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Abstract. We study the regularity of stationary and time-dependent solutions to strong
perturbations of the free Schrödinger equation on two-dimensional flat tori. This is
achieved by performing a second microlocalization related to the size of the perturba-
tion and by analysing concentration and nonconcentration properties at this new scale.
In particular, we show that sufficiently accurate quasimodes can only concentrate on the
set of critical points of the average of the potential along closed geodesics.

1. Introduction

The high-frequency analysis of eigenfunctions of elliptic operators on a compact Rie-
mannian manifold has been the subject of intensive study in the past fifty years. To this
day, many questions remain open, even in the simplest cases. Here we focus on eigen-
functions of Schrödinger operators on Td := Rd/Zd, the standard torus endowed with its
canonical metric. Eigenfunctions of a Schrödinger operator on Td are the solutions to the
equation:

(1) −∆uλ(x) + V (x)uλ(x) = λ2uλ(x), x ∈ Td, ‖uλ‖L2(Td) = 1,

where the potential V is real-valued and essentially bounded. In the free case V = 0, a
straightforward computation shows that eigenfunctions of eigenvalue λ2 are linear combi-
nations of complex exponentials e2iπk.x with frequencies k ∈ Zd lying on a circle of radius
λ/(2π) > 0 centered at the origin. However, extracting from this exact representation
formula an asymptotic description of eigenfuctions in the high frequency limit λ → +∞
is a hard problem, due to the fact that multiplicities of large eigenvalues can also be very
big. Instead, one can try to describe particular features of high-frequency eigenfunctions,
such as formation of (asymtotic) singularities.

A natural way to quantify these singularities is through the scale of Lp spaces. This has
been a classical topic in harmonic analysis, that originates with the seminal result of Zyg-
mund [30] showing that, for d = 2 and in the free case, there exists some universal constant
C such that any solution uλ of (1) verifies ‖uλ‖L4(T2) ≤ C. Later on, Bourgain conjectured
in [7] that, again for the free case and when d ≥ 3, one must have ‖uλ‖

L
2d
d−2 (Td)

≤ Cδλ
δ

for every δ > 0. We refer the reader to [8, 10] for recent progress towards this conjecture.
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Note that the problem of showing the existence of an index p > 2 such that ‖uλ‖Lp(Td) is
uniformly bounded remains open for d ≥ 3.

There are alternative ways to describe the asymptotic structure of the solutions of (1).
For instance, notice that a direct corollary of Zygmund’s result is that, in the free case,
any accumulation point of the sequence of probability measures,

νλ(dx) = |uλ(x)|2dx,
is a probability measure which is absolutely continuous with respect to the Lebesgue mea-
sure on T2 (it has in fact an L2 density). This result was refined by Jakobson who showed
that the density has to be a trigonometric polynomial whose frequencies enjoy certain geo-
metric constraints [17]. It is natural to try to understand what happens when d ≥ 3, where
no analogue to Zygmund’s result is known to hold, or when the Laplacian is perturbed by
a lower order term, such as a potential. Note that the problem of identifying accumula-
tion points of sequences of moduli squares of eigenfunctions has a long history and it is
connected to fundamental questions in quantum mechanics.

In dimension d ≥ 3 and for V = 0, Bourgain proved that any accumulation point has
to be absolutely continuous even if we do not know a priori that the Lp norms of eigen-
functions are uniformly bounded for small p > 2, this result was reported in [17]. In the
same reference, Jakobson obtained partial results on the structure of the densities of accu-
mulation points. These results are based on harmonic analysis techniques and arguments
on the geometry of lattice points. Absolute continuity of accumulation points also holds
in the case of a non-zero potential V ∈ L∞(Td), as was proved by Anantharaman and the
first author [5]. The proof of that result is based on methods from semiclassical analysis
for the time dependent Schrödinger equation that were introduced for the particular case
d = 2 in [19]. In fact, the results in reference [5] apply to the more general problem:

(2) P̂ε(~)u~ =
1

2
u~ + o(~ε~), ‖u~‖L2(Td) = 1,

where ~→ 0+ is some semiclassical parameter, and where

(3) P̂ε(~) := −~2∆

2
+ ε2~V,

with 0 ≤ ε~ ≤ ~ for ~ small enough.1 One of the main ingredients used in this approach are
the two-microlocal techniques developed in [24, 23, 13, 14, 15] in a different context. The
results in [5] were further extended to treat the case of more general completely integrable
systems in [1]. This approach can also be used in order to analyse the Schrödinger equation
on the planar disk [3, 4]. Note that studying the regularity of the solutions to (2) is also
related to problems arising in control theory as was shown by Burq and Zworski [11]. We
refer the reader to [2, 3, 5, 9, 11, 12, 20] for perspectives from the point of view of control
theory.

A different but related approach consists in studying the wavefront set WF~(u~) of solu-
tions to (2). This was done in a series of works by Wunsch [27, 28] and Vasy–Wunsch [25]

1Note that, when ~ = ε~ = λ−1, equation (2) is essentially equation (1).
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dealing with completely integrable systems in dimension d = 2. In these articles, the
authors investigate the properties of the semiclassical wavefront set WF~(u~) of solutions
to (2) when 0 ≤ ε~ ≤ ~1+δ with δ > 0. By proving some propagation of second microlocal
wavefront sets, they showed that WF~(u~) cannot be reduced to a single geodesic and
has to fill a Lagrangian torus – see for instance [27, Th. B] or [28, Th. 3]. Note that, as
in [1], the results of Vasy and Wunsch hold for general classes of nondegenerate completely
integrable systems. Under the assumption that ~1−δ � ε~ � 1, Wunsch also exhibited ex-
amples of quasimodes of order O(~∞) for the operator P̂ε(~) which concentrate on closed
geodesics. This result was reported in [1, Sect. 5.3], and it shows that ε~ = ~ is the
critical size for which one can expect to have singular concentration phenomena for per-
turbations of the free semiclassical Schrödinger operator −~2∆

2
. In particular, for stronger

perturbation ε~ � ~, one cannot expect to have uniform bounds for Lp norms even for
small range of p. A notable feature of Wunsch’s construction is that the singularity is
located on critical points of the potential V restricted to certain closed geodesics. In some
sense, this type of singularities is similar to the ones that may occur in the case of Zoll
manifolds [21, 22]. Motivated by this observation, we will combine the ideas from [5, 21]
in order to derive some properties on the regularity of solutions to (2) when ε~ � ~. In
particular, we will identify precisely the concentration phenomena that may occur and also
show non-concentration properties by propagation of second microlocal data. Note that,
when written in non-semiclassical terms, the regime we are interested in corresponds to
the eigenvalue problem:

−∆uλ(x) + f(λ)V (x)uλ(x) = λ2uλ(x), x ∈ Td, ‖uλ‖L2(Td) = 1,

where 1� f(λ)� λ2.
For the sake of simplicity, we will focus on the case of the rational torus T2 and assume

that V ∈ C∞(T2;R). However, it is most likely that our analysis could be extended to
more general completely integrable systems of dimension 2 following the approach of [1].
As the small perturbation regime2 0 ≤ ε~ ≤ ~ was studied in great detail in all the above
references, here we will focus on the strong perturbation regime and we shall assume all
along the article that

(4) lim
~→0+

ε~ = 0, and lim
~→0+

~ε−1
~ = 0.

In order to state our results, we need some simple geometric preliminaries. Recall that
the geodesics of T2 are either closed or dense curves. For ξ = (ξ1, ξ2) ∈ R2 − {0} and
x ∈ T2, the geodesic s 7→ x+ sξ is dense provided ξ1 and ξ2 are linearly independent over
Q, otherwise it is periodic. We denote by Ω1 ⊂ R2 − {0} the set of ξ that generate a
periodic geodesic and by Ω2 its complementary in R2 − {0}. Consider the average of V
along geodesics:

I(V )(x, ξ) := lim
T→+∞

1

T

∫ T

0

V (x+ sξ)ds.

2Note that, for the non-semiclassical version, it means that f(λ) ≤ 1.
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Clearly, I(V ) is a zero-homogeneous function with respect to ξ. Moreover, a classical result
by Kronecker implies that

I(V )(x, ξ) =

 1
Lξ

∫ Lξ
0
V
(
x+ s ξ

‖ξ‖

)
ds if ξ ∈ Ω1,∫

T2 V (y)dy if ξ ∈ Ω2,

where Lξ denotes the length of any geodesic with velocity ξ. In particular, despite I(V )
is not continuous in general, one has I(V )(·, ξ) ∈ C∞(T2;R) for any ξ ∈ R2 − {0}, and
‖I(V )‖L∞(T2×R2) ≤ ‖V ‖L∞(T2).

