.
Every left h-module is an hLie-module, and vice versa. Therefore left Leibniz

modules are sometimes called Lie modules. Consequently, many properties of
left Leibniz modules follow from the corresponding properties of modules for
the canonical Lie algebra.

The correct concept of a module for a left Leibniz algebra h is the notion
of a Leibniz bimodule. An h-bimodule is a left h-module M with an K-bilinear
right h-action M × h→M , (m,x) 7→ m · x such that

(x ·m) · y = x · (m · y)−m · (xy) (38)

and
(m · x) · y = m · (xy)− x · (m · y) (39)

are satisfied for every m ∈M and all x, y ∈ h. In fact, all three identities (37),
(38), and (39) are instances of the left Leibniz identity, written down for the
left Leibniz algebra h ⊕M which is considered as an abelian extension in the
theory of non-associative algebras, where the element m coccurs on the right,
in the middle, or on the left, respectively.

The usual definitions of the notions of sub-(bi)module, irreducibility , com-
plete reducibility , composition series, homomorphism, isomorphism, etc., hold
for left Leibniz modules and Leibniz bimodules.

Let h be a left Leibniz algebra over a field K, and let M be an h-bimodule.
Then M is said to be symmetric if m · x = −x ·m for every x ∈ h and every
m ∈ M , and M is said to be anti-symmetric if m · x = 0 for every x ∈ h and
every m ∈M . We call

M0 := 〈x ·m+m · x | x ∈ h,m ∈M〉F

the anti-symmetric kernel of M . It is known that M0 is an anti-symmetric
h-sub-bimodule of M such that Msym := M/M0 is symmetric, i.e. for every
Leibniz h-bimodule M , we have an exact sequence:

0→M0 →M →Msym → 0. (40)
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Recall that every left h-module M of a left Leibniz algebra h determines a
unique symmetric h-bimodule structure on M by defining m · x := −x ·m for
every element m ∈M and every element x ∈ h. We will denote this symmetric
h-bimodule by Ms. Similarly, every left h-module M with trivial right action is
an anti-symmetric h-bimodule. We will denote this module by Ma. Note that
for any irreducible left h-module M the h-bimodules Ms and Ma are irreducible,
and every irreducible h-bimodule arises in this way from an irreducible left h-
module (using the exact sequence 40).

Now let M be an h-bimodule and for any non-negative integer n consider
the linear map dn : CLn(h,M)→ CLn+1(h,M) defined by

(dnf)(x1, . . . , xn+1) :=

n∑
i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn) · xn+1

+
∑

1≤i<j≤n+1

(−1)if(x1, . . . , x̂i, . . . , [xi, xj ], . . . , xn+1)

for any f ∈ CLn(h,M) and all elements x1, . . . , xn+1 ∈ h, where the term [xi, xj ]
appears in the j-th position.

It is readily proved that CL•(h,M) := (CLn(h,M),dn)n∈N0
is a cochain com-

plex, i.e., dn+1 ◦dn = 0 for every non-negative integer n. Of course, the original
idea of defining Leibniz cohomology as the cohomology of such a cochain com-
plex for right Leibniz algebras is due to Loday and Pirashvili [18, Section 1.8].
Hence one can define the cohomology of h with coefficients in an h-bimodule M
by

HLn(h,M) := Hn(CL•(h,M)) := ker(dn)/ im(dn−1)

for every non-negative integer n. (In this definition we use that d−1 := 0.)
We now come to the cohomology results of [9] and the ongoing work with

Jörg Feldvoss on the cohomology of nilpotent Leibniz algebras. All Leibniz
algebras in the following will be finite dimensional.

Recall that a left Leibniz algebra h is called semi-simple if Q(h) contains
every solvable ideal of h. In particular, a finite-dimensional left Leibniz algebra
h is semi-simple if, and only if, Q(h) = rad(h), where rad(h) denotes the largest
solvable ideal of h. Moreover, a left Leibniz algebra h is semi-simple if, and only
if, the canonical Lie algebra hLie associated to h is semi-simple.

Using Pirashvili’s spectral sequence [21] for the computation of Leibniz co-
homology, we show:

Theorem 3.3. Let h be a finite-dimensional semi-simple left Leibniz algebra
over a field of characteristic zero, and let M be a finite-dimensional h-bimodule.
Then HLn(h,M) = 0 for every integer n ≥ 2, and there is a five-term exact
sequence

0→M0 → HL0(h,M)→MhLie
sym → Homh(had,M0)→ HL1(h,M)→ 0 .

Moreover, if M is symmetric, then HLn(h,M) = 0 for every integer n ≥ 1.
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I will not discuss this theorem in more detail, because I had already given a
talk on this theorem at Jilin in december 2020.

