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Abstract. We look at the properties of high frequency eigenmodes for the damped wave equa-
tion on a compact manifold with an Anosov geodesic �ow. We study eigenmodes with damping
parameters which are asymptotically close enough to the real axis. We prove that such modes
cannot be completely localized on subsets satisfying a condition of negative topological pressure.
As an application, one can deduce the existence of a �strip� of logarithmic size without eigenval-
ues below the real axis under this dynamical assumption on the set of undamped trajectories.

1. Introduction

Let M be a smooth, compact, connected Riemannian manifold of dimension d ≥ 2 and without
boundary. We will be interested in the high frequency analysis of the damped wave equation,(

∂2
t −∆ + 2V (x)∂t

)
u(x, t) = 0, u(x, 0) = u0, ∂tu(x, 0) = u1,

where ∆ is the Laplace-Beltrami operator on M and V ∈ C∞(M,R+) is the damping function.
This problem can be rewritten as

(1) (−ı∂t +A)u(t) = 0,

where u(t) := (u(t), ı∂tu(t)) and

(2) A =
(

0 Id
−∆ −2ıV

)
.

This operator generates a strongly continuous and uniformly bounded semigroup U(t) = e−ıtA on
H1(M) × L2(M) which solves (1) � e.g. [14], §2. Hence, it is quite natural to study the spectral
properties of A in order to understand the behavior of the solutions of (1). For instance, in [17],
Lebeau established several important relations (related to the decay of energy of solutions) between
the evolution problem (1), the spectral properties of A and the properties of the geodesic �ow
(gt)t on the unit cotangent bundle

S∗M :=
{

(x, ξ) ∈ T ∗M : ‖ξ‖2x = 1
}
.

Recall that the spectrum of this nonselfadjoint operator is a discrete subset of C made of
countably many eigenvalues (τn) which satisfy limn→+∞Re τn = ±∞. We underline that τ is an
eigenvalue of A when there exists a non trivial function u in L2(M) such that

(3) (−∆− τ2 − 2ıτV )u = 0.

Hence, each eigenvalue τ can be associated with a normalized �eigenmode� u in L2(M) which gives
raise to the following solution of the damped wave equation

v(t, x) = e−ıtτu(x).

We also underline that Im τn ∈ [−2‖V ‖∞, 0] for every n and that (τ, u) solves the eigenvalue
problem (3) if and only if (−τ , u) solves it [21]. Our main concern in the following will be
to understand the asymptotic properties of slowly damped eigenmodes. Precisely, we consider
sequences (τn, un)n solving (3) with

Re τn → +∞ and Im τn → 0.
1
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In the case where V is not identically 0, Lebeau proved the existence of a constant C > 0 such
that for every τ 6= 0 in the spectrum of A, one has [17]

(4) Im τ ≤ − 1
C
e−C|τ |.

Hence, eigenfrequencies cannot accumulate faster than exponentially on the real axis. Moreover,
Lebeau also provided in [17] a geometric situation where this inequality is optimal. An important
feature of this example is that it does not satisfy the so-called Geometric Control Condition:

(5) ∃T0 > 0 such that ∀ρ ∈ S∗M, {gtρ : 0 ≤ t ≤ T0} ∩ {(x, ξ) : V (x) > 0} 6= ∅.
In fact, under this assumption, one can prove that there exists a constant γ > 0 such that for
every τ 6= 0 in the spectrum of A, one has [17, 33]

Im τ ≤ −γ < 0.

It is then natural to understand how close to the real axis eigenfrequencies can be under the
assumption that the Geometric Control Condition does not hold. For that purpose, we introduce
the set of undamped trajectories1

(6) ΛV =
⋂
t∈R

gt{(x, ξ) ∈ S∗M : V (x) = 0}.

In fact, even if inequality (4) is optimal, there may be some geometric assumptions onM or on ΛV
under which the accumulation is much slower than exponential. In recent works, many progresses
have been made in understanding the spectral properties of A in di�erent geometric situations,
e.g. when ΛV is arbitrary [33, 2, 31], when ΛV is a closed geodesic [14, 8, 9] or when ΛV satis�es
a pressure condition [32, 21]. We will explain some of these results which are related to ours but
before that, we will proceed to a semiclassical reformulation of this spectral problem as in [33], §1.

Semiclassical reformulation. Thanks to the di�erent symmetries of our problem, we will only
consider the limit Re τ → +∞. Introduce then 0 < ~� 1. We will look at eigenfrequencies τ of
order ~−1 by setting

τ =
√

2z
~

, where z =
1
2

+O(~).

With this notation, studying the high frequency eigenmodes of the damped wave equation
corresponds to look at sequences (z(~) = 1

2 +O(~))0<~�1 and (ψ~)0<~�1 in L2(M) satisfying2

(7) (P(~, z)− z(~))ψ~ = 0, where P(~, z) := −~2∆
2
− ı~

√
2z(~)V (x).

For every t in R, we also introduce the quantum propagator associated to P(~, z), i.e.

(8) U t~ := exp
(
− ıtP(~, z)

~

)
.

After this semiclassical reduction, the question of the accumulation of the eigenfrequencies to

the real axis can be translated in understanding how close to 0 the quantum decay rate Im z(~)
~

can be. For ~ small enough, introduce now

Σ~ =
{
z(~) : ∃ψ~ 6= 0 ∈ L2(M), P(~, z)ψ~ = z(~)ψ~

}
.

In [33], Sjöstrand proved several results on the distribution of this semiclassical spectrum. For
instance, he showed that eigenvalues z(~) with Re z(~) in a small box around 1/2 satis�es a
Weyl's law in the semiclassical limit ~ → 0+. Moreover, he proved that, in such boxes, most of

the imaginary parts Im z(~)
~ concentrate on the ergodic averages of V with respect to the geodesic

�ow. We refer the reader to [33] for the precise statements.

1By a compactness argument, one can verify that the Geometric Control Condition holds if and only if ΛV = ∅.
2We underline that for simplicity of exposition, we only deal with operators of this form. However, our approach

could be adapted to treat the case of more general families of nonselfadjoint operators like the ones considered
in [33], §1.
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In this semiclassical setting, Lebeau's result reads

∃C > 0 such that for ~ small enough, ∀z(~) ∈ Σ~,
Im z(~)

~
≤ − 1

C
e−

C
~ .

Finaly, under the Geometric Control Condition (5), one can prove the existence of γ > 0 such that

for ~ small enough, one has Im z(~)
~ ≤ −γ [17, 33]: one says that there is a spectral gap.

Chaotic dynamics. It is natural to ask whether the results above can be improved when the
manifold M satis�es additional geometric properties. In this article, we will be interested in the
speci�c case where the geodesic �ow (gt) on the unit cotangent bundle S∗M has the Anosov
property (manifolds of negative curvature are the main example). This assumption implies that
the dynamical system (S∗M, gt) is strongly chaotic (e.g. ergodicity, mixing of the Liouville measure
L on S∗M). Motivated by the properties of the semiclassical approximation, one can expect to
exploit these chaotic dynamical properties to obtain more precise results on the distribution of
eigenvalues � see e.g. [2, 31, 32, 21] for applications of this idea. In [31, 32, 21], it is proved
that, under various assumptions on V , there exists a spectral gap below the real axis. Yet, to our
knowledge, the existence of a spectral gap is not known for a general nontrivial V even in this
chaotic setting.

Our precise aim in this article is to describe the asymptotic distribution of eigenmodes for which
Im z(~)

~ → 0 fast enough when the geodesic �ow is chaotic. We will prove that such eigenmodes
must in a certain sense be partly delocalized on S∗M .

Semiclassical measures. In order to describe the asymptotic properties of these slowly damped
eigenmodes, we will use the notion of semiclassical measures [7, 12]. Consider a sequence of
normalized eigenmodes (ψ~)~→0+ satisfying

(9) P(~, z)ψ~ = z(~)ψ~,

where z(~) → 1/2 and Im z(~)
~ → 0 as ~ tends to 0. If such modes exist, one must at least

have ΛV 6= ∅. For a given sequence (ψ~)~→0+ , we introduce a family of distributions on the
cotangent space T ∗M , i.e.

(10) ∀a ∈ C∞o (T ∗M), µψ~(a) := 〈ψ~,Op~(a)ψ~〉L2(M),

where Op~(a) is a ~-pseudodi�erential operator (see appendix A.1). This distribution tells us
where the eigenfunction ψ~ is located on the phase space T ∗M and one can try to describe
the accumulation points of this sequence of distributions in order to understand the asymptotic
localization of ψ~. Using results from semiclassical analysis [12] (Chapter 5), one can verify that
any accumulation point µ (as ~ → 0) of the sequence (µψ~)~ is a probability measure µ with
support in the unit cotangent bundle S∗M . moreover, µ satis�es, for every t ≥ 0,

∀a ∈ C0(S∗M), µ(a) = µ
(
a ◦ gte−2

R t
0 V ◦g

sds
)
,

due to the fact that Im z
~ → 0. When specifying this relation with a ≡ 1, one can verify that

µ(V ◦ gt) = 0 for every t. In particular, as V ≥ 0, it implies that the measure µ is invariant under
the geodesic �ow.

We will call semiclassical measure any accumulation point µ (as ~ tends to 0) of a sequence of
the form (µψ~), where ψ~ satis�es equation (7). We will denote

M ((ψ~)~→0+)

the set of semiclassical measures associated to the sequence (ψ~)~→0+ . Under our assumption,
it forms a subset of M(S∗M, gt) which is the set of gt-invariant probability measure on S∗M .
Hence,M ((ψ~)~→0+) is a subset of a natural family in ergodic theory: our precise goal is then to
give ergodic properties on its elements. Finally, one can verify that any the support of any µ in
M ((ψ~)~→0+) is included in the weakly undamped set

NV :=
⋃

µ∈M(S∗M,gt)

{supp(µ) : µ(V ) = 0},
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which is a subset of ΛV . It is explained in [32] that ΛV and NV could be di�erent; yet, we would
like to mention that, in our setting, the Geometric Condition Condition (5) is also equivalent to
NV = ∅.

2. Main results

Motivated by questions concerning the Quantum Unique Ergodicity Conjecture3, Ananthara-
man studied the Kolmogorov-Sinai entropy of semiclassical measures in the case of eigenfunctions
of the Laplacian on Anosov manifolds [1] � see also [5, 19] for earlier results due to Bourgain and
Lindenstrauss in an arithmetic setting. Precisely, her result concerns the selfadjoint case V ≡ 0.
It roughly says that, in this context, eigenmodes must be partly delocalized on S∗M (for instance,
they cannot concentrate only on closed geodesics). In this article, we will prove similar results in
the non selfadjoint setting V ≥ 0.