Then, we define the set of critical geodesics:

(5) C(V ) :=
{
x0 ∈ T2 : ∃ ξ ∈ Ω1 s.t. ∂xI(V )(x0, ξ) = 0

}
.

Note that C(V ) is a union of closed geodesics of T2. For every closed geodesic γ of T2, we
denote by δγ the normalized Lebesgue measure along this closed geodesic. Then, we define
N (V ) as the convex closure of the set of probability measures δγ where γ ⊂ C(V ). With
these conventions in mind, we can state our main result:

Theorem 1.1. Suppose that d = 2 and that (4) holds. Let (u~)~→0+ be a sequence satisfy-
ing (2). Then, for any accumulation point ν of the sequence of probability measures

ν~(dx) := |u~(x)|2dx,

and for any closed geodesic γ, one has

ν(γ) 6= 0 =⇒ γ ⊂ C(V ).

Moreover, ν can be decomposed as

ν = fdx+ νsing,

where f ∈ L1(T2) and where νsing ∈ N (V ).

Recall from the propagation properties of semiclassical measures [16, 29] that any ν as
in Theorem 1.1 must a priori be a convex combination of the Lebesgue measure and of the
measures δγ, where γ runs over the set of all closed geodesics. This Theorem shows that
singular concentration along closed geodesics can only occur along certain closed orbits
associated with critical points of the averages of V along closed geodesics. This result is
sharp in the sense that Wunsch’s construction in [1] shows that one can find quasimodes
such that ν(γ) = 1 for a given closed geodesic. Despite these unavoidable concentration
phenomena, Theorem 1.1 also shows that the accumulation points enjoy certain regularity
properties. This extra regularity will come out from our analysis by making a second
microlocalization of size ε~ along rational directions, and it will be induced by certain
Lagrangian tori associated to our problem. Note that these two aspects are close to the
situation of Zoll manifolds treated in [21, 22]. The main difference is that there exist
infinitely many directions where the flow is periodic with periods tending to +∞. We would
like to treat these tori of periodic orbits as in this reference, and this can be achieved via
rescaling the variables along these rational directions – see paragraph 3.4 for more details.
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Finally, as we shall see it in Sections 2 and 3, our analysis holds in the more general context
of the time dependent Schrödinger equation.

Organization of the article. Section 2 places our problem in the more general framework
of the time-dependent Schrödinger equation associated with P̂ε(~): Theorem 1.1 becomes
a direct consequence of the more general Theorem 2.1 which deals with the evolution
problem. The proof of this result is obtained by characterizing time-dependent semiclassical
measures for solutions to the Schrödinger equation. Following a strategy similar to that
in [5, 19], such a characterization can be obtained by using two-microlocal techniques.
In Section 3, we introduce the 2-microlocal framework of our analysis that is needed to
formulate our main results, Theorems 3.6 and 3.7. Section 4 presents several applications of
these results. We first give the proof of Theorem 2.1, then we present a structure result for
semiclassical measures of the evolution equation, Theorem 4.1, which we apply to compute
the propagation of wave packet solutions (Proposition 4.3). This shows that Theorem 2.1
is sharp in some sense. The proofs of the 2-microlocal statements of Section 3 are given
in Section 5. Finally, the article contains two appendices. Appendix A contains the proof
of a geometric result which already appeared in [21] and which we adapt to the context of
T2. In Appendix B, we collect a few tools from semiclassical analysis.

In the following (except in appendix B), we will always suppose that d = 2 and that (4)
holds even if part of the results holds in greater generality.

Acknowledgements. We warmly thank the referee for his careful reading and his useful
suggestions regarding the results presented in this article.

2. Semiclassical measures for the time-dependent Schrödinger equation

As was already mentionned, Theorem 1.1 is a consequence of our analysis of the time
dependent semiclassical Schrödinger equation:

(6) i~∂tv~ = P̂ε(~)v~, v~|t=0 = u~ ∈ L2(T2), ‖u~‖L2 = 1.

For the sake of simplicity, we shall focus on sequences of initial data oscillating at the
frequency ~−1. Thus, we will always assume that the following properties hold:

(7) lim sup
~→0

∥∥1[R,∞)

(
−~2∆

)
u~
∥∥
L2(M)

−→ 0, as R −→∞,

and

(8) lim sup
~→0

∥∥1[0,δ]

(
−~2∆

)
u~
∥∥
L2(M)

−→ 0, as δ −→ 0+.

Fix now a sequence of time scales (τ~)~→0+ such that

lim
~→0+

τ~ = +∞.

We will deal with time-scaled solutions to the perturbed Schrödinger equation. More
precisely, if v~ is a solution to (6), then we shall study the behavior of

t 7−→ v~(τ~t, ·).
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As we will see below, the scale τ~ = ε−1
~ is critical for this problem, and Theorem 1.1 follows

from the analysis of the time-dependent equation in the regime τ~ � ε−1
~ .

2.1. Time-dependent semiclassical measures. For a given t in R, we denote the
Wigner distribution at time t by

(9) 〈w~(t), a〉 := 〈v~(t),Opw~ (a)v~(t)〉 ,
where Opw~ (a) is a ~-pseudodifferential operator with principal symbol a ∈ C∞c (T ∗T2) –
see Appendix B. Above, v~(t) denotes the solution at time t of (6) with initial conditions
satisfying the oscillating assumptions (7) and (8). This quantity represents the distribution
of the L2-mass of the solution to (6) in the phase space T ∗T2. According to [18], we can
extract a subsequence ~n → 0+ as n → +∞ such that, for every a in C∞c (T ∗T2) and for
every θ in L1(R),

lim
~n→0+

∫
R×T ∗T2

θ(t)〈w~n(tτ~n), a〉dt =

∫
R×T ∗T2

θ(t)a(x, ξ)µ(t, dx, dξ)dt,

where, for a.e. t in R, µ(t) is a finite positive Radon measure on T ∗T2. Recall also that,
for a.e. t ∈ R, µ(t) is in fact a probability measure which does not put any mass on the
zero section, thanks to the frequency assumption (8). In other words,

(10) µ(t)(T̊ ∗T2) = 1, for a.e. t ∈ R,
where

T̊ ∗T2 :=
{

(x, ξ) ∈ T ∗T2 : ξ 6= 0
}
.

Moreover, for a.e. t in R, µ(t) is invariant by the geodesic flow ϕs on T ∗T2.
For instance, µ(t) can be the normalized Lebesgue measure along a closed orbit of the

geodesic flow. We will denote by M(τ, ε) the set of accumulation points of the sequences
(µ~), where µ~(t, ·) := w~(tτ~, ·), as the sequence of initial data (u~) varies among nor-
malized sequences satisfying (7) and (8). Similarly, one can define N (τ, ε) to be the set
of accumulation points of the sequences (n~) of time-dependent probability measures on
T2, n~(t, dx) := |v~(tτ~, x)|2dx, obtained letting the initial data vary among sequences
satisfying (7), (8). Using (7), one can verify that

(11) N (τ, ε) =

{∫
R2

µ(t, x, dξ) : µ ∈M(τ, ε)

}
.

2.2. Statement of the results. In order to relate the time-dependent approach to the
quasimode case, we can remark that, given a sequence of quasimodes (u~)~→0+ satisfy-
ing (2), we can always find a sequence of time scales (τ~) such that

lim
~→0

τ~ε~ = +∞,

and, for every t ∈ R:
lim
~→0
‖v~(τ~t, ·)− e−iτ~t/2~u~‖L2(T2) = 0,

where v~ denotes the solution to (6) with initial condition u~. This choice of (τ~) ensures
that any accumulation point ν of the sequence of probability measures (|u~|2dx) belongs
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to N (τ, ε) (even though it is constant in t), since it is also an accumulation point of
(|v~(τ~t, ·)|2dx). In particular, Theorem 1.1 follows from the more general statement:

Theorem 2.1. Suppose that

lim
~
τ~ε~ = +∞.

Let t 7−→ ν(t) be an element of N (τ, ε). Then, for any closed geodesic γ not included inside
C(V ) and for a.e. t in R, one has

ν(t)(γ) = 0.

Moreover, ν(t) can be decomposed as

ν(t) = f(t)dx+ νsing(t),

where, for a.e. t in R, f(t) ∈ L1(T2) and νsing(t) ∈ N (V ).

The first step in the proof of this result is the partition of R2 − {0} into ϕs-invariant
subsets that was used in [19, 5]. Recall that Λ ⊂ Z2 is a primitive lattice of rank one
provided that dim〈Λ〉 = 1 and that 〈Λ〉 ∩ Z2 = Λ, where 〈Λ〉 is the linear subspace of R2

spanned by Λ. We introduce the invariant set of rational covectors

Ω1 =
⊔

Λ rank 1 primitive

Λ⊥ − {0},

and its complement Ω2 inside R2 − {0} which is still invariant. Observe that this is
consistent with the conventions of the introduction. Because of (10), we can decompose
the measure as follows:

(12) µ(t) = µ(t)eT2×Ω2
+

∑
Λ rank 1 primitive

µ(t)eT2×Λ⊥−{0}.