Our more recent results are on nilpotent Leibniz algebras, we have notably a
vanishing theorem for the cohomology of nilpotent Leibniz algebras. For this, we
need a Fitting decomposition for a Leibniz h-bimodule M for a Leibniz algebra
h. For a subset S ⊂ h, denote the Fitting components of M by M0(λs) :=⋃
n≥1 ker(λns ) and M1(λs) :=

⋂
n≥1 im(λns ) with respect to the endomorphism

λs given by the left operation by s ∈ S. Define then the Fitting components
with respect to S:

M0(S) :=
⋂
s∈S

M0(λs)

and
M1(S) :=

∑
s∈S

M1(λs) .

Proposition 3.4. Let h be a left Leibniz algebra over a field F, and let M be
a h-bimodule with associated representation (λ, µ). If S is a subset of h such
that the left bracket operator Ls : h→ h, x 7→ [s, x] is locally nilpotent for every
element s ∈ S, then the following statements hold:

(a) M0(S) is an h-subbimodule of M .

(b) Every element of S acts locally nilpotently on M0(S) from the left and
from the right.

Moreover, if dimKM <∞, then

(c) M1(S) is an h-subbimodule of M .

(d) M = M0(S)⊕M1(S).

From this, we will now deduce a cohomology vanishing theorem.

Lemma 3.5. Let V and W be left modules over a left Leibniz algebra h. If x
is an element of h such that

(i) x acts locally nilpotently on V , and

(ii) x acts invertibly on W ,

then x acts invertibly on HomK(V,W ).

The next two results are the Leibniz analogues of results that Farnsteiner
obtained for Hochschild cohomology.

Proposition 3.6. Let h be a left Leibniz algebra, and let M be an h-bimodule
with associated representation (λ, µ). If a is an element of h such that

(i) La : h→ h, x 7→ [a, x] is locally nilpotent, and
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(ii) λa : M →M is invertible,

then HLn(h,M) = 0 for every non-negative integer n.

Proposition 3.7. Let h be a left Leibniz algebra over a field K, and let M be
an h-bimodule. If S is a subset of h such that

(i) Ls : h→ h, x 7→ [s, x] is locally nilpotent for every element s ∈ S, and

(ii) dimKM/M0(S) <∞,

then HLn(h,M) ∼= HLn(h,M0(S)) (as K-vector spaces) for every non-negative
integer n.

Recall that a Leibniz algebra h is called nilpotent if there exists a positive
integer n such that any iterated bracket of n elements in h, no matter how
associated, is zero. Let h be a left Leibniz algebra. Then the left descending
central series

1h ⊇ 2h ⊇ 3h ⊇ · · ·

of h is defined recursively by 1h := h and n+1h := [h, nh] for every positive
integer n. It is clear that a Leibniz algebra is nilpotent if and only if there
exists an n ≥ 1 such that nh = 0. The following immediate consequence of
Proposition 3.7 is a first cohomology vanishing result for Leibniz cohomology
with respect to a nilpotent subalgebra:

Theorem 3.8. Let h be a left Leibniz algebra over a field K, and let n be a
nilpotent left ideal of h. If M is an h-bimodule such that dimKM/M0(n) < ∞,
then HLn(h,M) ∼= HLn(h,M0(n)) (as K-vector spaces) for every non-negative
integer n.

As a consequence of the previous result we obtain the following vanishing
theorem for Leibniz cohomology.

Corollary 3.9. Let h be a left Leibniz algebra, and let n be a nilpotent left
ideal of h. If M is a finite-dimensional h-bimodule such that Mn = 0, then
HLn(h,M) = 0 for every non-negative integer n.

Theorem 3.10. Let h be a finite-dimensional nilpotent Leibniz algebra, and
let M be a finite-dimensional h-bimodule. If every composition factor of M is
non-trivial, then

HLn(h,M) ∼=
{
M0 if n = 0
0 if n ≥ 1 .

Moreover, if M is symmetric, then HLn(h,M) = 0 for every non-negative inte-
ger n.

As a sample computation, we have for example completely determined the
cohomology of the trivial 1-dimensional Leibniz algebra:
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Proposition 3.11. Let h := Ke be the one-dimensional Lie algebra, and let M
be a Leibniz h-bimodule. Then

HLn(h,M) ∼=

 Mh if n = 0
M0/Mh if n is odd
Mh/M0 if n is even and n 6= 0

(as K-vector spaces) for every non-negative integer n, where

M0 := {m ∈M | e ·m+m · e = 0} .

Moreover, if M is finite dimensional, then

M0/Mh ∼= Mh/M0

(as K-vector spaces).

In the same spirit as Dixmier for nilpotent Lie algebras, we also have a
non-vanishing theorem, but this is a different story.