Before giving details, we would like to recall that the Kolmogorov-Sinai entropy hKS(µ, g) is a
nonnegative quantity associated to an invariant probability µ inM(S∗M, gt) � see [34] or section 3
for a brief reminder). This quantity characterizes what the measure perceives of the complexity
of the geodesic �ow. For instance, if µ is carried by a closed orbit of the geodesic �ow, then
hKS(µ, g) = 0. On the other hand, if µ = L, the measure has a �good understanding� of the
complexity of the dynamic and so it has a large entropy. Moreover, entropy is a�ne with respect
to the ergodic decomposition of a measure µ [11]. In fact, thanks to the Birkho� Ergodic Theorem,
one knows that, for µ almost every ρ in S∗M ,

1
T

∫ T

0

δgsρds ⇀ µρ, as T → +∞,

where δw is the Dirac measure in w ∈ S∗M . The measure µρ is ergodic and one has the ergodic
decomposition µ =

∫
S∗M

µρdµ(ρ). Then, the Kolmogorov-Sinai entropy satis�es

(11) hKS(µ, g) =
∫
S∗M

hKS(µρ, g)dµ(ρ).

2.1. Main result. We can now state our main result which is the following:

Theorem 2.1. Suppose (S∗M, gt) satis�es the Anosov property. Let P0 be a positive constant.
There exist c0(P0) > 0 and C(P0) > 0 depending only on P0, on V and on M such that if

• (ψ~)~→0+ is a sequence of eigenmodes satisfying (9) with

∀0 < ~ ≤ ~0, z(~) ∈
[

1
2
− ~,

1
2

+ ~
]

+ ı

[
−C(P0)

~
| log ~|

,+∞
]

;

• µ is inM ((ψ~)~→0+),

then, one has

µ

({
ρ ∈ S∗M : hKS(µρ, g) ≥ −1

2

∫
S∗M

log Judµρ − P0

})
≥ c0(P0),

where Ju(ρ) is the unstable Jacobian, i.e. Ju(ρ) :=
∣∣∣det

(
dg1ρg

−1
|Eu(g1ρ)|

)∣∣∣.
We will recall in section 3 basic facts on entropy and Anosov systems (in particular the de�nition

of Ju [16]). We underline that, for any invariant probability measure ν ∈M(S∗M, gt), the quantity
−
∫
S∗M

log Judν is positive.

3We refer the reader to [20, 30, 35] for recent reviews on these questions.
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2.2. Comments. The lower bound that appears in our Theorem is a natural dynamical quantity.
In fact, for any invariant probability measure ν inM(S∗M, gt), one has the Ruelle-Margulis upper
bound [29], i.e.

(12) hKS(ν, g) ≤ −
∫
S∗M

log Judν,

with equality if and only if ν is the Liouville measure on S∗M [18]. Thus, if one has Im(z(~))
~ =

o
(
| log ~|−1

)
, our result states that a semiclassical measure of our problem must have ergodic

components which are close to be �half delocalized�.
A direct consequence of Theorem 2.1 can be expressed in terms of topological pressure � see

section 3 for a brief reminder. We recall that, for a compact and gt-invariant subset K of S∗M ,
the variational principle [24] relates this dynamical quantity to the entropy as follows

Ptop

(
K, gt,

1
2

log Ju
)

= sup
ν∈M(S∗M,gt)

{
hKS(ν, g) +

1
2

∫
K

log Judν : ν(K) = 1
}
.

Thus, if K is a subset of S∗M which satis�es Ptop(K, gt, log Ju/2) < 0, then Theorem 2.1 implies

that µ(K) < 1 if Im(z(~))
~ = o

(
| log ~|−1

)
. In other words, Theorem 2.1 implies that eigenmodes

cannot put all their weights on subsets of negative topological pressure. In some sense, proposi-
tion 4.3 (which is the key result of this article) is another way to formulate this fact in a discrete
setting. In the case of surfaces, such a condition on the topological pressure holds if K has Haus-
dor� dimension < 2 [4]. This condition on the topological pressure already appeared in [22] where
it was used to establish a spectral gap for resonances � see also [31, 32, 21] in the case of the
damped wave equation.

In the case V ≡ 0, Anantharaman proved that Theorem 2.1 holds [1] if we replace the quantity
−
∫
S∗M

log Judµρ by

Λmin = inf
ν∈M(S∗M,gt)

{
−
∫
S∗M

log Judν
}
> 0.

In particular, our result improves this earlier result of Anantharaman in the selfadjoint case V ≡ 0.
Yet, our main interest here was to show that these entropic properties remain true for slowly
damped eigenmodes in the high frequency limit of (1). In particular, our result shows that
semiclassical measures of such modes cannot be carried only by closed orbits of the geodesic �ow.

We underline that Anantharaman proved her result in the general setting of quasimodes sat-
isfying ‖(−~2∆ − 1)ψ~‖ = O(~/| log ~|) � in our setting, the sequences of states satisfy a priori
only ‖(−~2∆− 1)ψ~‖ = O(~). For simplicity of exposition, we only treat the case of eigenmodes
satisfying (9) (in principle, the case of quasimodes could also be derived combining our inputs to
the strategy in [1]). An interesting extension of our main Theorem would also be to understand if
the entropic results in [3, 26] could also be adapted in this non selfadjoint situtation.

Our assumption on the rate of convergence of Im(z(~))
~ is a very strong assumption. Except in

the case V ≡ 0, it is not clear if it can be satis�ed by a sequence of eigenvalues. In a subsequent
work [27], we will describe (weaker) properties that can be derived in the case where we only

suppose Im(z(~))
~ → β.

Let us mention an interesting consequence of our main Theorem:

Corollary 2.2. Suppose (S∗M, gt) satis�es the Anosov property. Let V ≥ 0 be a smooth function
on M such that NV is a nonempty subset satisfying

(13) Ptop

(
NV , gt,

1
2

log Ju
)
< 0,

where Ptop

(
NV , gt,

1
2

log Ju
)

is the topological pressure of NV with respect to 1
2 log Ju.

Then, there exists a positive constant C and ~C > 0 such that for every 0 < ~ ≤ ~C ,

Σ~ ∩
([

1
2
− ~,

1
2

+ ~
]

+ ı

[
− C~
| log ~|

,+∞
])

= ∅.
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This corollary follows from the above observations on the measure of subsets of negative topo-
logical pressure and from the fact that µ(NV ) = 1. It establishes the presence of an inverse
logarithmic strip without eigenvalues in the case where NV satis�es a condition of negative topo-
logical pressure. In the appendix of [9], Christianson obtains a similar result in the case where
NV is a (single) closed hyperbolic geodesic with the notable di�erence that he does not make any
global assumption on the geodesic �ow. In fact, in the appendix of a subsequent work [27], we
prove with S. Nonnenmacher that one can remove the the global assumption on the geodesic �ow
in the previous corollary. Yet, the results in [27] do not allow to recover the results of Theorem 2.1.
In [31, 32, 21], spectral gaps were obtained in the case of Anosov geodesic �ow under a topological
pressure condition or under an assumption on the amplitude of the damping function V . As con-
jectured in [21], it seems natural (even if it is not proved yet) to expect that, for Anosov geodesic
�ows, a spectral gap (and not an inverse logarithmic gap) could be obtained under condition (13).

2.3. Some words about the proof. The general strategy of our proof follows the one from [1].
Without getting into the details of the proof, we would like to mention what are the main di�erences
which allows the improvements presented above. In this reference, the general strategy was to use
hyperbolic dispersive estimates (40) in order to prove that eigenmodes cannot concentrate entirely
on subsets of small topological entropy (meaning < Λmin

2 ). Regarding the estimates (40), it was
natural to expect that the results of Anantharaman could be improved using �thermodynamical
quantities� like topological pressure. This allows to take more into account the variations of the
unstable jacobian Ju and to improve slightly the entropic lower bounds from [1]. Our �rst input is
to introduce these quantities and to prove that eigenmodes cannot concentrate entirely on subsets
of small topological pressure with respect to 1

2 log Ju (meaning < 0). Translated in a discrete
setting, it is exactly the statement of proposition 4.3 which is the main result of this article.

An additional di�culty we have to face here is that we want to extend the results to the eigen-
modes of a non selfadjoint operator. We would like now to illustrate the kind of di�culties created
by this generalization. Thanks to the long time Egorov property [6] (see also paragraph A.3), one
can verify that, for every a in C∞c (T ∗M), there exists κ > 0 such that

∀ 0 ≤ t ≤ κ| log ~|, µψ~(a) = e−
2t Im z(~)

~

〈
ψ~,Op~

(
a ◦ gte−2

R t
0 V ◦g

sds
)
ψ~

〉
+O(~ν),

where ν > 0 and the constant in the remainder is uniform for 0 ≤ t ≤ κ| log ~|. Hence, in the case
V ≡ 0, the distibution µψ~ is invariant4 under gt modulo small error terms which are uniform for
logarithmic times in ~. This invariance property for logarithmic times was extensively used in [1]
under various forms. In the case where V is non trivial, we did not �nd a simple equivalent of
this �pseudo-invariance� property for long times in ~. However, instead of it, we make a simple
observation that we will use at di�erent steps of our proof � e.g. in proposition 6.3. In fact, one
can remark that the quantization procedure is �almost positive� (see paragraph A.2). As V ≥ 0,
there exists, for any a in C∞c (T ∗M,R+), κ > 0 such that

∀ 0 ≤ t ≤ κ| log ~|, µψ~(a) ≤ e−
2t Im z(~)

~ µψ~(a ◦ gt) +O(~ν).

Under the assumption that Im z(~)
~ ≥ −C| log ~|−1, one can then verify that the distribution

satis�es µψ~(a) ≤ e2Cκµψ~(a ◦ gt) + O(~ν) with an uniform remainder for 0 ≤ t ≤ κ| log ~|.
Moreover, one can choose C small enough to have e2Cκ arbitrarly close to 1. In this sense, the
distribution µψ~ is subinvariant under the geodesic �ow for logarithmic times (modulo small error
terms) and this kind of property will be su�cient to prove our result.