As a consequence of the invariance by the geodesic flow, it can be verified that µ(t)eT2×Ω2

is in fact independent of the x-variable. Hence, in order to prove Theorem 2.1, one only
has to study the regularity of µ(t)eT2×Λ⊥−{0} for every rank 1 primitive sublattice Λ. This
will be achieved using two-microlocal tools adapted to this problem. The end of the proof
of Theorem 2.1 is presented in Section 4.1. For time scales τ~ = O(ε−1

~ ), we obtain a
more precise result, in the sense that each component of the time dependent semiclassical
measure µ(t) according to the partition (12) can be completely determined from the initial
data that were used to generate it. Again, the relation with the sequence of initial data is
elucidated using the class of two-microlocal semiclassical measures that will be introduced
in the next section. A precise statement is given in Theorem 4.1, Section 4.2.

Finally, in Section 4.3, we provide explicit computations of semiclassical measures asso-
ciated to wave-packets (Proposition 4.3) that yield:

(1) if τ~ε~ → 0, then

{δγ : γ periodic geodesic of T2} ⊂ N (τ, ε);

(2) if τ~ = ε−1
~ , then

{δγ : γ ∈ C(V )} ⊂ N (τ, ε).



8 FABRICIO MACIÀ AND GABRIEL RIVIÈRE

3. Invariance and propagation of 2-microlocal distributions

In this section, we present our main result on the 2-microlocal structure of solutions to
the time-dependent Schrödinger equation along covectors in Ω1. In particular, we show
how solutions of (6) can concentrate along rational covectors.

Before stating the result, we need some additional notation. For every primitive rank 1
lattice Λ of Z2, we set eΛ to be an element in Λ such that ZeΛ = Λ, and e⊥Λ to be the vector
of same length which is directly orthogonal to eΛ. We define

LΛ := ‖eΛ‖.
We define two Hamiltonian maps associated to Λ as follows:

HΛ(ξ) :=
1

LΛ

〈ξ, eΛ〉 and H⊥Λ (ξ) :=
1

LΛ

〈ξ, e⊥Λ〉.

Note that (HΛ, H
⊥
Λ ) defines a (nondegenerate) completely integrable system and that

‖ξ‖2 = HΛ(ξ)2 +H⊥Λ (ξ)2.

3.1. Two-microlocal distributions. We aim at studying the concentration of solutions
to (6) over T2 × Λ⊥ where Λ ⊂ Z2 is a primitive rank 1 sublattice and where Λ⊥ denotes
the set of covectors ξ such that HΛ(ξ) = 0. For that purpose, we consider a two-microlocal
scale α~ → 0+ satisfying ~α−1

~ → 0 and we define the following two-microlocal Wigner
distribution:

wΛ,~(t) : a ∈ C∞c (T ∗T2 × R̂) 7−→
〈
v~(t),Opw~

(
a

(
x, ξ,

HΛ(ξ)

α~

))
v~(t)

〉
.

Above, R̂ is the compactified space R ∪ {±∞}, v~(t) is the solution of (6) at time t, and
Opw~ (a) is a ~-pseudodifferential operator – see Appendix B.

Remark 3.1. Recall from (28) in Appendix B that the following useful relation holds:

Opw~

(
a

(
x, ξ,

HΛ(ξ)

α~

))
= Opw~α−1

~
(a (x, α~ξ,HΛ(ξ))) ,

and that we have made the assumption that ~α−1
~ → 0. Therefore, the operators involved in

the definition of wΛ,~ are semiclassical pseudodifferential operators whose symbolic calculus
enjoys a gain of ~α−1

~ .

Remark 3.2. The distributions wΛ,~ were introduced in [19, 5] for the critical case α~ = ~
under a slightly different form. There, the two microlocal variable η varies in the two-point
compactification of 〈Λ〉. Of course, this is completely equivalent to our formulation for the
two-dimensional torus, but turns out to be relevant when dealing with the higher dimen-
sional case. As we will see, the fact that the two-microlocal scale is asymptotically bigger
than ~ implies that the limiting objects are of a different nature than those obtained in
[19, 5]. When ~α−1

~ → 0, they are global variants on the torus of the two-scale semiclassi-
cal measures introduced in [14] – see also [2] for a related construction on the torus, in a
context related to that of [5].
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Recall that we introduced a time scale τ~ → ∞. From now on, we shall fix the two-
microlocal scale as follows:

(13) α~ :=

{
1/τ~ if τ~ε

−1
~ → 0,

ε~ otherwise.

As we shall explain it in paragraph 5.1, we can extract a subsequence ~n → 0+ such that,

for any a ∈ C∞c (T ∗T2 × R̂) and for any θ ∈ L1(R),

lim
n→+∞

∫
R
θ(t)〈wΛ,~n(tτ~n), a〉dt =

∫
R
θ(t)

(∫
T ∗T2×R̂

a(x, ξ, η)µΛ(t, dx, dξ, dη)

)
dt,

where, for a.e. t in R, µΛ(t) is an element of B′ for some Banach space B that we will
define in paragraph 5.1. We denote byMΛ(τ, ε) the set of accumulation points obtained in
this manner for initial data varying among subsequences verifying (7) and (8). The main
new result of this article describes some invariance and propagation properties of these
quantities depending on the relative size of τ~ and ε~.

For every primitive rank 1 sublattice, one has (see Remark 5.3),

(14) M(τ, ε) =

{∫
R̂
µΛ(t, x, ξ, dη) : µΛ ∈MΛ(τ, ε)

}
.

3.2. First properties. Before proving our main results, we will verify a few preliminary
results. First, one has

Proposition 3.3. Let µΛ(t) be an element of MΛ(τ, ε). Then, for a.e. t in R, µΛ(t) is a

positive finite Radon measure concentrated on T̊ ∗T2 × R̂.

In what follows, we write

µ̃Λ(t) := µΛ(t)eT̊ ∗T2×R, µ̃Λ(t) := µΛ(t)eT̊ ∗T2×{±∞}.

Hence, we can split the 2-microlocal measure as

(15) µΛ(t) = µ̃Λ(t) + µ̃Λ(t).

The measure µ̃Λ(t) describes in some sense the way the solutions of (6) concentrate in an ε~-
neighborhood of the rational direction Λ⊥. Let us now give some other simple properties of
these functionals which are analoguous to the ones satisfied by time dependent semiclassical
measures [18]. We shall also verify:

Proposition 3.4. Let µΛ(t) ∈MΛ(τ, ε). Then

(1) µ̃Λ(t) is a (finite) positive measure on T ∗T2 × R whose support is contained in
T2 × (Λ⊥ − {0})× R;

(2) for every a in C∞c (T ∗T2 × R̂),

〈µ̃Λ(t), ξ.∂xa〉 = 〈µ̃Λ(t), ξ.∂xa〉 = 0.
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Neither Proposition 3.3, nor part (1) of Proposition 3.4 uses that the functions used to
generate µΛ(t) are solutions to (6). This fact is only used in the second part of Proposi-
tion 3.4. Note that all these properties follow from standard arguments which need to be
slightly adapted in order to fit into the 2-microlocal set-up – see Section 5 for details.

3.3. Main results. Consider the Hamiltonian flow ϕH⊥Λ associated with H⊥Λ . Note that,

for a continuous function b on T ∗T2 × R̂, we can define the average along this LΛ-periodic
flow as

IΛ(b)(x, ξ, η) :=
1

LΛ

∫ LΛ

0

b
(
ϕsH⊥Λ

(x, ξ), η
)
ds.

A direct computation gives

IΛ(b)(x, ξ, η) =
1

LΛ

∫ LΛ

0

b

(
x+ s

e⊥Λ
LΛ

, ξ, η

)
ds =

∑
k∈Λ

b̂k(ξ, η)e2iπk.x,

provided b has the Fourier expansion b(x, ξ, η) =
∑

k∈Z2 b̂k(ξ, η)e2iπk.x. Moreover, if I(b)
denotes the average of b along the geodesic flow

ϕs(x, ξ) = (x+ sξ, ξ)

on T ∗T2, then the following holds:

(16) I(b)(x, ξ, η) = IΛ(b)(x, ξ, η), provided that ξ ∈ Λ⊥ − {0}.
In the case where b only depends on x, as is the case with b = V , it is easy to check that
IΛ(V ) does not depend on ξ and therefore we can identify it to an element in C∞(T2;R).