3.3 Cohomology of rack bialgebras

In this last section, we will report on the deformation cohomology of rack bialge-
bras following [2]. Let (R,4, ε, µ,1) denote a cocommutative rack-bialgebra
over K, and let us also use the notation µ(r⊗s) with the map µ : R×R→ R for
the rack product rB s of two elements r and s of R. We will use the n-iterated
comultiplication of r in R:

r(1) ⊗ · · · ⊗ r(n) := (4⊗ Id⊗n−1) ◦ · · · ◦ 4(r),

where we write the Sweedler index now on top of the elements, instead of writing
it as a subscript.

Let K~ = K[[~]] denote the K-algebra of formal power series in the inde-
terminate ~ with coefficients in K. If V is a vector space over K, V~ stands
for V[[~]]. Recall that if W is a K-module, a K~-linear morphism from V~ to
W~ is the same as a power series in ~ with coefficients in HomK(V,W ) via the
canonical map

HomK~(V~,W~) ∼= HomK(V,W )~.

This identification will be used without extra mention in the following.

Definition 3.12. A formal deformation of the rack product µ is a formal
power series µ~

µ~ :=
∑
n≥0

~nµn

in HomK(R⊗R,R)~, such that

1. µ0 = µ,
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2. (R~,4, ε, µ~,1) is a rack bialgebra over K~.

As in the classical setting of deformation theory of associatice products, we
will relate our deformation theory of rack products to cohomology. For this, let
us first examine an introductory example:

Example 3.13. Let (R,B) be a rack bialgebra, and suppose there exists a de-
formation B~ = B + ~ω of B. The new rack product B~ should satisfy the
self-distributivity identity, i.e. for all a, b, c ∈ R

aB~ (bB~ c) = (a(1) B~ b) B~ (a(2) B~ c)

To the order ~0, this is only the self-distributivity relation for B. But to order
~1 (neglecting order ~2 and higher), we obtain:

ω(a, bBc)+aBω(b, c) = ω(a(1)Bb, a(2)Bc)+ω(a(1), b)B(a(2)Bc)+(a(1)Bb)Bω(a(2), c).

It will turn out that this is the cocycle condition for ω in the deformation complex
which we are going to define. More precisely, we will have

1. d2,0ω(a, b, c) = ω(a, bB c),

2. d1,1ω(a, b, c) = aB ω(b, c),

3. d1,0ω(a, b, c) = ω(a(1) B b, a(2) B c),

4. d2
3ω(a, b, c) = ω(a(1), b) B (a(2) B c),

5. d2,1ω(a, b, c) = (a(1) B b) B ω((a(2), c).

This may perhaps help to understand the general definition of the operators dni,µ
for i = 1, . . . , n and µ ∈ {0, 1} further down.

On the other hand, the requirement that B~ should be a morphism of coal-
gebras (with respect to the undeformed coproduct 4 of R) means

4 ◦B~ = (B~ ⊗B~) ◦ 4[2].

This reads for a, b ∈ R to the order ~ (neglecting higher powers of ~) as

ω(a, b)(1) ⊗ ω(a, b)(2) = ω(a(1), b(1))⊗ (a(2) B b(2)) + (a(1) B b(1))⊗ ω(a(2), b(2)).

This is exactly the requirement that ω is a coderivation along B = µ, to be
defined below.

Recall that R being a rack bialgebra means in particular that µ : R⊗2 → R
is a morphism of coassociative coalgebras. For all positive integer n, let µn :
R⊗n → R be the linear map defined inductively by setting

• µ1 := Id : R→ R,

• µ2 := µ : R⊗2 → R,
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• µn := µ ◦ (µ1 ⊗ µn−1), n ≥ 3,

so that
µn(r1, · · · , rn) = r1 B (r2 B (· · ·B (rn−1 B rn) · · · ))

for all r1, . . . , rn in R.

Proposition 3.14. For all n ≥ 1, the map µn is a morphism of coalgebras
satisfying

µi(r
(1)
1 ,· · ·, r(1)

i−1, ri) B µn−1(r
(2)
1 ,· · ·, r(2)

i−1, ri+1,· · ·, rn) = µn(r1,· · ·, rn), (41)

µn(r1, · · · , ri−1, r
(1)
i B ri+1, · · · , r(n+1−i)

i B rn+1) = µn+1(r1, · · · , rn+1)

(42)

for all positive integers i and n such that 1 ≤ i < n and for all r1, ..., rn in R.