2.4. Organization of the article. In section 3, we give a brief reminder on the dynamical
systems concepts we will use in this article. In section 4, we proceed to a discretization of the
manifold which allows to give a symbolic interpretation of the quantum system. The main result of
this section is proposition 4.3 which shows that eigenmodes cannot concentrate entirely on subsets
of small topological pressure. In section 5, we use this result to derive Theorem 2.1. Then, in
section 6, we give the proof of several lemmas that we used to prove proposition 4.3. Finally, in

4In the case of quasi modes [1], this property remains true but with a worst remainder term.
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the appendix, we give several results on semiclassical analysis related to our problem and that we
used at di�erent stages of the proof.

3. Background on dynamical systems

In this section, we draw a short review on Anosov �ows and thermodynamical formalism. We
refer the reader to the classical references on this subject for more details, e.g. [16, 34].

3.1. Anosov �ows. In all this article, we make the assumption that the geodesic �ow satis�es
the Anosov property. It means that, for every E > 0 and for every

ρ ∈ p−1
0 ({E}) :=

{
(x, ξ) ∈ T ∗M : p0(x, ξ) =

‖ξ‖2x
2

= E

}
,

one has the following decomposition [16]

Tρp
−1
0 ({E}) = RXp0(ρ)⊕ Eu(ρ)⊕ Es(ρ).

In the previous decomposition, RXp0(ρ) is the direction of the Hamiltonian vector �eld, Eu(ρ) is
the unstable space and Es(ρ) is the stable space. For every E > 0, there exists a constant C > 0
and 0 < λ < 1 such that for every t ≥ 0, one has

∀vu ∈ Eu(ρ), ‖dρg−tvu‖ ≤ Cλt‖vu‖ and ∀vs ∈ Es(ρ), ‖dρgtvs‖ ≤ Cλt‖vs‖.
De�ne now the unstable Jacobian at point ρ ∈ S∗M and time t ≥ 0

Jut (ρ) :=
∣∣∣det

(
dgtρg

−t
|Eu(gtρ)

)∣∣∣ ,
where the unstable spaces at ρ and gtρ are equipped with the induced riemannian metric. This
de�nes an Hölder continuous function on S∗M [16] (that can be extended to any energy layer
p−1

0 ({E})). We underline that this quantity tends to 0 as t tends to in�nity at an exponential
rate. Moreover, it satis�es the following multiplicative property

Jut+t′(ρ) = Jut (gt
′
ρ)Jut′(ρ).

In the following, we will use the notation Ju(ρ) = Ju1 (ρ). Finally, we underline that these unstable
Jacobian are related to the Lyapunov exponents [16], in the sense that, for a given µ ∈M(S∗M, gt),
one has, for µ almost every ρ,

lim
t→+∞

−1
t

log Jut (ρ) =
d−1∑
j=1

χ+
j (ρ),

where the χ+
j (ρ) are the positive Lyapunov exponents at point ρ. We underline that this last

quantity is also equal to −
∫
S∗M

log Judµρ for µ almost every ρ in S∗M .

3.2. Kolmogorov Sinai entropy. There are several ways to de�ne Kolmogorov-Sinai entropy
and we refer the reader to [34] (chapter 4) for the classical de�nition and the fundamental properties
of entropy. This quantity associates to a gt-invariant measure µ a nonnegative number that
characterizes the complexity of the geodesic �ow from the point of view of µ. A way to de�ne
it is to start from a partition P = (Pi)Ki=1 of S∗M . Then, for every ρ in S∗M and for every
n in N, there exists a unique sequence (α0, . . . , αn−1) in {1, . . . ,K}n such that ρ belongs to
Pα0 ∩ g−1Pα1 . . . ∩ g−n+1Pαn−1 . We denote this set Bn(ρ). Fix a measure µ inM(S∗M, gt). The
Shannon-McMillan-Breiman Theorem states [23] that for µ almost ρ in S∗M , the limit

lim
n+∞

− 1
n

logµ(Bn(ρ))

is well de�ned. We denote this limit hKS(µρ, g,P). It de�nes an element in L1(µ) that is gt-
invariant and that measures the exponential decrease of the µ-volume of the �n-balls� Bn(ρ). The
Kolmogorov-Sinai entropy is then de�ned as

hKS(µ, g) = sup
{∫

S∗M

hKS(µρ, g,P)dµ(ρ) : P is a �nite partition of S∗M

}
.
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Recall from the introduction that this quantity is a�ne for the ergodic decomposition and that
it is bounded by the Ruelle-Margulis upper bound. Moreover, Abramov Theorem tells us that
hKS(µ, gt) = |t|hKS(µ, g) for every t in R. Finally, we underline that if there exists C > 0 and
H0 ≥ 0 such that for every n in N and for every |α| = n, µ(Pα0 ∩ g−1Pα1 . . . ∩ g−n+1Pαn−1) ≤
Ce−nH0 , then hKS(µ, g) ≥ H0.

3.3. Topological pressure. In corollary 2.2, we made an assumption on the topological pressure
of an invariant subset K of S∗M . This quantity can be de�ned as the Legendre transform of the
Kolmogorov-Sinai entropy [24, 34], i.e.

∀f ∈ C0(S∗M), Ptop
(
K, gt, f

)
:= sup

µ∈M(S∗M,gt)

{
hKS(µ, g) +

∫
K

fdµ : µ(K) = 1
}
.

This de�nition of topological pressure is known as the variational principle and we used this
de�nition to derive corollary 2.2. There are many other (equivalent) de�nitions of topological
pressure [24, 34]. We just mention one of them here in order to clarify the statements of section 4.

Given ε > 0 and T ≥ 0, a subset F of K is said to be (ε, T )-separated if for any ρ 6= ρ′ in
F , there exists 0 ≤ t ≤ T such that the distance d(gtρ, gtρ′) is > ε. Fix now f an element5 in
C0(S∗M). De�ne

(14) PT (K, gt, f, ε) = sup

∑
ρ∈F

exp

(∫ T

0

f ◦ gt(ρ)dt

) ,

where the supremum is taken over all (ε, T )-separated subset of K. An equivalent de�nition of
the topological pressure is then

Ptop
(
K, gt, f

)
= lim
ε→0

lim sup
T→+∞

1
T

logPT (K, gt, f, ε).

4. Symbolic coding of the quantum dynamic

We �x C a positive constant (that will be chosen small enough at the end of our proof). Let
(ψ~)0<~≤~0 be a sequence of normalized vector in L2(M) such that

P(~, z)ψ~ = z(~)ψ~,

where z(~) belongs to

(15)

[
1
2
− ~,

1
2

+ ~
]

+ ı

[
− C~
| log ~|

,+∞
]
.

Up to an extraction, we suppose that the distribution µψ~ de�ned by (10) converges weakly to
the gt-invariant probability measure µ. In the following, we will use the notation ~ → 0 for the
extraction in order to avoid heavy notations and in order to �t semiclassical notations.

Entropic properties of semiclassical measures were already studied in [1, 3]. A common point
of their proofs is the introduction of a symbolic coding of the quantum dynamic to study localiza-
tion properties of semiclassical measures. In these references, the proof relies on a careful study
of the �thermodynamical properties� of the symbolic quantum system and on its link with the
thermodynamical properties of semiclassical measures. We use also a symbolic presentation of the
quantum system (similar to the one in [1]) that we describe in this section.

The main result of this section is proposition 4.3 that will allow us to derive the proof of
Theorem 2.1 in section 5. It shows, in a certain sense, that the sequence of eigenmodes de�ned
above cannot concentrate on a subset of small topological pressure (at least for C small enough).

5In the following section, we will take f = 1
2

log Ju.
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4.1. Energy cuto�s. As the sequence (ψ~)~ concentrates on S∗M in the semiclassical limit, we
can introduce cuto� functions that will allow us to work with observables compactly supported in
a small neighborhood of S∗M . First, we de�ne χ̃ a smooth function on R which is nonnegative,
which is equal to 1 for |t| ≤ 1/2 and which is equal to 0 for |t| ≥ 1. Then, we �x δ > 0 and k a
positive integer. For every 0 ≤ j ≤ k − 1, we de�ne

∀ρ = (x, ξ) ∈ T ∗M, χ−j(x, ξ) := χ̃
(
4jδ−1(‖ξ‖2x − 1)

)
.

Each of the function χ−j is a smooth function on S∗M which is compactly supported in {1−δ/4j ≤
‖ξ‖2x ≤ 1 + δ/4j}. Moreover, by de�nition, the support of 1−χ−j and χ−j−1 are disjoint. Finally,
for an eigenfunction ψ~, one has

‖Op~(χ−j)ψ~ − ψ~‖ = O(~∞),

as ψ~ solves (7).
In fact, we will mainly use the cuto� function χ0 but, at some point of our proof (precisely in

the proof of lemma 6.1), we will need to use a �nite number k of cuto� functions (the integer k we
will take will only depend on δ and on a positive number P0 with the notations of the following
paragraphs).

4.2. Smooth discretization of M . In order to give a symbolic analogue of the quantum dynam-
ics induced bu U t~, we proceed to a smooth partition of the manifold M . Let M = M1 t . . .MK

be a �nite measurabe partition of M of diameter bounded6 by ε
2 and such that the measure µ

does not charge the boundary of the partition. By lifting it on T ∗M , it can be considered as a
partition of T ∗M . In [1], Anantharaman explained how to regularize such a partition in a smart
way. Without getting into the details of [1] (see paragraph 2.1 and appendix A.2 of this reference),
we recall that she constructed a family of smooth functions (P ~

1 , . . . P
~
K) on M (that depends on

~) satisfying in particular the following properties

• for every i, P ~
i ≥ 0;

• ∀x ∈M,
∑K
j=1 P

~
j (x) = 1;

• Mi ⊂ suppP ~
i ⊂ B(Mi,

ε
4 ), where B(Mi,

ε
4 ) is an ε/4-neighborhood of Mi;

• P ~
i → 1 uniformly in every compact subset inside the interior of Mi, as ~ tends to 0;

• P ~
i → 0 uniformly in every compact subset ouside Mi, as ~ tends to 0;

• the growth of the derivatives is controlled by powers of ~−ν (with ν < 1/2) and so the
functions are amenable to ~-pseudodi�erential calculus [10, 12] (see also appendix A.1 for
a brief reminder);

• There exists a 0 < b < 1/2 such that

(16) ∀1 ≤ i 6= j ≤ K, ‖P ~
i P

~
j ψ~‖ = O(~

b
2 ) and ∀1 ≤ i ≤ K, ‖(P ~

i )2ψ~ − P ~
i ψ~‖ = O(~

b
2 ).