Remark 3.5. Part (2) of Proposition 3.4 implies that µΛ(t) is invariant under the geodesic
flow ϕs. For b in C∞c (T ∗T2×R), this observation combined with part (1) in Proposition 3.4
and identity (16) implies that, for a.e. t in R,

〈µΛ(t), b〉 = 〈µΛ(t), IΛ(b)〉.
We shall use this property several times in our proof of Theorem 3.6 below.

We need to define an auxiliary Hamiltonian function on T2 × Λ⊥ × R

(17) pVΛ (x, σe⊥Λ/LΛ, η) :=
η2

2
+ IΛ(V )(x).

Denote by ϕt
pVΛ

the flow of the vector field on T2 × Λ⊥ × R:

η
eΛ

LΛ

.∂x −
eΛ

LΛ

.∂xIΛ(V )∂η.

This is the Hamiltonian vector field associated to pVΛ with respect to the symplectic form
obtained by taking the push-forward of the canonical symplectic form on T ∗T2 via the
diffeomorphism

(18) T ∗T2 3 (x, ξ) 7−→ (x,H⊥Λ (x, ξ)e⊥Λ/LΛ, HΛ(x, ξ)) ∈ T2 × Λ⊥ × R.
The flow ϕt

pVΛ
commutes with ϕs

H⊥Λ
when acting on T2 × Λ⊥ × R.
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We are now ready to state the main results of this article. The first one concerns
the “compact” part of these two-microlocal distributions. Their possible behaviors are
classified according to the limit of τ~ε~.

Theorem 3.6 (Invariance and propagation near Λ). Let Λ be a primitive rank 1 sublattice
and let µΛ be an element of MΛ(τ, ε) obtained as the limit of (wΛ,~(tτ~)). Denote by µ0

Λ

the limit of (wΛ,~(0)). The following results hold:

(1) If τ~ε~ → 0 as ~ → 0+, then t 7→ µ̃Λ(t) is continuous, and one has, for every a in
C0
c (T2 × Λ⊥ × R),

µ̃Λ(t)(a) = µ̃0
Λ(IΛ(a) ◦ ϕtp0

Λ
).

(2) If τ~ε~ → c > 0 as ~→ 0+, then t 7→ µ̃Λ(t) is continuous, and one has, for every a
in C0

c (T2 × Λ⊥ × R),

µ̃Λ(t)(a) = µ̃0
Λ(IΛ(a) ◦ ϕctpVΛ ).

(3) If τ~ε~ → +∞ as ~ → 0+, then one has, for a.e. t in R and, for every a in
C0
c (T2 × Λ⊥ × R),

∀s ∈ R, µ̃Λ(t) (a) = µ̃Λ(t)(a ◦ ϕspVΛ ).

Equivalently, this Theorem says that, besides invariance by the geodesic flow, the so-
lutions of (6) satisfy some extra invariance properties in a shrinking neighborhood of the
rational direction at least for times τ~ � ε−1

~ . For shorter times, the concentration in this
shrinking neighborhood is completely determined by the initial data. The proof of this
theorem is given in Section 5. Note that, when τ~ε~ → 0, the conclusion of part (1) holds
even if ε~ = ~, this will be clear from the proof. Section 5.1 in reference [1] provides explicit
computations of two-microlocal semiclassical measures in that regime.

It is interesting to compare part (2) of Theorem 3.6 with its counterpart in [5], where
the regime ε~ = ~ is studied in detail in any dimension (not only in the two-dimensional
case analysed here). First, the nature of the limiting object µ̃Λ is rather different in that
setting. It is no longer a positive measure, but rather a measure taking values in the set
of Wigner transforms of positive Hermitian trace-class operators on the space L2(TΛ).3 As
a result, time-dependent semiclassical measures are absolutely continuous with respect to
the Lebesgue measures in the x-variable. In that setting, the rôle of the flow ϕs

pVΛ
is played

by the quantum flow e−is(D
2
Λ+IΛ(V )) – see Corollary 25 in [5] for a precise statement.

The part at infinity satisfies an additional regularity property. Indeed, if we define

I0(a)(ξ, η) :=

∫
T2

a(y, ξ, η)dy,

then the following holds:

3This space consists of those functions in L2(T2) that are invariant by translations in the direction Λ⊥.
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Theorem 3.7 (Regularity at infinity). Let Λ be a primitive rank 1 sublattice and let µΛ(t)

be an element of MΛ(τ, ε). Then, one has, for every a in C∞c (T2 ×R2 × R̂) and for a.e. t
in R,

〈µ̃Λ(t), IΛ(a)− I0(a)〉 = 0.

In particular, the measure µ̃Λ(t)eT2×Λ⊥×R̂ is constant in x.

In other words, the part at infinity has no (nonzero) Fourier coefficients in the Λ-
direction. As for Theorem 3.6, this result depends highly on the choice of two-microlocal
scale we have fixed from the beginning, and other scalings would have yield other prop-
erties. The first conclusion of this theorem is proved in Section 5. The last assertion
follows from the invariance4 of µ̃Λ(t) under the geodesic flow, which implies that for every

a ∈ C0
c (T

∗T2 × R̂):

〈µ̃Λ(t)eT2×Λ⊥×R̂, a〉 = 〈µ̃Λ(t)eT2×Λ⊥×R̂, IΛ(a)〉 = 〈µ̃Λ(t)eT2×Λ⊥×R̂, I0(a)〉.

Note also that the conclusion of Theorem 3.7 holds in the regime ε~ = ~ (in any dimension),
see part (ii) of Theorem 12 in [5].

3.4. Comparison with Zoll manifolds. Theorem 3.6 shares also a lot of similarities
with our main result on semiclassical measures for perturbations of Zoll Laplacians in [21,
Sect. 2.2]. In that case, we were considering the semiclassical operator

−~2∆g

2
+ ε2~V,

where ∆g is the Laplace Beltrami operator associated to a certain Zoll metric (say the
standard metric on the canonical sphere). In the present article, we are analyzing the

semiclassical measures associated to the same Schrödinger operator P̂ε(~). Studying the
“compact” part of elements inside MΛ(τ, ε) is equivalent to understanding the solutions
of (6) near submanifolds

T2 × Λ⊥ := {(x, ξ) ∈ T ∗T2 : HΛ(ξ) = 0},

where the geodesic flow is periodic as in the Zoll case. In order to make the comparison
clearer and to justify the rescaling of order ε~, we can rewrite our operator in a form which
is very close to what we did in the Zoll framework, i.e.

P̂ε(~) =
1

2
Opw~ (H⊥Λ )2 + ε2~ Opw~

(
1

2

(
HΛ

ε~

)2

+ V

)
.

Thus, as in the Zoll case, we perturb in some sense a semiclassical operator Opw~ (H⊥Λ )2

asssociated to a “periodic” Hamiltonian flow and we obtain limit quantities which are
invariant by the periodic flow and the Hamiltonian perturbation.

4Recall also that µΛ(t) is supported on T̊ ∗T2 × R̂.
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The main difference with the Zoll setting is that the perturbation depends on rescaled
variables (

x,H⊥Λ (ξ),
HΛ(ξ)

ε~

)
∈ T2 × R2 ' T ∗T2.

For that reason, it is natural to test our Wigner distributions against symbols depending
on these rescaled variables. Another notable difference with [21] is that, in the Zoll case,
the critical time scale is of order ε−2

~ while here, due to the use of rescaled variables, it is
much shorter, i.e. of order ε−1

~ . Finally, in the Zoll case, a natural question was to discuss
the case where the Radon transform of the perturbation identically vanishes [22]. Here,

we emphasize that the H⊥Λ -average of the perturbation, namely 1
2

(
HΛ

ε~

)2

+ IΛ(V ) cannot

be equal to a constant for this choice of 2-microlocal rescaling.

4. Applications of the 2-microlocal results

We present some applications of the results of the preceding section.

4.1. Proof of Theorem 2.1. Recall that only the structure of the terms µ(t)eT2×Λ⊥−{0}
in the decomposition (12) needs to be clarified. Thanks to (14) and to Proposition 3.4, we
deduce

µ(t)eT2×Λ⊥−{0} = µ(t)eT2×Λ⊥ =

∫
R
µ̃Λ(t, ·, dη)eT2×Λ⊥ +

∫
{±∞}

µ̃Λ(t, ·, dη)eT2×Λ⊥ .

According to Theorem 3.7, the contribution from the part at infinity is independent of x.
Hence, we are left with studying the regularity of the measures on T2:∫

Λ⊥×R
µ̃Λ(t, ·, dξ, dη).