Proof. • Eqn. (41): Let us show that the assertion of Equation (41) is true
for all n and i with 1 ≤ i < n by induction over i. Suppose that the
induction hypothesis is true and compute

µi(r
(1)
1 ,· · ·, r(1)

i , ri+1) B µn−1(r
(2)
1 ,· · ·, r(2)

i , ri+2,· · ·, rn)(
r

(1)
1 B µi(r

(1)
2 ,· · ·, r(1)

i , ri+1)
)
B
(
r

(2)
1 B µn−2(r

(2)
2 ,· · ·, r(2)

i , ri+2,· · ·, rn)
)
,

which gives, Thanks to the self-distributivity relation in the rack algebra
R,

r1 B
(
µi(r

(1)
2 ,· · ·, r(1)

i , ri+1) B µn−2(r
(2)
2 ,· · ·, r(2)

i , ri+2,· · ·, rn)
)

= r1 B µn−1(r2,· · ·, rn) = µn(r1, · · · , rn),

where we have used the induction hypothesis. This proves the assertion.

• Eqn. (42): The assertion follows here again from induction using the
self-distributivity relation.

If (C,4C) and (D,4D) are two coassociative coalgebras and φ : C → D
is a morphism of coalgebras, we denote by Coder(C, V, φ) the vector space of
coderivations from C to V along φ, i.e. the vector space of linear maps f : C →
D such that

4D ◦ f = (f ⊗ φ+ φ⊗ f) ◦ 4C
Let us note the following permanence property of coderivations along a map

under partial convolution which will be useful in the proof of the following
theorem. For a coalgebra A, maps f : A ⊗ B → V and g : A ⊗ C → V and
some product B : V ⊗ V → V , the partial convolution of f and g is the map
f ?part g : A⊗B ⊗ C → V defined for all a ∈ A, b ∈ B and c ∈ C by

(f ?part g)(a⊗ b⊗ c) := f(a(1) ⊗ b) B g(a(2) ⊗ c).
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Lemma 3.15. Let A, B, C and V be coalgebras, V carrying a product B which
is supposed to be a coalgebra morphism. Let f : A ⊗ B → V be a coderiva-
tion along φ and g : A ⊗ C → V be a coalgebra morphism. Then the partial
convolution f ?part g is a coderivation along φ ?part g.

Proof. We compute for all a ∈ A, b ∈ B and c ∈ C

4V ◦ (f ?part g)(a⊗ b⊗ c) = 4V (f(a(1) ⊗ b) B g(a(2) ⊗ c))
= (f(a(1) ⊗ b))(1) B (g(a(2) ⊗ c))(1) ⊗ (f(a(1) ⊗ b))(2) B (g(a(2) ⊗ c))(2)

= (f(a(1) ⊗ b))(1) B g(a(2) ⊗ c(1))⊗ (f(a(1) ⊗ b))(2) B g(a(3) ⊗ c(2))

= φ(a(1) ⊗ b(1)) B g(a(2) ⊗ c(1))⊗ f(a(3) ⊗ b(2)) B g(a(4) ⊗ c(2)) +

+f(a(1) ⊗ b(1)) B g(a(2) ⊗ c(1))⊗ φ(a(3) ⊗ b(2)) B g(a(4) ⊗ c(2))

= (φ ?part g)(a(1) ⊗ b(1) ⊗ c(1))⊗ (f ?part g)(a(2) ⊗ b(2) ⊗ c(2)) +

+(f ?part g)(a(1) ⊗ b(1) ⊗ c(1))⊗ (φ ?part g)(a(2) ⊗ b(2) ⊗ c(2))

=
(
(φ ?part g)⊗ (f ?part g) + (f ?part g)⊗ (φ ?part g)

)
◦ 4A⊗B⊗C(a⊗ b⊗ c).

Definition 3.16. The deformation complex of R is the graded vector space
C•(R;R) defined in degree n by

Cn(R;R) := Coder(R⊗n, R, µn)

endowed with the differential dR : C∗(R;R) → C∗+1(R;R) defined in degree n
by

dnR :=

n∑
i=1

(−1)i+1(dni,1 − dni,0) + (−1)n+1dnn+1

where the maps dni,1 and dni,0 are defined respectively by

dni,1ω(r1, · · · , rn+1) :=
∑

(r1),··· ,(ri)

µi(r
(1)
1 , · · · , r(1)

i−1, ri)Bω(r
(2)
1 , · · · , r(2)

i−1, ri+1, · · · , rn+1)

and

dni,0ω(r1, · · · , rn+1) :=
∑
(ri)

ω(r1, · · · , ri−1, r
(1)
i B ri+1, · · · , r(n+1−i)

i B rn+1)

and dnn+1 by

dnn+1ω(r1, · · · , rn+1)

:=
∑

(r1),··· ,(rn−1)

ω(r
(1)
1 , · · · , r(1)

n−1, rn) B µn(r
(2)
1 , · · · , r(2)

n−1, rn+1)

for all ω in Cn(R;R) and r1, . . . , rn+1 in R.