Property (16) is an important feature in our proof that will allow us to consider the smooth
partition as a family of orthogonal projectors � see paragraph 6.4. The parameters ν and b are
�xed in the following of the article.

For each of this smooth function P ~
i , we can de�ne a multiplication operator on L2(M)

∀u ∈ L2(M), πiu = P ~
i × u,

which is a bounded operator on L2(M) (of norm less than 1). One can underline that

K∑
i=1

πi = IdL2(M).

We also introduce the following operator:

∀α ∈ {1, . . . ,K}n, Πα := παn−1(n− 1) . . . πα1(1)πα0 ,

where A(t) := U−t~ AU t~. For a �xed n, Πα is a pseudodi�erential operator in Ψ0,0
ν (M) with principal

symbol equal to P ~
α0
×P ~

α1
◦ g1× . . . P ~

αn−1
◦ gn−1. We will see in paragraph A.4 that this property

extends to short logarithmic times [κ| log ~|] when we localize the observables near S∗M . We

6We will �x ε small enough in a way that depends only on M and on P0 (see paragraph 4.5).
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also underline that the principal symbol of Πα is the smooth analogue of the re�ned partition
appearing in the classical de�nition of the Kolmogorov-Sinai entropy.

Finally, we observe that the following property of partition of identity holds:

(17)
∑
|α|=n

Πα = IdL2(M).

4.3. Symbolic coding of the quantum dynamic. We can now use this smooth discretization
of M to introduce a symbolic coding of the quantum dynamic induced by U t~. We will then state
our main result in terms of this symbolic dynamic � see proposition 4.3.

4.3.1. Quantum functionals on cylinders. First, we de�ne

Σ := {1, . . . ,K}N

and denote a cylinder [α0, . . . , αn−1] := {x ∈ Σ : ∀0 ≤ i ≤ n− 1, xi = αi}. We will use β.α for the
concatenation of two �nite words β := (βq, . . . , βq+q′) and α := (αp, . . . , αp+p′).

We de�ne the shift on Σ as σ((xn)n∈N) = (xn+1)n∈N and the following quantum functional on
the cylinders of Σ

µΣ
~ ([α0, . . . , αn−1]) = 〈Παψ~, ψ~〉L2(M).

This object is not a probability measure. However, it satis�es the following nice properties

Proposition 4.1. One has:

(1) For every n in N, for every cylinder [α0, . . . , αn−1],∑
αn

µΣ
~ ([α0, . . . , αn−1, αn]) = µΣ

~ ([α0, . . . , αn−1]);

(2) For every n in N, for every cylinder [α0, . . . , αn−1] and for every k,

µΣ
~ (σ−k[α0, . . . , αn−1]) = µΣ

~ ([α0, . . . , αn−1]) + on,k(1);

(3) For every n, ∑
|α|=n

µΣ
~ ([α0, . . . , αn−1]) = 1.

In point 2 of the proposition, we used the notation

µΣ
~ (σ−k[α0, . . . , αn−1]) =

∑
α−k,...,α−1

µΣ
~ ([α−k, . . . , α−1, α0, . . . , αn−1]).

The �quantum functional� µΣ
~ looks very much like a σ-invariant probability measure. The two

mains problems are that it is not positive a priori and that it is not exactly invariant.

Concerning the positivity, one can use Egorov property (51) with q1 =
√

2z(~)V and q2 =
−
√

2z(~)V � see remark A.2. Then, following the proof of proposition 1.3.2 in [1], one �nds that
the following holds in the semiclassical limit ~→ 0:

(18) µΣ
~ ([α0, . . . , αn−1])→ µ

(
g−n+1Mαn−1 ∩ . . .Mα0

)
.

Thus, in the semiclassical limit, µΣ
~ ([α0, . . . , αn−1]) de�nes a nonnegative quantity.

Let us now explain how one can prove point 2 of the proof. Using the fact that the semiclassical
measure µ is g1 invariant (as supp(µ) ⊂ NV ), one veri�es that the limit of the �quantum functional�
de�nes σ-invariant probability measure µΣ as follows:

∀[α0, . . . , αn−1], µΣ([α0, . . . , αn−1]) := µ
(
Mα0 ∩ . . . g−(n−1)Mαn−1

)
.

Hence, the functional becomes σ-invariant in the semiclassical limit. In particular, it implies point
2 of the proposition, i.e. for �xed n and k,

µΣ
~ (σ−k[α0, . . . , αn−1]) = µΣ

~ ([α0, . . . , αn−1]) + on,k(1).
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Remark 4.2. As mentionned in paragraph 2.3, the situation is slightly more complicated than the
selfadjoint case treated in [1] where the quantum functional was invariant under σ (or at least
invariant modulo a factor of order k| log ~|−1 in the case of quasimodes). Here, for a �xed n, there
is a priori no reason to obtain a remainder ok(1) with a really explicit dependence in k. Instead of
this, we will prove a subinvariance property (proposition 6.3) that will be su�cient for our proof.

For that purpose, we underline that the quantum functional µΣ
~ satis�es the following equality

(19) µΣ
~ ([α0, . . . , αn−1]) = e−

2k Im(z(~))
~

∑
|β|=k

〈
(Uk~ )∗Uk~ Πβ.αψ~, ψ~

〉
.

Let us verify this fact. First, we write

µΣ
~ ([α0, . . . , αn−1]) = 〈Uk~ Πα(k)U−k~ ψ~,Uk~U−k~ ψ~〉 = e−

2k Im(z(~))
~ 〈(Uk~ )∗Uk~ Πα(k)ψ~, ψ~〉,

where the second equality comes from the eigenmode equation (9). Then, thanks to the partition
of identity (17), we obtain

µΣ
~ ([α0, . . . , αn−1]) =

∑
|β|=k

e−
2k Im(z(~))

~ 〈(Uk~ )∗Uk~ Πα(k)Πβψ~, ψ~〉,

which is the expected equality.

The main Theorem is expressed in terms of the unstable Jacobian Ju. Thus, we de�ne an
analogue of this quantity in our discrete setting:

Ju(α0, α1) := sup
({
Ju(ρ) : ρ ∈Mα0 ∩ g−1Mα1 , ‖ρ‖ ∈ [1− δ, 1 + δ]

}
∪ {Λ}

)
,

where 0 < Λ � 1. We also de�ne eλ0 an upper bound on all the Ju(α0, α1) that can be choose
uniform for δ < 1/2 and for any choice of partition. For a given sequence α := (α0, . . . , αn−1), we
also de�ne

Jun (α) := Ju(α0, α1) . . . Ju(αn−2, αn−1).

Finally, we also introduce Σn the set of n-cylinders in Σ, i.e.

Σn := {[α0, . . . , αn−1] : α0, . . . , αn−1 ∈ {1, . . . ,K}}.

4.3.2. Main proposition. The proof of the main Theorem relies on the following proposition � see
section 5 for details.

Proposition 4.3. Let P0 be a positive number. There exist

n′0(P0) ∈ N and ε0(P0) > 0,

such that for every �xed choice of partition of diameter ≤ ε0(P0), there exists

C(P0) > 0 and 0 ≤ c(P0) < 1

such that if

• for ~ small enough,

z(~) ∈
[

1
2
− ~,

1
2

+ ~
]

+ ı

[
−C(P0)

~
| log ~|

,+∞
]

;

• n0 ≥ n′0(P0);
• Wn0 is a subset of Σn0 satisfying

(20)
∑

[α]∈Wn0

Jun0
(α)

1
2 ≤ e−

n0P0
2 ,

then, one has ∑
[α]∈Wn0

µΣ([α]) ≤ c(P0).
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The meaning of this proposition is that eigenmodes cannot concentrate entirely on cylinders sat-
isfying condition (20) which can be interpreted as a condition of �negative topological pressure�. In
fact, the sum appearing in (20) is a discrete analogue of the quantities appearing in (14). Introduc-
ing these thermodynamical quantities generalizes slightly the strategy of [1] where Anantharaman
considered discrete versions of topological entropies (and not of topological pressures).

4.4. Proof of proposition 4.3. In order to prove this proposition, we will admit several lemmas
and show how they allow to derive proposition 4.3. The proof of these intermediary lemmas will
be given in section 6. Fix now P0 > 0, a partition of small diameter (less than some ε0(P0) > 0
that will be precised in paragraph 4.4.3) and two parameters 0 < ν, b < 1

2 that we use to regularize
the partition � see paragraph 4.2.

Remark 4.4. Our proof requires the introduction of several small (or large) parameters. In order to
avoid any confusion, we will summarize the links between the di�erent parameters in paragraph 4.5.

4.4.1. Di�erent scales of times. In order to prove our result, we need to introduce various scales
of times. The �rst one will be a �xed time n0 ∈ N that will play its main part at the classical
level. We �x n0 a positive integer and a family Wn0 of cylinders of length n0 satisfying

(21)
∑

[α]∈Wn0

Jun0
(α) ≤ e−

P0n0
2 .

The n0 will be �xed large enough to apply lemma 4.5.
Fix now κ > 0. The second important time is a short logarithmic time

(22) n(~) := [κ| log ~|] .

This time is the one for which the semiclassical approximation will be valid for observables sup-
ported in a small macroscopic neighborhood of S∗M and for the observables P ~

i . In particular,
all the arguments of paragraphs 4.4.4 and 4.4.5 (and also of the appendix) will be valid for
0 ≤ p ≤ n(~). We underline that we will �x κ small enough in a way that depends on P0, on the
partition, on the size δ of the energy layer we work on and on the parameters ν and b used for the
smoothing of the partition. In this article, we will not try to optimize κ > 0.

Finally, we introduce k ≥ 2 a large positive integer and a large logarithmic time that will be
useful at the quantum level

(23) N(~) = kn(~).

In the following, k and κ will have to be chosen in a way that their product is bounded from below
by a positive constant that will depend only on P0 and on the dimension ofM (see paragraph 4.4.3).
Precisely, we will suppose that kκ > 8d

P0
.

In the following, we will often omit the dependence of N(~) = N and n(~) = n in ~ to avoid
heavy notations.

4.4.2. Intermediary lemmas. We start our proof by providing two intermediary lemmas that we
will prove in section 6.

First, we �x τ in [1/2, 1] and we introduce a subfamily of cylinders of length p ≥ n0 that spend
a lot of time near Wn0 :

Σp(Wn0 , τ) :=
{

[α] := [α0, . . . , αp−1] :
] {j ∈ [0, p− n0] : [αj , . . . , αj+n0−1] ∈Wn0}

p− n0 + 1
≥ τ

}
.