The measure µ̃Λ is invariant under the Hamiltonian flow ϕt
H⊥Λ

(see Remark 3.5) and, by

part (3) of Theorem 3.6, it is also invariant under the Hamiltonian flow ϕt
pVΛ

, which com-

mutes with ϕt
H⊥Λ

. Using Appendix A which describes the regularity of biinvariant measures,

we can conclude the proof of Theorem 2.1. More specifically, part 1 follows from Proposi-
tion A.1 and part 2 from Corollary A.3.

4.2. Semiclassical measures up the critical time scale τ~ = ε−1
~ . At the time-scales

up to the critical scale ε−1
~ , we can completely determine µt in terms of the initial data:

Theorem 4.1. Let µ ∈ M(τ, ε). Suppose that it is generated by some sequence of initial
data (u~)~→0+. For every rank-one primitive lattice Λ, let µ̃0

Λ be the restriction to T2×Λ⊥×R
of the two-microlocal measure associated with (u~)~→0+, and denote by µ0 the semiclassical
measure of (u~)~→0+.
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(1) If τ~ = ε−1
~ , then, for every a ∈ C0

c (T2 × R2), the following holds:∫
T2×R2

a(x, ξ)µ(t, dx, dξ) =

∫
T2×R2

I0(a)(ξ)µ0(dx, dξ)

+
∑

Λ rank 1 primitive

∫
T2×Λ⊥×R

(IΛ(a)− I0(a))(ϕtpVΛ
(x, ξ, η))µ̃0

Λ(dx, dξ, dη).

(2) If τ~ε~ → 0, then the same result holds, provided we replace ϕt
pVΛ

by ϕt
p0

Λ
in the

formula above.

The proof is as follows. Let µ ∈ M(τ, ε), and decompose it as in (12). Using the lift
property (14), we can further decompose µ as follows:

µ(t) = µ(t)eT2×Ω2
+

∑
Λ rank 1 primitive

∫
{±∞}

µ̃Λ(t, dη)eT2×Λ⊥

+
∑

Λ rank 1 primitive

∫
R
µ̃Λ(t, ·, dη)eT2×Λ⊥ .

Thanks to the invariance by the geodesic flow and to Theorem 3.7, we can conclude one
more time that the first two terms on the right-hand side of the equality are independent
of x. Thanks to the second part of Theorem 3.6, we can also write:

µ̃Λ(t)eT2×Λ⊥×R = (ϕtpVΛ
)∗
(
µ̃0

ΛeT2×Λ⊥×R
)

(resp. µ̃Λ(t)eT2×Λ⊥×R = (ϕtp0
Λ
)∗
(
µ̃0

ΛeT2×Λ⊥×R
)

),

when τ~ = ε−1
~ (resp. τ~ε~ → 0). The result follows from the fact that the zero Fourier

coefficient of µ(t) is itself equal to the zero Fourier coefficient of µ0 thanks to the following
adaptation of Proposition 29 from [5].

Lemma 4.2. Suppose that
lim
~→0+

τ~ε
2
~ = 0.

Let µ be an element in M(τ, ε) and let µ0 be the semiclassical measure of the sequence of
initial data used to generate µ. Then, one has, for a.e. t in R, and for every b ∈ Cc(R2):∫

T2×R2

b(ξ)µ(t, dx, dξ) =

∫
T2×R2

b(ξ)µ0(dx, dξ).

4.3. Propagation of wave packets. An application of Theorem 2.1 is the computation
of semiclassical meaures for wave-packet type solutions to (6).

Let us first define wave-packet data on the torus. Take ρ ∈ C∞c (R2) supported in a small

neighborhood of the origin such that ‖ρ‖L2(R2) = 1. Let (x0, ξ0) ∈ T̊ ∗T2 and set

Ux0,ξ0
~ (x) :=

1

σ~
ρ

(
x− x0

σ~

)
ei
ξ0.x
~ ,

where σ~ → 0+ and σ~ � ~. Finally, write

(19) ux0,ξ0
~ (x) =

∑
k∈Z2

Ux0,ξ0
~ (x+ k).
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If the support of ρ is small enough, then ‖ux0,ξ0
~ ‖L2(T2) = 1. These initial data concentrate

around x0 and oscillate in the direction of ξ0. Moreover, it is straightforward to check that
(ux0,ξ0

~ ) satisfies (7) and (8). We next compute the time-dependent semiclassical measure

of the sequence (vx0,ξ0
~ ) of solutions to (6) issued from the initial data (ux0,ξ0

~ ).

Proposition 4.3. Suppose that the concentration scale (σ~) satisfies ~(ε~σ~)
−1 → 0 and

that ξ0 ∈ Ω1. Let µx0,ξ0 ∈ M(τ, ε) be generated by the initial data (ux0,ξ0
~ ). Let γ(x, ξ0)

denote the geodesic in T2 issued from (x, ξ0) and δγ(x,ξ0) the uniform probability measure
on that geodesic. The following hold:

(1) if τ~ε~ → 0, then

µx0,ξ0(t, dx, dξ) = δγ(x0,ξ0)(dx)δξ0(dξ);

(2) if τ~ = ε−1
~ , then

µx0,ξ0(t, dx, dξ) = δγ(x(t),ξ0)(dx)δξ0(dξ),

where x(t) is the projection on T2 of ϕt
pVΛξ0

(x0, ξ0, 0) with Λξ0 = {ξ0}⊥ ∩Z2. If x0 is

a critical point of IΛξ0
(V ) then x(t) = x0 for all t ∈ R. In that case, µx0,ξ0 is also

constant in time.

Proof. Lemma 4.2 ensures that µ(t) is supported on T2× 〈ξ0〉 for a.e. t ∈ R. Therefore, in
virtue of (14):

µ(t) =

∫
R̂
µΛξ0

(t, ·, dη)eT2×〈ξ0〉,

where µΛξ0
∈ MΛξ0

(τ, ε) is generated by (ux0,ξ0
~ ). Let µ0

Λξ0
be an accumulation point of

(w~,Λξ0 (0)). Since ~σ−1
~ � ε~ ≤ τ−1

~ , one can verify that, in every regime,

µ0
Λξ0

(dx, dξ, dη) = δx0(dx)δξ0(dξ)δ0(dη),

e.g. see the the proof of Proposition 5.2 in [1]. The result then follows from Theorem
2.1. �

5. Proof of the 2-microlocal statements

From this point on, we fix a primitive sublattice Λ of Z2 of rank 1 and we will proceed to
the proofs of the results on 2-microlocal distributions. Namely, we will first recall how to
extract converging subsequences from the sequences (wΛ,~(tτ~))~→0+ . Then, we will briefly
recall how to adapt the proofs from [5] in order to prove Propositions 3.3 and 3.4. Finally,
we will give the proofs of Theorems 3.6 and 3.7.

5.1. Extracting subsequences. Recall that, following [19, 5, 1], we have introduced an
auxiliary linear form whose invariance properties will be analyzed precisely. For every

a ∈ C∞c (T ∗T2 × R̂), we have set

〈wΛ,~(tτ~), a〉 :=

〈
v~(tτ~),Opw~

(
a

(
x, ξ,

HΛ(ξ)

α~

))
v~(tτ~)

〉
,
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where, recall, α~ is given by (13). It will be useful to keep in mind Remark 3.1 throughout
this section.

Remark 5.1. We emphasize that, for a in C∞c (T ∗T2), one has

〈w~(tτ~), a〉 = 〈wΛ,~(tτ~), a〉.

Our first step is to explain how to extract converging subsequences following more or
less standard procedures [16, 18, 5, 29]. For the sake of completeness, we briefly recall it.
For that purpose, we denote by

B := CD0 (T2 × R2 × R̂),

the space of CD functions on T2×R2× R̂ all of whose derivatives tend to 0 at infinity. We
choose D > 0 large enough so that Theorem B.2 holds for functions in B.

We endow this space with its natural topology of Banach space. According to Theo-

rem B.2, one knows that, for every a in C∞c (R× T ∗T2 × R̂), one has

(20) |〈wΛ,~(tτ~), a(t)〉| ≤ C
∑
|α|≤D

(
~α−1

~
) |α|

2 ‖∂αa(t)‖∞.

Thus, the map t 7→ wΛ,~(tτ~) defines a bounded sequence in L1(R,B)′, and, after extracting
a subsequence, one finds that there exists µΛ in L1(R,B)′ such that, for every a in C∞c (R×
T ∗T2 × R̂), one has

lim
~→0+

∫
R×T ∗T2×R̂

a(t, x, ξ, η)wΛ,~(tτ~, dx, dξ, dη)dt =

∫
R×T ∗T2×R̂

a(t, x, ξ, η)µΛ(dt, dx, dξ, dη).