Theorem 3.17. dR is a well defined differential.
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Proof. That dR is well defined means that it sends coderivations to coderiva-
tions. It suffices to show that this is already true for all maps dni,1, dni,0 and dnn+1,
which is the case. For this, we use Lemma 3.15. Indeed, a cochain ω ∈ Cn(R;R)
is a coderivation along µn. By Proposition 3.14, µn is a coalgebra morphism.
On the other hand, it is clear from the formula for dni,1 that dni,1 is a partial

convolution with respect to the first i − 1 tensor labels of µi and ω. Therefore
the Lemma applies to give that the result is a coderivation along the partial
convolution of µi and µn, which is just µn+1 again by Proposition 3.14. This
shows that dni,1ω belongs to Coder(R⊗n, R, µn+1) as expected. The maps dni,0
and dnn+1 can be treated in a similar way.

The fact that dR squares to zero is again related to the cubical identities
satisfied by the maps di,1 and the maps di,0, namely

dn+1
j,µ ◦ d

n
i,ν = dn+1

i+1,ν ◦ d
n
j,µ for j ≤ i and µ, ν ∈ {0, 1},

and auxiliary identities which express the compatibility of the maps di,1 and di,0
with dnn+1, and an identity involving dnn+1 and dn+1

n+2. In fact, C•(R,R) becomes
an augmented cubical vector space.

We will not show the usual cubical relations, i.e. those which do not refer
to the auxiliary coboundary map dnn+1, because these are well-known to hold
for rack cohomology, see [6], Corollary 3.12, and our case is easily adapted from
there.

Let us show that the two following extra relations involving the extra face
dnn+1 hold:

dn+1
i,µ ◦ d

n
n+1 = dn+1

n+2 ◦ dni,µ (43)

for all 1 ≤ i ≤ n and µ in {0, 1} and

dn+1
n+1,0 ◦ dnn+1 = dn+1

n+2 ◦ dnn+1 + dn+1
n+1,1 ◦ dnn+1 (44)

Indeed, if ω is a n-cochain and r1, ..., rn+2 are elements in R, then

(dn+1
i,1 ◦ d

n
n+1ω)(r1,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r(1)

i−1, ri) B dnn+1ω(r
(2)
1 ,· · ·, r(2)

i−1, ri+1, ,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r(1)

i−1, ri) B
(
ω(r

(2)
1 ,· · ·, r(2)

i−1, r
(1)
i+1, ,· · ·, r

(1)
n , rn+1)B

B µn(r
(3)
1 ,· · ·, r(3)

i−1, r
(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)
By Proposition 3.14 and the self-distributivity of the rack product, this equality
can be rewritten as

(dn+1
i,1 ◦ d

n
n+1ω)(r1,· · ·, rn+2)

=
(
µi(r

(1)
1 ,· · ·, r(1)

i−1, r
(1)
i ) B ω(r

(2)
1 ,· · ·, r(2)

i−1, r
(1)
i+1, ,· · ·, r

(1)
n , rn+1)

)
B

B
(
µi(r

(3)
1 ,· · ·, r(3)

i−1, r
(2)
i ) B µn(r

(4)
1 ,· · ·, r(4)

i−1, r
(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)
= dni,1ω(r

(1)
1 ,· · ·, r(1)

n , rn+1) B µn(r
(2)
1 ,· · ·, r(2)

n , rn+2)

= (dn+1
n+2 ◦ dni,1ω)(r1, · · · , rn+2),
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which proves that Relation (43) holds when µ = 1. The case µ = 0 goes as
follows:

(dn+1
i,0 ◦d

n
n+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , ri−1, r

(1)
i B ri+1, · · · , r(n+2−i)

i B rn+2)

=ω(r
(1)
1 ,· · ·, r(1)

i−1, r
(1)
i B r

(1)
i+1,· · ·, r

(n−i)
i B r(1)

n , r
(n+1−i)
i B rn+1) : B

B µn(r
(2)
1 ,· · ·, r(2)

i−1, r
(n+2−i)
i B r

(2)
i+1,· · ·, r

(2n−2i+1)
i B r(2)

n , r
(2n−2i+2)
i B rn+2)

where we have used that the rack product is a morphism of coalgebras. Recall
the following equation from Proposition 3.14:

µn(s1, · · · , si−1, s
(1)
i B si+1, · · · , s(n+1−i)

i B sn+1) = µn+1(s1, · · · , sn+1)

for all s1, ..., sn+1 in R and 1 ≤ i ≤ n. This allows to rewrite the preceeding
equality as