In this paragraph, we will give lower and upper bounds on the following �thermodynamical
quantity� associated to the family Σp(Wn0 , τ):

∑
[α]∈Σp(Wn0 ,τ)

Jup (α)
1
2 =

∑
[α]∈Σp(Wn0 ,τ)

exp

1
2

p−1∑
j=0

log Ju(αj , αj+1)

 .
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Roughly speaking, we will verify that if the eigenmodes concentrate on the cylinders Σn(~)(Wn0 , τ),
then this thermodynamical quantity must grow faster than it is authorized by the thermodynamical
assumption (21) on Wn0 . In particular, it will show that eigenmodes cannot concentrate entirely
on Σn(~)(Wn0 , τ).

The �rst lemma provides a general upper bound on this �thermodynamical quantity� that relies
only on the thermodynamical assumption (21) on Wn0 :

Lemma 4.5. There exists n′0 and p0 depending only on P0 such that for every p ≥ p0, for every
n0 ≥ n′0, for every choice of partition, for every Wn0 satisfying (21) and for every τ ∈ [1/2, 1],∑

[α]∈Σp(Wn0 ,τ)

Jup (α)
1
2 ≤ e−

pP0
8 +p(1−τ)(λ0+logK)(eλ0K)n0e

n0P0
2 .

We recall that K is the cardinal of the partition of M and eλ0 is an upper bound on all the
Ju(α0, α1).

This lemma relies only on the classical properties of the system. If we apply it for the semi-
classical time p = n = [κ| log ~|], for n0 ≥ n′0 and for τ ≥ 1

2 , we �nd that, for ~ small enough, one
has

(24)
∑

[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2 = O

(
e(−

P0
8 +(1−τ)(λ0+logK))κ| log ~|

)
, as ~→ 0.

In particular, this last equality combined to assumption (15) on the �horizontal� localization of
eigenvalues implies that

(25)
∑

[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2 e−

(n−1) Im(z(~))
~ = O

(
~κ(−(1−τ)(λ0+logK)+

P0
8 )
)
, as ~→ 0.

We now turn to the second lemma which gives a lower bound on the left-hand side of (25)
under an assumption on the concentration of the eigenmodes (ψ~)~. Precisely, we show that if the
eigenfunction puts some weight on the cylinders of Σn(Wn0 , τ), then the previous sum is bounded
from below by a precise power of ~:

Lemma 4.6. Let k, κ and C be as above7. There exists a constant c1 > 1 (depending on the
choice of partition, on ν and on δ) such that, for any θ in [0, 1], if Wn0 is a family of n0-cylinders
satisfying (21) and if

(26)

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1U~ . . . πα1U~πα0ψ~

∥∥∥∥∥∥
L2(M)

≤ e
(n−1) Im(z(~))

~
e−Ckκ

ck1k
θ,

where Σn(Wn0 , τ)c means the complementary of Σn(Wn0 , τ) in Σn; then, one has, for ~ > 0 small
enough

 ∑
[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2 e−

(n−1) Im(z(~)
~

k

(27) ≥ e−(k−1)(λ0− Im z(~)
~ ) (1− θ +O(~∞)) ~d/2e−C0kκε| log ~|,

where C0 depends only on M .

We recall that ε is an upper bound on the diameter of the partition.
The proof of these two lemmas will be given in section 6. Before that, we explain how they

allow to derive proposition 4.3 in the subsequent paragraphs.

7The constant C > 0 is the one given by the spectral window (15).
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4.4.3. Using the intermediary lemmas. Lemma 4.6 shows that, under an assumption on the con-
centration of the eigenmodes, one has the lower

(28)
∑

[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2 e−

(n−1) Im(z(~)
~ ≥ C ′~ d

2k+C0κε,

where C ′ > 0 can be chosen as an uniform constant in ~. We can now compare this lower bound
to the upper bound (25). Precisely, if we are able to take the di�erent parameters in a way that

(29)
d

2k
+ C0κε < κ

(
−(1− τ)(λ0 + logK) +

P0

8

)
,

then the lower bound in (28) is larger than the upper bound in (25) when ~→ 0. It implies that
if (29) is satis�ed, then assumption (26) cannot be satis�ed and thus, we will have, for ~ > 0 small
enough,

(30)

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1U~ . . . πα1U~πα0ψ~

∥∥∥∥∥∥
L2(M)

≥ e
(n−1) Im(z(~))

~ θ
e−Ckκ

ck1k
.

In order to obtain relation (29), we �rst choose ε small enough (depending only on P0). Then,
we choose τ0 < 1 (depending also on the partition) close enough to 1 to have

−(1− τ0)(λ0 + logK) +
P0

8
− C0ε ≥

P0

16
We underline that this inequality remains true for any τ ≥ τ0. Finally, we can take any k and κ
satisfying kκ > 8d

P0
. So the more κ will be small, the more we will have to take k large.

To summarize our discussion, for this choice of small parameters, relation (29) is satis�ed.
Hence, an eigenmode cannot put all his weight on the cylinders in Σn(Wn0 , τ), i.e. on a subset of
small topological pressure with respect to 1

2 log Ju � see inequality (30).

4.4.4. Using the semiclassical approximation. In the previous paragraph, we saw that for a parti-
tion of small enough diameter and for τ close enough to 1, one has, for ~ small enough,

(31)

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

≥ θ2 e
−2Ckκ

c2k1 k2
.

This lower bound holds for any k and κ satisfying kκ > 8d
P0

with κ > 0 small enough to use the
semiclassical arguments from paragraphs 6.2.2 and A.4.

We would like now to relate this lower bound to a lower bound on∑
[α]∈Σn(Wn0 ,τ)c

µΣ
~ ([α]).

The same di�culty already appeared in paragraph 2.4 of [1] and we will brie�y recall in para-
graph 6.4 how one can prove that, for κ small enough,∥∥∥∥∥∥

∑
[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

=
∑

[α]∈Σn(Wn0 ,τ)c

〈
παn−1 . . . πα1(2− n)πα0(1− n)ψ~, ψ~

〉
+O(~ν

′
0),

where ν′0 is a positive constant that depends on the partitionM, on the energy layer we work on
and on the parameters ν and b used for the smoothing of the partition. Without getting into the
details of paragraph 6.4, this can be achieved using the fact that, for κ small enough, n = [κ| log ~|]
is a short logarithmic time8 and that, by assumption, the family (πi)i forms a family of almost
orthogonal projectors when it acts on the eigenmodes ψ~ � see property (16).

8Thus, the pseudodi�erential operators we consider are amenable to semiclassical calculus.
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Remark 4.7. In the following, we will make a small abuse of notations as we we will use the
exponent ν′0 for all the other remainders due to the semiclassical approximation, meaning that we
will always keep the worst remainder term (including the O(~∞) remainders).

Using the fact that ψ~ is an eigenmode, we also �nd∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

=
∑

[α]∈Σn(Wn0 ,τ)c

e−
2(n−1) Im(z(~))

~
〈
(Un−1

~ )∗Un−1
~ Παψ~, ψ~

〉
+O(~ν

′
0).

We have to face here a problem which is due to the �nonselfadjointness� of our problem. Com-
bining remark 6.5 and the fact that there is at most Kn terms in the sum, one gets from lower
bound (31)

θ2 e
−2Ckκ

c2k1 k2
e2(n−1)

Im z(~)
~ ≤

∑
[α]∈Σn(Wn0 ,τ)c

µΣ
~ ([α]) +O(Kn~ν

′
0).

In particular, for κ > 0 small enough, the remainder in the right-hand side is small as ~ tends to
0. Finally, thanks to the property of partition of identity (17) and to the lower bound, one also
has

(32)
∑

[α]∈Σn(Wn0 ,τ)

µΣ
~ ([α]) ≤

(
1− θ2e2(n−1)

Im z(~)
~

e−2Ckκ

c2k1 k2

)
+O(~ν

′
0),

where ν′0 > 0 is some small constant � see remark 4.7.

4.4.5. The conclusion: from time n(~) to time n0. In inequality (32), n and µΣ
~ depend both on

~; hence, one cannot directly take the limit ~ → 0 and derive proposition 4.3. We will start by
deriving an estimate on µΣ

~ (Wn0), where we use the notation

∀W ⊂ Σp, µΣ
~ (W ) :=

∑
[α]∈W

µΣ
~ ([α]).

Using proposition 6.3, we write

µΣ
~ (Wn0) ≤ 1

n− n0

n−n0−1∑
k=0

e−2(k−1)
Im z(~)

~
∑

[α]∈Wn0

µΣ
~ (σ−k[α]) +On0(~ν

′
0),

where ν′0 has the same properties as above. Then, one can observe that

• the length of the cylinders involved in (33) is of order κ| log ~|, with κ small enough to
have the operators Πα amenable to semiclassical calculus � lemma A.3;
• ψ~ is localized near S∗M and thus, modulo cuto� functions, we can use the positive
quantization procedure Op+

~ of paragraph A.2;
• there are at most Kn terms in the sums involved in the upper bound (33).

In particular, the functional µΣ
~ is almost positive at least on these �short� cylinders. Combining

this to the compatibility relation of proposition 4.1, we derive that, for κ > 0 small enough,

(33) µΣ
~ (Wn0) ≤ e−2(n−1)

Im z(~)
~ µΣ

~

(
1

n− n0

n−n0−1∑
k=0

1σ−kWn0

)
+On0(~ν

′
0),

where we crudely bounded e−2(k−1)
Im z(~)

~ by e−2(n−1)
Im z(~)

~ . We can now proceed as in [1], i.e.
combine the facts that, on Σn(Wn0 , τ), one has

1
n− n0

n−n0−1∑
k=0

1σ−kWn0
≤ 1,
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and that, by de�nition of the subfamily Σn(Wn0 , τ), one has on Σn(Wn0 , τ)c,

1
n− n0

n−n0−1∑
k=0

1σ−kWn0
≤ τ.

Combined one more time to the almost positivity of µΣ
~ on �short� cylinders, these properties allow

to �nd that, for κ small enough,

µΣ
~ (Wn0) ≤ e−2(n−1)

Im z(~)
~

(
τµΣ

~ (Σn(Wn0 , τ)c) + µΣ
~ (Σn(Wn0 , τ))

)
+O(~ν

′
0),

where ν′0 > 0 (with the abuse of notation mentionned in remark 4.7). Thanks to the property of
partition of identity, one can verify that

µΣ
~ (Wn0) ≤ e−2(n−1)

Im z(~)
~

(
τ + (1− τ)µΣ

~ (Σn(Wn0 , τ))
)

+O(~ν
′
0).