Thanks to (20) and to the fact that ~α−1
~ → 0+, recall that, for every θ in C∞c (R) and for

every a in C∞c (T ∗T2 × R̂), one has∣∣∣∣∫
R×T ∗T2×R̂

θ(t)a(x, ξ, η)µΛ(dt, dx, dξ, dη)

∣∣∣∣ ≤ C‖θ‖L1(R)‖a‖C0
0(T ∗T2×R̂).

Hence, µΛ is absolutely continuous with respect to the t variable, i.e. for every θ in L1(R)

and every a in C∞c (T ∗T2 × R̂), one has

lim
~→0+

∫
R
θ(t)〈wΛ,~(tτ~), a〉dt =

∫
R
θ(t)〈µΛ(t), a〉dt.

Moreover, for a.e. t in R, µΛ(t) is a finite Radon measure on T ∗T2 × R̂.

5.2. Proof of Proposition 3.3. We already know that the linear functionals µΛ are
Radon measures. It remains to verify that they are positive. To see this, take a ∈
C∞c (T ∗T2 × R̂) such that a ≥ 0. Using G̊arding inequality (Th. 4.32 in [29]), we deduce
that

〈wΛ,~(tτ~), a〉 ≥ O(~α−1
~ ) = o(1);
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Remark 5.2. Note that the proof of the G̊arding inequality in [29] is given in the case of
Rd. The extension to compact manifolds usually requires to deal with symbols that decay
in ξ as we differentiate with respect to ξ. Yet, in the case of the torus, we can verify
that this property remains true for an observable a all of whose derivatives are bounded
(i.e. not necessarily decaying in ξ) as in Rd. For that purpose, one can start from the
G̊arding inequality on Rd and apply the arguments of the proof of [29, Th. 5.5] which
shows L2-boundedness of pseudodifferential of order 0 on Td.

After integrating against a test function θ in L1(R) and passing to the limit ~→ 0, one
finds that, for a.e. t in R,

〈µΛ(t), a〉 ≥ 0.

This concludes the proof that µΛ is a positive, finite Radon measure on T ∗T2 × R̂ and
one sets µ̃Λ(t) = µΛ(t)eT ∗T2×R and µ̃Λ(t) = µΛ(t)eT ∗T2×{±∞}. Thanks to the frequency
assumption (8), one has, for a.e. t in R,

(21) µΛ(t)({ξ = 0}) = 0.

Remark 5.3. Remark 5.1 implies that, for a.e. t in R, the time-dependent semiclassical
measure µ(t) can be obtained by

(22) µ(t) =

∫
R̂
µΛ(t, ·, dη).

5.3. Proof of Proposition 3.4. Concerning the support of µ̃Λ(t), we let a be an element
in C∞c (T ∗T2 × R) whose support does not intersect T2 × Λ⊥ × R. Using Remark 3.1, one
has

Opw~

(
a

(
x, ξ,

HΛ(ξ)

α~

))
= Opw~α−1

~
(a (x, α~ξ,HΛ(ξ))) .

Hence, this operator is equal to 0 when ~ is small enough (thanks to our assumption on
the support of a). This concludes the proof of the first part of Proposition 3.4.

Let us now discuss invariance by the geodesic flow which is the only property that uses
the particular form of v~(tτ~) so far. Again, we start with the “compact” part and we
fix a to be an element in C∞c (T ∗T2 × R). Using composition rules for pseudodifferential
operators, we write

d

dt
〈wΛ,~(tτ~), a〉 = τ~〈wΛ,~(tτ~), ξ.∂xa〉

+
iτ~ε

2
~

~
〈v~(tτ~),

[
V,Opw~α−1

~
(a(x, α~ξ,HΛ(ξ)))

]
v~(tτ~)〉.

Using Theorem B.3 (more specifically Remark B.4) one more time, we have that[
V,Opw~α−1

~
(a(x, α~ξ,HΛ(ξ)))

]
= − ~

iα~
Opw~

(
eΛ

LΛ

.∂xV ∂ηa

(
x, ξ,

HΛ(ξ)

α~

))
+O(~3(α~)

−3).

Combining these two identities to the fact ~α−1
~ = o(1) and ε~α

−1
~ = O(1), we find that

d

dt
〈wΛ,~(tτ~), a〉 = τ~

(〈
wΛ,~(tτ~), ξ.∂xa−

ε2~
α~

eΛ

LΛ

.∂xV ∂ηa

〉
+ o(~)

)
.



18 FABRICIO MACIÀ AND GABRIEL RIVIÈRE

Let now θ be an element in C1
c (R). Integrating the previous equality against θ and inte-

grating by parts, we find∫
R
θ(t)

〈
wΛ,~(tτ~), ξ.∂xa−

ε2~
α~

eΛ

LΛ

.∂xV ∂ηa

〉
dt = O(τ−1

~ ) + o(~),

which implies the result for every a in C∞c (T ∗T2 × R) when we let ~ goes to 0. Note that
we used the Calderón-Vaillancourt Theorem B.2 to bound the ε2~α

−1
~ term on the left hand

side of this equality.

It now remains to treat the part at infinity. Let a be an element in C∞c (T ∗T2 × R̂). For
every R ≥ 1 and for every smooth cutoff function near 0, we set

aR(x, ξ, η) := a(x, ξ, η)
(

1− χ
( η
R

))
.

The same argument as before allows to prove that, for every θ in C1(R), one has∫
R
θ(t)

〈
wΛ,~(tτ~), (ξ.∂xa)R − ε2~

α~

eΛ

LΛ

.∂xV ∂ηa
R

〉
dt = o(1).

Thus, we can take the limit ~→ 0 and conclude the proof by letting R goes to +∞.

5.4. Invariance and propagation of 2-microlocal distributions. We now turn to the
proofs of our main statements, namely Theorems 3.6 and 3.7. Analogously to [5], we define
the differential operators

DΛ :=
1

i

eΛ

LΛ

.∇ and D⊥Λ :=
1

i

e⊥Λ
LΛ

.∇

associated with the Hamiltonians HΛ and H⊥Λ . One has

(23) −∆ = (D⊥Λ )2 +D2
Λ.

Recall also that, for every smooth compactly supported function b on T ∗T2, the Egorov
theorem is exact for these operators and it tells us that

(24) Opw~ (IΛ(b)) =
1

LΛ

∫ LΛ

0

eisD
⊥
Λ Opw~ (b)e−isD

⊥
Λ ds.

and that

(25) [D⊥Λ ,Opw~ (IΛ(b))] = 0.

As mentioned before, this construction (that was originally presented in [5]) is reminiscent
to the averaging argument of Weinstein [26] applied to certain one-dimensional tori that
depend on Λ.
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5.4.1. Proof of Theorem 3.6. Let a be an element in C∞c (T ∗T2 × R). We start our proof
by computing the derivative of the 2-microlocal Wigner distribution. One has

d

dt
〈wΛ,~(tτ~), IΛ(a)〉 =

iτ~
~

〈
v~(tτ~),

[
~2

2
(D⊥Λ )2 +

~2

2
D2

Λ + ε2~V,Opw~ (aΛ,~)

]
v~(tτ~)

〉
,

where

aΛ,~(x, ξ) := IΛ(a)

(
x, ξ,

HΛ(ξ)

α~

)
.

Using (25), we deduce that

d

dt
〈wΛ,~(tτ~), IΛ(a)〉 =

iτ~
~

〈
v~(tτ~),

[
~2

2
D2

Λ + ε2~V,Opw~ (aΛ,~)

]
v~(tτ~)

〉
,

Thanks to the commutation properties of the Weyl quantization from Remark B.4, one
has

d

dt
〈wΛ,~(tτ~), IΛ(a)〉 = O(τ~ε

2
~~2(α~)

−3)

(26)

+α~τ~

〈
v~(tτ~),Opw~

(
HΛ(ξ)

α~

eΛ.∂xIΛ(a)(x, ξ,HΛ(ξ)/α~)

LΛ

− ε2~
α2
~
∂ηIΛ(a)

eΛ.∂xV

LΛ

)
v~(tτ~)

〉
.

Our assumption ~� ε~ � α~ ensures that the remainder is in fact of order o(~τ~).
We now distinguish three regimes.
First, we suppose that ε~τ~ → 0 as ~→ 0+. In particular, α~ = τ−1

~ � ε~. Thanks to the
Calderón-Vaillancourt Theorem B.2, we can verify that last term in the right hand-side of
equality (26) is in fact o(1) uniformly for t in R. Letting ~ → 0, one finds that, for a.e. t
in R,

d

dt
〈µΛ(t), IΛ(a)〉 =

〈
µΛ(t), η

eΛ

LΛ

.∂xIΛ(a)

〉
.