(dn+1
i,0 ◦d

n
n+1ω)(r1, · · · , rn+2)

=ω(r
(1)
1 ,· · ·, r(1)

i−1, r
(1)
i B r

(1)
i+1,· · ·, r

(n−i)
i B r(1)

n , r
(n+1−i)
i B rn+1) : B

B µn+1(r
(2)
1 ,· · ·, r(2)

i−1, r
(n+2−i)
i , r

(2)
i+1,· · ·, r

(2)
n , rn+2)

= dni,0 : ω(r
(1)
1 ,· · ·, r(1)

n , rn+1) : B : µn+1(r
(2)
1 ,· · ·, r(2)

n , rn+2)

= (dn+1
n+2 ◦ dni,0)(r1, · · · , rn+2)

which proves that (43) holds when µ = 0. Relation (44) relies on the fact that
cochains are coderivations. Indeed,

(dn+1
n+1,0◦dnn+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , rn, rn+1 B rn+2)

=ω(r
(1)
1 , · · · , r(1)

n−1, rn) B µn(r
(2)
1 , · · · , r(2)

n−1, rn+1 B rn+2)

=ω(r
(1)
1 , · · · , r(1)

n−1, rn) B µn+1(r
(2)
1 , · · · , r(2)

n−1, rn+1, rn+2)

=ω(r
(1)
1 , · · · , r(1)

n−1, rn) B
(
µn(r

(2)
1 , · · · , r(2)

n−1, rn+1) B µn(r
(3)
1 , · · · , r(3)

n−1, rn+2)
)

where we have used Proposition 3.14 in the last equality. By self-distributivity
of B and because ω is a coderivation, this gives

(dn+1
n+1,0◦ dnn+1ω)(r1,· · ·, rn+2) =

(
ω(r

(1)
1 ,· · ·, r(1)

n−1, rn)(1) B µn(r
(2)
1 ,· · ·, r(2)

n−1, rn+1)
)
B(

ω(r
(1)
1 ,· · ·, r(1)

n−1, rn)(2) B µn(r
(3)
1 ,· · ·, r(3)

n−1, rn+2)
)

=
(
ω(r

(1)
1 ,· · ·, r(1)

n−1, r
(1)
n ) B µn(r

(2)
1 ,· · ·, r(2)

n−1, rn+1)
)
B(

µn(r
(3)
1 ,· · ·, r(3)

n−1, r
(2)
n ) B µn(r

(4)
1 ,· · ·, r(4)

n−1, rn+2)
)

+
(
µn(r

(1)
1 ,· · ·, r(1)

n−1, r
(1)
n ) B µn(r

(2)
1 ,· · ·, r(2)

n−1, rn+1)
)
B(

ω(r
(3)
1 ,· · ·, r(3)

n−1, r
(2)
n ) B µn(r

(4)
1 ,· · ·, r(4)

n−1, rn+2)
)
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Applying Proposition 3.14 again enables us to rewrite this last equality as

(dn+1
n+1,0◦ dnn+1ω)(r1,· · ·, rn+2)

=
(
ω(r

(1)
1 ,· · ·, r(1)

n ) B µn(r
(2)
1 ,· · ·, r(2)

n−1, rn+1)
)
B µn+1(r

(3)
1 ,· · ·, r(3)

n−1, r
(2)
n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)

n , rn+1) B
(
ω(r

(2)
1 ,· · ·, r(2)

n ) B µn(r
(3)
1 ,· · ·, r(3)

n−1, rn+2)
)

= dnn+1ω(r
(1)
1 , · · · , r(1)

n , rn+1) B µn+1(r
(2)
1 ,· · ·, r(2)

n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)

n , rn+1) B dnn+1ω(r
(2)
1 ,· · ·, r(2)

n , rn+2)

=
(
(dn+1
n+2 ◦ dnn+1 + dn+1

n+1,1 ◦ dnn+1) : ω
)
(r1, · · · , rn+2)

which proves (44).
Let us show now how dR ◦ dR = 0 can be deduced from (43), (44) and from

the cubical relations. In degree n, we have

dR ◦ dR =
( n+1∑
i=1

(−1)i+1(dn+1
i,1 − d

n+1
i,0 ) + (−1)n+2dn+1

n+2

)
◦
( n∑
i=1

(−1)i+1(dni,1− dni,0)

+ (−1)n+1dnn+1

)
=

n+1∑
i=1

n∑
j=1

(−1)i+j(dn+1
i,1 ◦ d

n
j,1 − dn+1

i,1 ◦ d
n
j,0 − dn+1

i,0 ◦ d
n
j,1 + dn+1

i,0 ◦ d
n
j,0)

+

n∑
i=1

(−1)n+i+1(dn+1
n+2 ◦ dni,1 − d

n+1
n+2 ◦ dni,0 − d

n+1
i,1 ◦ d

n
n+1 + dn+1

i,0 ◦ d
n
n+1)

− dn+1
n+2 ◦ dnn+1 − dn+1

n+1,1 ◦ dnn+1 + dn+1
n+1,0 ◦ dnn+1

The first double sum is equal to zero thanks to the cubical relations, the second
sum is zero thanks to relation (43). Relation (44) implies that the last one
vanishes. This shows that dR is indeed a differential and concludes the proof of
the proposition.