At this point of the proof one can use our assumption on the quantum decay rate 2 Im z(~)
~ . In

fact, if we implement property (15) in inequality (32) and if we let ~ tends to 0, then we derive

µΣ(Wn0) ≤ e2Cκ

(
τ + (1− τ)

(
1− θ2e−2C(k+1)κ

c2k1 k2

))
.

This inequality holds for any θ in (0, 1) and hence,

(34) µΣ(Wn0) ≤ e2Cκ

(
τ + (1− τ)

(
1− e−2C(k+1)κ

c2k1 k2

))
.

As all the other parameters were �xed before and as this inequality holds for any C > 0, one can
now take C small enough to have

e2Cκ

(
τ + (1− τ)

(
1− e−2C(k+1)κ

c2k1 k2

))
< 1.

We underline that all the constant involved in the left hand side can be chosen in a way that
depends only on P0 and on the mannifold. It concludes the proof of proposition 4.3.

4.5. Comments on the choice of the di�erent parameters. In order to avoid any confusion,
we summarize here all the relations between the di�erent parameters.

First, as the eigenfunctions concentrate on S∗M , we �x a small neighborhood of S∗M of size
0 < δ < 1/2 (�the energy layer�) and we �x ν < 1/2 and 0 < b < 1/2 that we will use to de�ne
the regularized partition.

We also �x a real positive number P0.
Then, we introduce a partition of small diameter depending only on P0. Once a partition is

�xed, we can introduce symbolic coding of the quantum dynamic. We also �x τ < 1 larger than
some τ0 depending on P0 and on the partition (see paragraph 4.4.2).

Once these parameters are �xed, we �x a parameter κ > 0 small enough depending on P0, on
δ, on the partitionM and on the parameters ν and b used for the smoothing of the partition. It
is small enough to make the arguments of paragraphs 4.4.4, 4.4.5 and also of the appendix work.
Then, we �x k large enough to have kκ > 8d

P0
.

Finally, once all these parameters are �xed, we �x some C small enough such that the sum in
the upper bound of (34) is strictly less than 1.

5. Proof of Theorem 2.1

In the previous section, we gave a symbolic description of the quantum system and of its semi-
classical limit. This symbolic coding is a standard procedure in ergodic theory and we will now
show how one can relate the results obtained in the symbolic setting to the main Theorem of
the introduction. Precisely, we will show how proposition 4.3 implies Theorem 2.1 following an
argument from [1].

Let P0 be a positive number and let M := (Mi)Ki=1 be a partition of M with small diameter
as in proposition 4.3. Let ρ be an element in S∗M and n0 be positive integer. There exists an



DELOCALIZATION OF SLOWLY DAMPED EIGENMODES ON ANOSOV MANIFOLDS 17

unique [αρ] = [α0, . . . , αn0−1] in Σn0 such that ρ belongs to Mα0 ∩ g−1Mα1 ∩ . . . g−n0+1Mαn0−1 .

We denote this subset Mn0(ρ). One can remark that if we choose the diameter of the partition ε
small enough9 and the size of the energy layer δ small enough, then for every ρ ∈ S∗M , one has∣∣∣∣∣∣12

n0−1∑
j=0

log Ju ◦ gj(ρ)− 1
2

log Jun0
(αρ)

∣∣∣∣∣∣ ≤ n0P0

2
.

Now, we consider µ inM((ψ~)0<~≤~0) as in the statement of Theorem 2.1 where C(P0) is given
by proposition 4.3. We write the ergodic decomposition of µ [11]

µ =
∫
S∗M

µρdµ(ρ),

where every µρ is an ergodic probability measure. According to section 3, one also knows that,
for µ almost every ρ ∈ S∗M ,

(35)
1
n0

n0−1∑
j=0

log Ju ◦ gj(ρ) =
1
n0

log Jun0
(ρ) −→

∫
S∗M

log Judµρ, as n0 → +∞.

Introduce now

IP0 :=
{
ρ ∈ S∗M : hKS(µρ, g,M) < −1

2

∫
S∗M

log Judµρ − 2P0

}
.

According to the Shannon-McMillan-Breiman Theorem [23], one knows that for µ almost every ρ
in S∗M ,

(36) hKS(µρ, g,M) = lim
n0→+∞

− 1
n0

logµ(Mn0(ρ)).

We will now prove that µ(IP0) ≤ c(P0), where 0 ≤ c(P0) < 1 is the constant that appears in
proposition 4.3.

One knows that, for every η > 0, there exists R such that µ(R) ≤ η and such that the previous
limits (36) and (35) hold uniformly for ρ ∈ IP0 − R. Denote IηP0

= IP0 − R. According to the

de�nition of IηP0
, one knows that there exists n′0(P0, η) such that for every n0 ≥ n′0(P0, η) and for

every ρ ∈ IηP0
, one has

− logµ(Mn0(ρ)) +
1
2

n0−1∑
j=0

log Ju ◦ gj(ρ) ≤ −P0n0.

This implies that, for every ρ in IηP0
, one has

Jun0
(αρ)

1
2 ≤ e−

n0P0
2 µ(Mn0(ρ)).

Consider now F a �nite subset of IηP0
such that ρ 6= ρ′ in F implies that Mn0(ρ) 6= Mn0(ρ′) and

such that
IηP0
⊂
⊔
ρ∈F

Mn0(ρ).

One has that
∑
ρ∈F

Jun0
(αρ)

1
2 ≤ e−

n0P0
2 . According to proposition 4.3, one knows that

µ(IηP0
) ≤ µ

⊔
ρ∈F

Mn0(ρ)

 ≤ c(P0).

This inequality holds for every η > 0 small enough and we obtain that µ(IP0) ≤ c(P0). Finally,
we have

µ

({
ρ ∈ S∗M : hKS(µρ, g,M) ≥ −1

2

∫
S∗M

log Judµρ − 2P0

})
≥ 1− c(P0) > 0.

9Underline that (Mα0 ∩ g−1Mα1 )α0,α1 de�nes then a partition of small diameter of S∗M .
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This property holds for any P0 > 0 and it concludes the proof of Theorem 2.1 by taking c0(P0) =
1− c(P0/2).

6. Proof of intermediary lemmas

In this section, we give the proof of intermediary results that were at the heart of our proof of
proposition 4.3.

6.1. Proof of lemma 4.5. The proof of this lemma relies only on the classical properties of our
problem (and not on its quantum structure). As mentionned above, we �x n0 a positive integer
and a family Wn0 of cylinders of length n0 such that∑

[α]∈Wn0

Jun0
(α)

1
2 ≤ e−

P0n0
2 .

Our only assumption on n0 is that it is large enough so that for p large enough, one has

(37)

(
p[
p
n0

] ) ≤ epP0
16 .

We underline that n0 is large in a way that depends only on P0.

The proof follows a similar strategy as its analogue in [1], §2.3, except that we consider slightly
di�erent dynamical quantities related to dynamical pressures and not to entropies.

Decomposition of cylinders in Σp(Wn0 , τ). Let [α] = [α0, . . . , αp−1] be an element in Σp(Wn0 , τ).
We will �rst show that α can be decomposed into the concatenation of well-chosen cylinders. In
order to describe this decomposition, we introduce an increasing sequence of stopping times. First,
one sets

t0 := inf {0 ≤ j ≤ p− n0 : [αj , . . . , αj+n0−1] ∈Wn0} .

As τ ≥ 1/2, one knows from the de�nition of Σp(Wn0 , τ) that t0 is well de�ned. Then, as long as
the induction is well de�ned, we de�ne the following increasing sequence of integers:

t1 := inf {t0 + n0 ≤ j ≤ p− n0 : [αj , . . . , αj+n0−1] ∈Wn0} , . . .

tl′+1 := inf {tl′ + n0 ≤ j ≤ p− n0 : [αj , . . . , αj+n0−1] ∈Wn0} .

We associate to this sequence a sequence of intervals of length n0

I0 = [t0, t0 + n0 − 1], . . . , Il = [tl, tl + n0 − 1].

From the de�nition of our sequence, one knows that, for 0 ≤ j ≤ max{tl + n0 − 1, p − n0}
outside tj′Ij′ , [αj , . . . , αj+n0−1] does not belong to Wn0 . From the de�nition of Σp(Wn0 , τ),
there are at most (1 − τ)(p − n0) such j. In particular, it implies that one must have ln0 ≥
(p− n0)− (1− τ)(p− n0), i.e. l ≥ τp

n0
− τ . Moreover, as the length of cylinders is equal to p, one

has l ≤ p
n0
. Using the fact that τ ≥ 1/2, we �nally have that p

2n0
− 1 ≤ τp

n0
− τ ≤ l ≤ p

n0
.

We have showed that [α] in Σp(Wn0 , τ) can be written as [b0; a0; . . . ; bl−1; al−1; bl] where

• every subcylinder aj belongs to Wn0 ;
• every subcylinder bj (if not empty) contains letters αk such that [αk, . . . , αk+n0−1] (when
it makes sense, i.e. k ≤ p− n0) does not belong to Wn0 .

Again, from the de�nition of Σp(Wn0 , τ), one knows that
∑l
j=0 |bj | ≤ (1 − τ)(p − n0) + n0 ≤

(1− τ)p+ n0.
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Upper bound on
∑

[α]∈Σp(Wn0 ,τ) J
u
p (α)

1
2 . From the previous paragraph, a cylinder [α0, . . . , αp−1]

in Σp(Wn0 , τ) is determined by the following data:

(1) the subcylinders (aj)0≤j≤l−1 where p
2n0
− 1 ≤ l ≤ p/n0;

(2) the subcylinders (bj)0≤j≤l where l ≤ p/n0.

Regarding this decomposition, we will now give an upper bound on∑
[α]∈Σp(Wn0 ,τ)

Jup (α)
1
2 =

∑
[α]∈Σp(Wn0 ,τ)

Ju(α0, α1)
1
2 . . . Ju(αn−2, αn−1)

1
2 .

Choosing a family of positions for the subcylinders (aj) is equivalent to choose a family of

endpoints; so there are at most

(
p[
p
n0

] )2

choices of family of position for the subcylinders aj .

For a given position of these subcylinders, the sum runs (for every aj) over the cylinders in
Wn0 , for which one has ∑

α∈Wn0

Jun0
(α)

1
2 ≤ e−

n0P0
2 .