Combining Proposition 3.4 with (21), one has then 〈µΛ(t), a〉 =
〈
µ0

Λ, IΛ(a) ◦ ϕt
p0

Λ

〉
for a.e.

t in R, which proves point (1) of the Theorem.
Suppose now that τ~ε~ → c > 0. Letting ~→ 0, the limit measure satisfies the following

transport equation, for all θ ∈ C1
c (R):

−
∫
R
θ′(t) 〈µΛ(t), IΛ(a)〉 dt = c

∫
R
θ(t)

〈
µΛ(t), η

eΛ.∂xIΛ(a)

LΛ

− ∂ηIΛ(a)
eΛ.∂xV

LΛ

〉
dt.

Using again Proposition 3.4 with (21), one deduces that

∂t 〈µΛ(t), IΛ(a)〉 = c

〈
µΛ(t), η

eΛ.∂xIΛ(a)

LΛ

− ∂ηIΛ(a)
eΛ.∂xIΛ(V )

LΛ

〉
.

This proves point (2) of the Theorem.
Finally, we suppose that τ~ε~ → +∞. Let θ be an element in C1

c (R). We integrate one
more time equality (26) against θ, and we make an integration by parts on the left-hand
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side of the equality. Then, we make use of the Calderón-Vaillancourt Theorem B.2 to
bound the left-hand-side. After letting ~ goes to 0, one finds that, for every θ in C1

c (R),∫
R
θ(t)

〈
µΛ(t), η

eΛ.∂xIΛ(a)

LΛ

− ∂ηIΛ(a)
eΛ.∂xIΛ(V )

LΛ

〉
dt = 0,

where we used one more time Proposition 3.4 with (21) in order to replace V by its Λ-
average IΛ(V ). This implies point (3) of the Theorem.

5.4.2. Proof of Theorem 3.7. Let now a be an element in C∞c (R2 × R̂) and let k be an
element in Λ− {0}. It suffices to show that:

〈µ̃Λ(t), e−2iπk.xa(ξ, η)〉 = 0.

We fix χ1(η) ∈ C∞(R, [0, 1]) which is equal to 1 for η ≥ 1 and to 0 for η ≤ 1/2. For every
R ≥ 1, we set

aR,k± (x, ξ, η) := e−2iπk.xa(ξ, η)χ1

(
± η
R

)
.

Remark 5.4. Let θ be an element in C1
c (R). One has∫

R
θ(t)

d

dt

〈
wΛ,~(tτ~),

1

η
aR,k±

〉
dt = −

∫
R
θ′(t)

〈
wΛ,~(tτ~),

1

η
aR,k±

〉
dt.

Thanks to the Calderón-Vaillancourt Theorem B.2, one knows that∥∥∥∥Opw~

(
χ

(
HΛ(ξ)

Rα~

)
a

(
ξ,
HΛ(ξ)

α~

)
e−2iπk.x α~

HΛ(ξ)

)∥∥∥∥
L2→L2

= O(R−1).

Thus, one has ∫
R
θ(t)

d

dt

〈
wΛ,~(tτ~),

1

η
aR,k±

〉
dt = O(R−1).

In order to prove the proposition, we will now compute explicitely the derivative of〈
wΛ,~(tτ~),

1
η
aR,k±

〉
. For that purpose, we need to compute the following bracket:[
−~2∆

2
+ ε2~V,Opw~

(
aR,k±

(
x, ξ,

HΛ(ξ)

α~

)
α~

HΛ(ξ)

)]
.

Using again (25), this commutator is in fact equal to[
~2D2

Λ

2
+ ε2~V,Opw~

(
aR,k±

(
x, ξ,

HΛ(ξ)

α~

)
α~

HΛ(ξ)

)]
.

We split this commutator in two parts. Thanks to remark B.4, one has[
~2D2

Λ

2
,Opw~

(
aR,k±

(
x, ξ,

HΛ(ξ)

α~

)
α~

HΛ(ξ)

)]
= −2π~α~ Opw~

(
eΛ

LΛ

.kaR,k±

(
x, ξ,

HΛ(ξ)

α~

))
.

For the other part of the commutator, we use one more time the commutation rule for
pseudodifferential operators and the Calderón Vaillancourt Theorem B.2. We find that[

V,Opw~

(
aR,k±

(
x, ξ,

HΛ(ξ)

α~

)
α~

HΛ(ξ)

)]
= OL2→L2

(
~α−1

~ R−1 + ~3α−3
~
)
.



TWO-MICROLOCAL REGULARITY OF QUASIMODES ON T2 21

As ~ε−1
~ → 0 and ε~ = O(α~), we finally get that

d

dt

〈
wΛ,~(tτ~),

1

η
aR,k±

〉
= −2πτ~α~eΛ.k

LΛ

〈
wΛ,~(tτ~), a

R,k
±

〉
+O

(
τ~ε~R

−1
)

+ o(τ~~).

Let now θ be an element in C1
c (R). We integrate these expressions against θ. Using

Remark 5.4 and making the assumption that lim sup~→0+ τ~α~ > 0, we obtain

∀k ∈ Λ− {0},
∫
R
θ(t)

〈
wΛ,~(tτ~), a

R,k
±

〉
dt = o(1) +O(R−1).

We now let ~ goes to 0, and we get that, for every R > 0,

∀k ∈ Λ− {0},
∫
R
θ(t)

〈
µΛ(t), aR,k±

〉
dt = O(R−1).

To get the conclusion, we let R goes to +∞.

Remark 5.5. From this Theorem, we deduce that, for every a(x, ξ, η) in C∞c (T ∗T2× R̂) and
for a.e. t in R,

µ̃Λ(t)(IΛ(a)) =

∫
T ∗T2×{±∞}

â0(ξ, η)µΛ(t, dξ, dη).

Appendix A. Regularity of bi-invariant measures

In this appendix, we fix Λ a primitive sublattice of Z2 of rank 1, and we aim at analyzing
the regularity of the set of finite measures on T ∗T2 which are invariant by the Hamiltonian
flows5 ϕt

H⊥Λ
and ϕt

pVΛ
. We will now recall the results from section 4 of [21] and explain how

they can be adapted to the present framework. We refer the reader to this reference for
the detailed proofs. We introduce the critical set in the direction of Λ:

CritΛ(V ) := {(x, ξ) ∈ T ∗T2 : HΛ(ξ) = 0 and ∂xIΛ(V ) = 0}.
This is a closed subset of T ∗T2 which is invariant by the Hamiltonian flows ϕt

H⊥Λ
and ϕt

pVΛ
,

and we introduce its complement

R(Λ) := T ∗T2 − CritΛ(V ).

The map
φ : R2 ×R(Λ) 3 (s, t, x, ξ) 7−→ ϕsH⊥Λ

◦ ϕtpVΛ (x, ξ) ∈ R(Λ),

is a group action of R2 on R(Λ). Moreover, for any (x0, ξ0) ∈ R(Λ), the map

φx0,ξ0 : R2 3 (s, t) 7−→ ϕsH⊥Λ
◦ ϕtpVΛ (x0, ξ0) ∈ R(Λ),

is an immersion. Therefore, the stabilizer group Gx0,ξ0 of (x0, ξ0) under φ is discrete. This
proves that the orbits of the action φ are either diffeomorphic to the torus T2, to the
cylinder T× R or to R2. On the other hand, the moment map,

Φ : R(Λ) 3 (x, ξ) 7−→ (H⊥Λ (ξ), pVΛ (x, ξ)) ∈ R2,

5By making a slight abuse of notation, we shall identify ϕt
pΛ

, a flow a priori defined on T2 × Λ⊥ × R,

to a flow on T ∗T2 via the diffeomorphism (18). Recall that ϕt
H⊥

Λ
and ϕt

pV
Λ

commute.
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is a submersion, and, for every (H, J) ∈ Φ(R(Λ)) the level set

L(H,J) := Φ−1(H, J),

is a smooth submanifold of R(Λ) of dimension two. To summarize, the couple (H⊥Λ , p
V
Λ )

forms a completely integrable system on R(Λ), and the map φx0,ξ0 induces a diffeomor-
phism:

∀(x0, ξ0) ∈ R(Λ), φx0,ξ0 : R2/Gx0,ξ0 −→ L
x0,ξ0
(H0,J0), for (H0, J0) := Φ(x0, ξ0).