Definition 3.18. The cohomology of the deformation complex (C∗(R;R), dR) is
called the adjoint cohomology of the rack bialgebra R and is denoted by H∗(R;R).

Definition 3.19. An infinitesimal deformation of the rack product is a
deformation of the rack product over the K-algebra of dual numbers K̄~ :=
K~/(~2), i.e. a linear map µ1 : R⊗2 → R such that R̄~ := R ⊗ K̄~ is a

rack bialgebra over K̄~ when equipped with µ0 + ~µ1.
Two infinitesimal deformations µ0 +~µ1 and µ0 +~µ′1 are said to be equivalent
if there exists an automorphism φ : R̄~ → R̄~ of the coalgebra of (R̄~,4, ε) of
the form φ := idR + ~α such that

φ ◦ (µ0 + ~µ1) = (µ0 + ~µ′1) ◦ φ.

As usual, being equivalent is an equivalence relation and one has the follow-
ing cohomological interpretation of the set of equivalence classes of infinitesimal
deformations, denoted Def(µ0, K̄~):
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Proposition 3.20.
Def(µ0, K̄~) = H2(R;R)

The identificaton is obtained by sending each equivalence class [µ0 + ~µ1] in
Def(µ0, K̄~) to the cohomology class [µ1] in H2(R;R).

Proof. One checks easily that the correspondence is well defined (if µ0 + ~µ1 is
an infinitesimal deformation, then µ1 is a 2-cocycle, see Example 3.13) and that
it is bijective when restricted to equivalence classes.

Remark 3.21. (a) The choice of taking coderivations in the deformation
complex is explained as follows: The rack product µ is a morphism of
coalgebras, and we want to deform it as a morphism of coalgebras with
respect to the fixed coalgebra structure we started with. Tangent vectors
to µ in Homcoalg(C ⊗C,C) are exactly coderivations along µ. This is the
first step: Deformations as morphisms of coalgebras. Then as a second
step, we look for 1-cocycles, meaning that we determine those morphisms
of coalgebras which give rise to rack bialgebra structures. The deforma-
tion complex in [5] takes into account also the possibility of deforming the
coalgebra structure, and we recover our complex by restriction.

(b) Given a Leibniz algebra h, there is a natural restriction map from the coho-
mology complex with adjoint coefficients of h to the deformation complex
of its augmented enveloping rack bialgebra UAR(h). The induced map in
cohomology is not necessarily an isomorphism, as the abelian case shows.
Observe that the deformation complex of the rack bialgebra KR for a rack
R does not contain the complex of rack cohomology for two reasons: First,
this latter complex is ill-defined for adjoint coefficients, and second, there
are not enough coderivations as all elements are set-like. A way out for
this last problem would be to pass to completions.

Despite of this last remark, there is a relation between the cohomology of
rack bialgebras and the cohomology of Leibniz algebras, see [16]:

Theorem 3.22. Consider the rack bialgebra C = K⊕ h associated to a Leibniz
algebra h, see Example 2.25. The Leibniz cohomology complex with values in
the adjoint representation embeds into the deformation complex (C∗(C;C), d∗C)
defined above.

Proof. We extend Leibniz cochains f : h⊗n → h to cochains in the complex
C∗(C,C) with C = K ·1⊕h by setting them zero on all components in K ·1 ⊂ C.
More precisely

ω((λ1, x1), . . . , (λn, xn)) := prh(f(x1, . . . , xn)),

for (λi, xi) ∈ k · 1⊕ h for all i = 1, . . . , n and with prh : k · 1⊕ h→ h the natural
projection.

With this definition, it follows that these cochains are coderivations along
µn, i.e.

4C ◦ ω = (ω ⊗ µn + µn ⊗ ω) ◦ 4C⊗n .
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Indeed, when computing the iterated coproduct 4C⊗n(r1, . . . , rn), the elements
ri ∈ h are distributed among the two factors in C⊗n ⊗ C⊗n and all other
components are filled with units. On the LHS, ω(r1, . . . , rn) is primitive by
construction, thus we get the two terms ω(r1, . . . , rn)⊗1+1⊗ω(r1, . . . , rn). On
the RHS, the only terms which do not vanish are those with all ri as arguments
in ω. This shows the equality.