We explained above that there were at least p
2n0
−1 such subcylinders in any cylinder of Σp(Wn0 , τ).

Thus the contribution of these subcylinders can be bounded by (e−
n0P0

2 )
p

2n0
−1.

For a �xed choice of positions for the subcylinders (bj)0≤j≤l, the number of possibility for the

values of (bj)0≤j≤l is bounded by K(1−τ)p+n0 , where K is the cardinal of the partition. In this

case, we bound Ju(αi, αi+1)
1
2 by eλ0 . Thus the contribution of these subcylinders can be bounded

by (eλ0K)(1−τ)p+n0 .
Finally, we �nd that∑

[α]∈Σp(Wn0 ,τ)

Jup (α)
1
2 ≤

(
p[
p
n0

] )2

(eλ0K)(1−τ)p+n0(e−
n0P0

2 )
p

2n0
−1.

This last equality concludes the proof of the lemma thanks to the assumption (37) on n0.

6.2. Proof of lemma 4.6. In order to prove lemma 4.6, we introduce a family of cylinders of
length N = kn related to Σn(Wn0 , τ), where k is a �xed integer.

Precisely, we de�ne Σn(Wn0 , τ)k as the family of cylinders of the form [γ] := [γ0; . . . ; γk−1] where
every γj is an element of Σn(Wn0 , τ). We use the notation (Σn(Wn0 , τ)k)c for its complementary
in ΣN . We will prove lemma 4.6 using the following lemma:

Lemma 6.1 (submultiplicativity property). Let k, κ and C be as in paragraph 4.5. There exists
a constant c1 > 0 (depending only on the choice of partition, on ν and on δ > 0) such that, for
any θ in [0, 1], if

(38)

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1U~ . . . πα1U~πα0ψ~

∥∥∥∥∥∥
L2(M)

≤ e−Ckκ

ck1k
θe

(n−1) Im(z(~))
~ ,

where Σn(Wn0 , τ)c means the complementary of Σn(Wn0 , τ) in Σn; then, one has∥∥∥∥∥∥
∑

[γ]∈(Σn(Wn0 ,τ)k)c

πγN−1U~ . . . πγ1U~πγ0ψ~

∥∥∥∥∥∥
≤ θe

(N−1) Im(z(~))
~ +O(~∞).

This lemma is a crucial step as it allows to connect relations on cylinders of short logarithmic
length n(~) to relations on cylinders of large logarithmic length kn(~) (where k is an arbitrary
integer). We postpone the proof of this lemma to the end of this paragraph and �rst show how
we can derive lemma 4.6 from it.
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6.2.1. Combining lemma 6.1 to hyperbolic dispersive estimates from [1, 31]. In order to prove
lemma 4.6, one can write that∑
[γ]∈(Σn(Wn0 ,τ)k)c

〈πγN−1U~ . . . πγ1U~πγ0ψ~, ψ~〉+
∑

[γ]∈Σn(Wn0 ,τ)k

〈πγN−1U~ . . . πγ1U~πγ0ψ~, ψ~〉 = e
ı(N−1)z(~)

~ .

If (38) is satis�ed, then lemma 6.1 implies that∣∣∣∣∣∣
∑

[γ]∈(Σn(Wn0 ,τ)k)c

〈πγN−1U~ . . . πγ1U~πγ0ψ~, ψ~〉

∣∣∣∣∣∣ ≤ θe (N−1) Im(z(~))
~ +O(~∞).

This allows to derive that

(39) e−
(kn−1) Im(z(~))

~

∣∣∣∣∣∣
∑

[γ]∈Σn(Wn0 ,τ)k

〈πγN−1U~ . . . πγ1U~πγ0ψ~, ψ~〉

∣∣∣∣∣∣ ≥ 1− θ +O(~∞).

At this point, one can use hyperbolic10 estimates on quantum cylinders that were �rst used in [1]
and then in several other articles to derive quantitative properties of semiclassical measures [1, 3,
26]. Recall that these estimates tell us that for every K > 0, there exists ~K > 0 such that for
every ~ ≤ ~K, for every 0 ≤ N ≤ K| log ~| and for every [γ] in ΣN ,

(40) ‖Πγ Op~(χ0)‖ ≤ 2(2π~)−
d
2 JuN (γ)

1
2 (1 +O(ε))N ,

where ε is an upper bound on the diameter of our partition, O(~) depends only on V and on M
and the constant in O(ε) is uniform in γ and ~.

Remark 6.2. We underline that the proof of (40) in [1] (Theorem 1.3.3) was given in a selfadjoint
setting (V ≡ 0). The generalization of Anantharaman's result to the nonselfadjoint setting V ≥ 0
was performed by Schenck in [31]. In this reference, the author generalized the strategy of [1] by
taking into account the nonselfadjoint contribution in the WKB Ansatz. In particular, as V ≥ 0,
one can verify that the exponential decrease due to the damping term can be crudely bounded
by 1 in the WKB expansion. We underline that the proof of Schenck was given for the same
propagator U t~ as ours. Yet, he considered observables that do not depend on ~ > 0, not like our
family (P ~

i )Ki=1. Still, in order to get (40), one can combine the inputs of Schenck to the proof of
Anantharaman in [1] which allows such observables.

Applying this hyperbolic dispersive estimate, one has, for ~ small enough,∣∣∣∣∣∣
∑

[γ]∈Σn(Wn0 ,τ)k

〈πγN−1U~ . . . πγ1U~πγ0ψ~, ψ~〉

∣∣∣∣∣∣ ≤ 2(2π~)−
d
2 (1+O(ε))N

∑
[γ]∈Σn(Wn0 ,τ)k

JuN (γ)
1
2 +O(~∞).

Then, thanks to the multiplicative structure of JuN , one has

∑
[γ]∈Σn(Wn0 ,τ)k

JuN (γ)
1
2 ≤ e(k−1)λ0

 ∑
[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2

k

,

where the term e(k−1)λ0 comes from the fact that we bounded Ju(γjn−1, γjn) by eλ0 for every
1 ≤ j ≤ k − 1.

Combining these last two bounds to (39), one obtains, for ~ small enough,

 ∑
[α]∈Σn(Wn0 ,τ)

Jun (α)
1
2 e−

(n−1) Im z(~)
~

k

≥ e−(k−1)(λ0− Im z(~)
~ ) (1− θ +O(~∞)) ~d/2e−C0kκε| log ~|,

10The Anosov assumption is only used for this point of our proof.
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where C0 is a positive constant that depends only on M and λ0 is an upper bound on all the
log Ju(α0, α1). This concludes the proof of lemma 4.6.

6.2.2. Proof of lemma 6.1. Our proof of lemma 4.6 relied on lemma 6.1 that we will prove now.
We will show that the strategy from [1] (proof of lemma 2.2.3) can be adapted in a nonselfadjoint
setting thanks to our assumption on the localization property (15) of z(~).

First simpli�cation of the sum. We introduce the following notation for the purpose of our
proof:

∀[γ] ∈ Σn, Π̃γ = U~πγn−1U~ . . . πγ1U~πγ0 .

Let [γ] be an element in (Σn(Wn0 , τ)k)c. It can be decomposed into the concatenation of n-
cylinders [γ] := [γ0, . . . , γk−1] where at least one of the cylinders [γj ] does not belong to Σn(Wn0 , τ).
Thus, we can write the decomposition

(41) (Σn(Wn0 , τ)k)c =
k−1⊔
j=0

Bj ,

where Bj is the subfamily of cylinders [γ0, . . . , γj , . . . , γk−1] satisfying

∀ i > j, [γi] ∈ Σn(Wn0 , τ), [γj ] ∈ Σn(Wn0 , τ)c, ∀i < j, [γi] ∈ Σn.

We now use lemma A.5 to introduce cuto�s in each term of the sum. Precisely, we write∑
[γ]∈(Σn(Wn0 ,τ)k)c

Π̃γk−1 . . . Π̃γj . . . Π̃γ0ψ~

(42)

=
∑

[γ]∈(Σn(Wn0 ,τ)k)c

(
Π̃γk−1 Op~(χ0)

)
. . .
(

Π̃γj Op~(χ−k+j+1)
)
. . .
(

Π̃γ0 Op~(χ−k+1)
)
ψ~ +O(~∞),

Then, using this equality, the eigenmode equation (7) and the property (17) of partition of
identity, we �nd that

(43)

∥∥∥∥∥∥
∑

[γ]∈(Σn(Wn0 ,τ)k)c

πγN−1U~ . . . πγ1U~πγ0ψ~

∥∥∥∥∥∥ ≤ ‖U−1
~ ‖R

′
k−1∑
j=0

Rk−j−1e
jn Im(z(~))

~ +O(~∞),

where

R′ :=

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

U~παn−1U~ . . . πα1U~πα0ψ~

∥∥∥∥∥∥
L2(M)

,

Rk−1 = 1 and, for 1 ≤ j ≤ k − 1,

Rk−j−1 :=
k−1∏
l=j+1

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)

U~παn−1U~ . . . πα1U~πα0 Op~(χ−(k−l)+1)

∥∥∥∥∥∥ .

Bound on Rk−j−1. Fix now a family W in Σn and any 1 ≤ j ≤ k − 1. Then, one has∥∥∥∥∥∥
∑

[α]∈W

παn−1 . . .U~πα0U~ Op~(χ−(k−j)+1)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑

[α]∈W

παn−1 . . .U~πα0U~ Op~(χ−(k−l)+1)U−n~

∥∥∥∥∥∥ ‖Un~ ‖ .
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One knows that ‖Un~ ‖ ≤ 1. Moreover, one can verify (lemma A.4 in the appendix) that, for κ > 0
small enough and ~ > 0 small enough,∥∥∥∥∥∥

∑
[α]∈W

παn−1 . . .U~πα0U~ Op~(χ−(k−j)+1)U−n~

∥∥∥∥∥∥ ≤ c1,
where c1 ≥ 1 depends only on the choice of the partition (and not on W ), on the regularization
parameter ν and on the size of the energy layer δ. Finally, one has, for any 0 ≤ j ≤ k − 1,

Rk−j−1 ≤ ck1 .
The constant c1 ≥ 1 appearing here is the one we use in the assumptions of lemma 6.1
The conclusion. We now implement these upper bounds in inequality (43) and we �nd that,

for ~ > 0 small enough,∥∥∥∥∥∥
∑

[γ]∈(Σn(Wn0 ,τ)k)c

πγN−1U~ . . . πγ1U~πγ0ψ~

∥∥∥∥∥∥
≤ ck1

k−1∑
j=0

e
jn Im(z(~))

~

∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1U~ . . . πα1U~πα0ψ~

∥∥∥∥∥∥
L2(M)

+O(~∞).