Here, Lx0,ξ0
(H0,J0) denotes the connected component of L(H0,J0) that contains (x0, ξ0). Therefore,

if Lx0,ξ0
(H0,J0) is compact then it is an embedded Lagrangian torus in T ∗T2. In that case, we

shall write T2
x0,ξ0

:= R2/Gx0,ξ0 . In the following, we denote by Rc(Λ) the set formed by

those (x, ξ) ∈ R(Λ) such that Lx,ξΦ(x,ξ) is compact. Mimicking the proof of proposition 4.2

in [21], one can show that the following holds:

Proposition A.1. Let µ be a probability measure on R(Λ) that is invariant by ϕt
H⊥Λ

and

ϕt
pVΛ

. Set µ := Φ∗µ. Then, for every a ∈ Cc(R(Λ)), one has∫
R(Λ)

a(x, ξ)µ(dx, dξ) =

∫
Φ(R(Λ))

∫
L(H,J)

a(x, ξ)λH,J(dx, dξ)µ(dH, dJ),

where, for (H, J) ∈ Φ(R(Λ)), the measure λH,J is a convex combination of the (normalized)

Haar measures on the tori Lx0,ξ0
(H,J) for (x0, ξ0) ∈ L(H,J) ∩ Rc(Λ). In particular, for every

(x, ξ) in R(Λ), one has

µ
({
ϕsH⊥Λ

(x, ξ) : 0 ≤ s ≤ LΛ

})
= 0.

An explicit formula for the restriction of the measure λH,J to a connected component

Lx,ξ(H,J) with (x, ξ) ∈ Rc(Λ) ∩ L(H,J) is the following:

(27)

∫
Lx0,ξ0

(H,J)

a(x, ξ)λH,J(dx, dξ) = c

∫
T2
x0,ξ0

a(φx0,ξ0(s, t))dsdt,

for some constant c ∈ [0, 1].
We will now discuss the regularity of the projections of bi-invariant measures following

the proof from paragraph 4.2 in [21]. We denote by Π : T ∗T2 → T2 the canonical projection.
The main result from section 4 in [21] was the following

Theorem A.2. Let µ be a probability measure on R(Λ) that is invariant by ϕt
H⊥Λ

and ϕt
pVΛ

.

Then, ν := Π∗µ is a probability measure on T2 that is absolutely continuous with respect
to the Lebesgue measure.

Denote by N (Λ) the convex closure of the set of measures δΠ◦Γ where Γ ⊂ T ∗T2 ranges
over the orbits of ϕH⊥Λ that are contained in CritΛ(V ). A direct consequence of the previous
Theorem is the following:
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Corollary A.3. The projection ν := Π∗µ of a probability measure µ on T ∗T2 that is
invariant by ϕt

H⊥Λ
and ϕt

pVΛ
can be decomposed as:

ν = f vol +ανsing

where f ∈ L1(T2), α ∈ [0, 1] and νsing ∈ N (Λ).

Note that, for a “generic” choice of V , the set of points x satisfying ∂xIΛ(V ) = 0
consists of finitely many closed geodesics of T2. In particular, νsing is a finite combination
of measures carried by closed geodesics.

Proof. As it is simple to explain in the current framework, we briefly explain how the proof
of Theorem 4.6 in [21] can be adapted to prove Theorem A.2 – see also Lemma 2.1 in [6].
Recall that it is sufficient to fix some (x0, ξ0) in Rc(Λ) and to prove that the set of points
where

φx0,ξ0 : (s, t) ∈ T2
x0,ξ
7→ Π ◦ ϕsH⊥Λ ◦ ϕ

t
pVΛ

(x0, ξ0) ∈ T2

is not a local diffeomorphism is made of finitely many disjoint C1 closed curves. Such curves
are called caustics. This can be proved as follows. One can verify that the points where
we do not have a local diffeomorphism are defined by the points (s, t) satisfying

HΛ (φx0,ξ0(s, t)) = 0.

Note that, for every s in R,

HΛ

(
ϕtpVΛ

(x0, ξ0)
)

= HΛ (φx0,ξ0(s, t)) .

As (x0, ξ0) belongs to the ϕt
pVΛ

-invariant set R(Λ), we know that

∂xIΛ(V )
(
ϕtpVΛ

(x0, ξ0)
)
6= 0.

Thus, from the Hamilton-Jacobi equations, we deduce that there exists a small open neigh-
borhood (t− η, t+ η) of t such that, for every t′ ∈ (t− η, t+ η)− {t},

HΛ ◦ ϕt
′

pVΛ
(x0, ξ0) 6= 0.

In particular, there are ony finitely many values of t such that HΛ ◦ ϕtpVΛ (x0, ξ0) 6= 0 and

thus, there are only finitely many closed curves on T2
x0,ξ0

where the map φx0,ξ0 is not a local
diffeomorphism. �

Appendix B. Background on semiclassical analysis

In this appendix, we give a brief reminder on semiclassical analysis and we refer to [29]
(mainly Chapters 1 to 5) for a more detailed exposition. Given ~ > 0 and a in S(R2d) (the
Schwartz class), one can define the Weyl quantization of a as follows:

∀u ∈ S(Rd), Opw~ (a)u(x) :=
1

(2π~)d

∫∫
R2d

e
i
~ 〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ.
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This definition can be extended to any observable a with uniformly bounded derivatives,
i.e. such that for every α ∈ N2d, there exists Cα > 0 such that supx,ξ |∂αa(x, ξ)| ≤ Cα.
More generally, we will use the convention, for every m ∈ R and every k ∈ Z,

Sm,k :=

{
(a~(x, ξ))0<~≤1 : ∀(α, β) ∈ Nd × Nd, sup

(x,ξ)∈R2d;0<~≤1

|~k〈ξ〉−m∂αx∂
β
ξ a~(x, ξ)| < +∞

}
,

where 〈ξ〉 := (1 + ‖ξ‖2)1/2. For such symbols, Opw~ (a) defines a continuous operator
S(Rd)→ S(Rd) which acts by duality on S ′(Rd).

Remark B.1. We also note that we have the following relation that we use at different
stages of our proof:

(28) ∀δ > 0, ∀a ∈ Sm,k,Opw~ (a(x, ξ)) = Opw~δ−1(a(x, δξ)).

Among the above symbols, we distinguish the family of Zd-periodic symbols that we
denote by Sm,kper . Note that any a in C∞(T ∗Td) (with bounded derivatives) defines an

element in S0,0
per. Similarly to the proof of Th. 4.19 in [29], one can verify that, for any

a ∈ Sm,kper ,

Opw~ (a)(ek) =
∑
q∈Zd

eqâq−k(π~(q + k)),

where ek(x) := e2iπk.x, and âp(ξ) :=
∫
Td a(x, ξ)e−2iπp.xdx. In particular, for any a ∈ Sm,kper ,

the operator Opw~ (a) maps trigonometric polynomials into a smooth Zd-periodic function,
and more generally any smooth Zd-periodic function into a smooth Zd-periodic function.
Thus, for every a in Sm,kper , Opw~ (a) acts by duality on the space of distributions D′(Td). An
important feature of this quantization procedure is that it defines a bounded operator on
L2(Td) [29, Ch. 5]:

Theorem B.2. [Calderón-Vaillancourt] There exists a constant Cd > 0 and an integer
D > 0 such that, for every a in S0,0

per, one has, for every 0 < ~ ≤ 1,

‖Opw~ (a)‖L2(Td)→L2(Td) ≤ Cd
∑
|α|≤D

~
|α|
2 ‖∂αa‖∞.

Another important feature of the Weyl quantization procedure is the composition for-
mula:

Theorem B.3. [Composition formula] Let a ∈ Sm1,k1 and b ∈ Sm2,k2. Then, one has, for
any 0 < ~ ≤ 1

Opw~ (a) ◦Opw~ (b) = Opw~ (a]~b),

in the sense of operators from S(Rd)→ S(Rd), where a]~b has uniformly bounded deriva-
tives, and, for every N ≥ 0

a]~b ∼
N∑
k=0

1

k!

(
i~
2
D

)k
(a, b) +O(~N+1),

where D(a, b)(x, ξ) = (∂x∂ν − ∂y∂ξ)(a(x, ξ)b(y, ν))ey=x,ν=ξ.
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We refer to chapter 4 of [29] for a detailed proof of this result. We observe that for
N = 0, the coefficient is given by the symbol ab, and for N = 1, it is given by ~

2i
{a, b},

where {., .} is the Poisson bracket. As before, we can restrict this result to the case
of periodic symbols, and we can check that the composition formula remains valid for
operators acting on C∞(Td).

Remark B.4. We note that the formula for the composed symbols is quite symmetric, and
we have in fact the following useful property, for every N ≥ 0,

a]~b− b]~a ∼
N∑
k=0

2

(2k + 1)!

(
i~
2
D

)2k+1

(a, b) +O(~2N+3),

Finally, note that, if b(ξ) is a polynomial in ξ of order ≤ 2, one has, the exact formula:

a]~b− b]~a =
~
2i
{a, b}.
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[20] F. Macià The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion. In

Modern aspects of the theory of partial differential equations, volume 216 of Oper. Theory Adv. Appl.,
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