Now we specify the different parts of the coboundary operator. We remind
the reader that we write here the Sweedler indices above the elements as super-
scripts in order to distinguish them from the indices enumerating the elements.

dni,1ω(r1, . . . , rn+1) =

µi(r
(1)
1 , . . . , r

(1)
i−1, ri) B ω(r

(2)
1 , . . . , r

(2)
i−1, ri+1, . . . , rn+1)

= [ri, ω(r1, . . . , ri−1, ri+1, . . . , rn+1)],

because the only contributing term is the one where all rj are arguments of ω,
i.e. all the units are in µi.

dnj,0ω(r1, . . . , rn+1) = ω(r1, . . . , rj−1, r
(1)
j B rj+1, . . . , r

(n+1−j)
j B rn+1)

= ω(r1, . . . , rj−1, [rj , rj+1], rj+2, . . . , rn+1) + . . .

. . . + ω(r1, . . . , [rj , rn+1]),

because only one of the r
(k)
j is equal to rj and all others are equal to 1.

dnn+1ω(r1, . . . , rn+1)

= ω(r
(1)
1 , . . . , r

(1)
n−1, rn) B µn(r

(2)
1 , . . . , r

(2)
n−1, rn+1)

= [ω(r1, . . . , rn), rn+1],

because this is the only term where one does not insert 1 into ω. Thus it is clear
that this gives the Loday coboundary operator on Leibniz cohomology.

In total, we therefore have a map linking the cohomology of a Lie rack to
the cohomology of its tangent Leibniz algebra, and a map from Leibniz coho-
mology of a Leibniz algebra h to the rack bialgebra cohomology of the rack
bialgebra K⊕ h. Simon Covez shows how to integrate Leibniz cocycles to rack
cocycles in some very special cases [7]. Up to our knowledge, other links be-
tween these cohomologies are not known and yet to be discovered ! In order
to do so, it is certainly important to consider these cohomologies together with
their links to the classical structure, i.e. rack cohomology (of a group) together
with the natural morphism from group cohomology (Simon Covez [6]), Leibniz
cohomology (of a Lie algebra) with its natural links to Lie algebra cohomology
(Teimuraz Pirashvili [21]) and also rack bialgebra cohomology (of a cocommuta-
tive Hopf algebra) with a morphism to/from associative bialgebra cohomology
(Gerstenhaber-Schack cohomology). Some more remarks in this direction are
included at the end of [16].
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4 Final remarks and outlook

In order to relate these three cohomologies, one way is to take up one level of
abstraction. The cohomology of Leibniz algebras is the operadic cohomology,
related to the operad Leib, see [20]. The rack cohomology is also a Quillen
cohomology, see [24]. When considering rack bialgebras, one has to consider
properads, more general than operads (exactly as for associative bialgebras). I
have a student trying to show that the properad of rack bialgebras is homotopy
Koszul (which would then imply the existence of a good resolution and a con-
ceptual way to define cohomology), but it seems this is a difficult problem. It
would be interesting to have conceptual relations on the level of operads, prop-
erads or more generally monads (in order to include the case of racks) between
these structures which would explain the relations observed above which make
racks, Leibniz algebras and rack bialgebras so seemingly close to groups, Lie
algebras and associative bialgebras.

Another related axis of research are the associated representation categories.
For example, the adjunction between G-modules and ZG-bimodules for a group
G, given by the forgetful functor U towards G-modules and the tensoring by
ZG towards ZG-bimodules, induces isomorphisms in cohomology

HHn(ZG,M) ∼= Hn(G,U(M))

for all n ≥ 0. In order to prove this, one passes through the Ext interpretation of
these cohomologies and shows that the adjunction induces a derived adjunction
(on the level of derived categories). This shows that adjunctions between the
representation categories can be useful in the search of relating the cohomologies.
It is interesting to note that this reasoning does not work for racks and rack
bialgebras. It seems that the correct way to relate racks to rack bialgebras
passes through Lie racks R and distributions supported in 1 ∈ R.

One issue in order to relate the representation categories is the existence
of an antipode for rack bialgebras. The correct definition of such an antipode
and the implications of its existence are also a promising direction of further
research.

Last but not least, it would be interesting to have a theory of Malcev com-
pletions for racks, rack bialgebras and Leibniz algebras in the spirit of what is
known for groups, associative bialgebras and Lie algebras as in Appendix A of
[22]. In fact, one would dream of Leibniz models for rational homotopy theory
which would be related to cubical simplicial sets like in Figure 1 (p. 211) of [22].
Some of the ingredients in the Leibniz version of this chain of Quillen adjoint
functors are already available.
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