Then, thanks to the assumption (38) on the concentration of ψ~, we �nd∥∥∥∥∥∥
∑

[γ]∈(Σn(Wn0 ,τ)k)c

πγN−1U~ . . . πγ1U~πγ0ψ~

∥∥∥∥∥∥ ≤ θe−Ckκ

k

k−1∑
j=0

e
((j+1)n−1) Im(z(~))

~ +O(~∞).

Recall now that we made the assumption that

Im(z(~))
~

≥ −C| log ~|−1.

At this point of the proof, we crucially use this hypothesis in order to bound e
((j+1)n−1) Im(z(~))

~ by

e
(kn−1) Im(z(~))

~ eCkκ for every 0 ≤ j ≤ k − 1. It implies∥∥∥∥∥∥
∑

[γ]∈(Σn(Wn0 ,τ)k)c

πγN−1U~ . . . πγ1U~πγ0ψ~

∥∥∥∥∥∥ ≤ θe (kn−1) Im(z(~))
~ +O(~∞),

that concludes the proof of lemma 6.1.

6.3. Subinvariance of the quantum functional µΣ
~ . In paragraph 4.3, we constructed a quan-

tum functional µΣ
~ on a set Σ. The set Σ was de�ned from a regularized partition that we suppose

to be �xed in this section. As mentioned in paragraph 4.3, this functional is not invariant under
the shift σ and it only satis�es

∀[α0, . . . , αn1−1], ∀p ≥ 0, µΣ
~ (σ−p[α0, . . . , αn1−1]) = µΣ

~ ([α0, . . . , αn1−1]) + on1,p(1).

This remainder term in this property is not explicit enough to use it directly. Yet, we recall
from (19) that one has the following exact equality

(44) µΣ
~ ([α0, . . . , αn1−1]) = e−

2p Im(z(~))
~

∑
|β|=p

〈(Up~ )∗Up~Πβ.αψ~, ψ~〉 .

Starting from this observation, we will prove the following subinvariance property:

Proposition 6.3. Let (P ~
i )i=1,...K be a �xed partition satisfying the assumptions from para-

graph 4.2. There exist11 κ0 > 0 and ν0 such that for every 0 ≤ p ≤ κ0| log ~|, one has

∀[α0, . . . , αn1−1], µΣ
~ ([α0, . . . , αn1−1]) ≤ e−

2p Im(z(~))
~

(
µΣ

~ (σ−p[α0, . . . , αn1−1]) +KpOn1(~ν0)
)
.

11Even if we will not mention it at every step of the proof, both κ0 and ν0 depend on the partition, on the
energy layer we work on and on the parameter ν used for the smoothing of the partition.
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Before giving the proof of this proposition, let us mention that once the partition is �xed (hence
K is �xed), there exists a κ1 > 0 such that for every κ ≤ κ1, the remainder KpOn1(~ν0) in the

proposition is of order On1(~ν′(κ)) for some positive ν′(κ).

Proof of proposition 6.3. The proof of proposition 6.3 is a direct consequence of equality (44) and
of the following lemma:

Lemma 6.4. Let (P ~
i )i=1,...K be a �xed partition satisfying the assumptions from paragraph 4.2.

There exists κ0 > 0 and ν0 such that for every 0 ≤ p ≤ κ0| log ~|, one has

∀[α] ∈ Σn1 , ∀[β] ∈ Σp, 〈(Up~ )∗Up~Πβ.αψ~, ψ~〉 ≤ (〈Πβ.αψ~, ψ~〉+On1(~ν0)) .

Remark 6.5. Our proof allows to take [α] empty, i.e. we have

∀[β] ∈ Σp, 〈(Up~ )∗Up~Πβψ~, ψ~〉 ≤ (〈Πβψ~, ψ~〉+On1(~ν0)) .

Proof. In order to prove lemma 6.4, we �rst use lemma A.3 on long products of pseudodi�erential
operators from the appendix and the fact that Op~(χ0)ψ~ = ψ~ + O(~∞). It allows us to write,
for 0 ≤ p ≤ κ0| log ~|,

Πβ.αψ~ = Op~
(
Pβ0 . . . Pβp−1 ◦ gp−1Pαp ◦ gp . . . Pαn1+p−1 ◦ gn1+p−1χ0

)
ψ~ +On1(~ν0),

where ν0 > 0 and κ0 are given by the lemmas in the appendix.
We recall from the Egorov property (see the appendix) that, for every �xed t ≥ 0, the operator

(U t~)∗U t~ is a pseudodi�erential operator with principal symbol equal to e−2
R t
0 V ◦g

sds. As we are
localized in a small neighborhood of S∗M , this property remains true up to short logarithmic
times after multiplication by an appropriate cuto� function. Thanks to lemma A.3, Pβ0 . . . Pβp−1 ◦
gp−1Pαp ◦ gp . . . Pαn1+p−1 ◦ gn1+p−1χ0 belongs to some good class of symbols S−∞,0ν0

(T ∗M). More-

over, when restricted to a small neighborhood of S∗M , it is also the case for e−2
R t
0 V ◦g

sds. Thus,
the operators are amenable to pseudodi�erential calculus and one has, for κ0 > 0 small enough
and for 0 ≤ p ≤ [κ0| log ~|],

(Up~ )∗Up~Πβ.αψ~

= Op~

(
e−2

R p
0 V ◦g

sdsPβ0 . . . Pβp−1 ◦ gp−1Pαp ◦ gp . . . Pαn1+p−1 ◦ gn1+p−1χ0

)
ψ~ +On1(~ν0),

where ν0 > 0 is still a positive constant. As the symbol of the previous operator is compactly
supported in T ∗M , it can also be quantized using Op+

~ (see paragraph A.2). It implies that

(Up~ )∗Up~Πβ.αψ~

= Op+
~

(
e−2

R p
0 V ◦g

sdsPβ0 . . . Pβp−1 ◦ gp−1Pαp ◦ gp . . . Pαn1+p−1 ◦ gn1+p−1χ0

)
ψ~ +On1(~ν0),

where ν0 > 0 � with the abuse of notations mentionned in remark 4.7. Thanks to the positivity
of Op+

~ , one �nds then

〈(Up~ )∗Up~Πβ.αψ~, ψ~〉

≤ 〈Op+
~
(
Pβ0 . . . Pβp−1 ◦ gp−1Pαp ◦ gp . . . Pαn1+p−1 ◦ gn1+p−1χ0

)
ψ~, ψ~〉+On1(~ν0).

Using �nally the same arguments backward, one �nds

〈(Up~ )∗Up~Πβ.αψ~, ψ~〉 ≤ 〈Πβ.αψ~, ψ~〉+On1(~ν0),

where ν0 > 0 still satis�es the same properties as above.
�
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6.4. Using the fact that (P ~
j )j=1,...,K are almost orthogonal. In this last paragraph, we will

prove that, for κ small enough and for n = [κ| log ~|],∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

=
∑

[α]∈Σn(Wn0 ,τ)c

〈
παn−1 . . . πα1(2− n)πα0(1− n)ψ~, ψ~

〉
+O(~ν

′
0),

where ν′0 is a positive constant that depends on the choice of the partition, on the size of the energy
layer and on the parameter ν and b used for the smoothing of the partition. The proof of this
property relies on the fact that, for κ small enough, cylinders of length n = [κ| log ~|] are amenable
to semiclassical rules and that (P ~

j )j=1,...,K acts almost like a family of orthogonal projectors on
ψ~ � property (16).

The proof of this equality was already given in [1] in the case V ≡ 0. If proceeding carefully,
the arguments can be adapted in our setting and for the sake of completeness, we give a proof of
this equality below.

For simplicity of notations, we introduce P~
α = P ~

αn−1
. . . P ~

α1
◦g2−nP ~

α0
◦g1−n. As in lemma A.3,

one can prove that, for 0 ≤ κ ≤ κ0,∥∥∥∥∥∥
∑

[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

=
∑

[α],[α′]∈Σn(Wn0 ,τ)c

〈
Op~

(
P~
αχ0

)
ψ~,Op~

(
P~
α′χ0

)
ψ~
〉

+ (]Σn)2O(~ν0) +O(~∞),

where we used the fact that Op~(χ0)ψ~ = ψ~+O(~∞) and where ν0 > 0. We recall that ]Σn = Kn.
Thus, as before, for κ > 0 small enough, the remainder of the right-hand side is small as ~ → 0.
The parameter ν0 also depends on the choice of the partition, on the choice of the energy layer
and on the regularization parameter ν used for the smoothing of the partition. We will omit to
mention this dependence in the following of the proof and we will also allow to take ν0 > 0 to be
smaller from line to line in order to have the semiclassical arguments below work � see remark 4.7.

We underline that P~
αχ0 belongs to a class of symbols of type S−∞,0ν0

(T ∗M) (where 0 ≤ ν0 <
1/2). Thanks to composition rules for pseudodi�erential operators, we derive that∥∥∥∥∥∥

∑
[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

(45) =
∑

[α],[α′]∈Σn(Wn0 ,τ)c

〈
Op~

(
P~
α′P

~
αχ

2
0

)
ψ~, ψ~

〉
+ (]Σn)2O(~ν0).

We will now distinguish two kind of terms: α = α′ and α 6= α′. We will use the fact that (P ~
j )j

acts as a family of orthogonal projectors in order to show that the terms with α 6= α′ are small
in the semiclassical limit and that we can replace (P~

α)2 by P~
α when α = α′ (up to a small error

term).

First case α = α′. We use the composition formula and the long time Egorov property to derive
that ∥∥∥∥Op~

(
(P~

α)2χ2
0

)
−Op~

(
(P~

α)2

(P ~
α0
◦ g1−n)2

χ2
0

)
π2
α0

(1− n)
∥∥∥∥
L2→L2

= O(~ν0),

where ν0 > 0 and the remainder can be chosen uniform in α. Then, one can use the speci�c
properties of our partition � precisely, the fact that it behaves like orthogonal projectors when it
acts on ψ~ (see property (16)). It allows to prove that∥∥(πα0(1− n)− π2

α0
(1− n)

)
ψ~
∥∥ = O(~

b
2−2κ‖V ‖∞),
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as −2~‖V ‖∞ ≤ Im z ≤ 0. Thus, for κ > 0 small enough, the remainder is a small power of ~.
Using again the composition formula and the long time Egorov property, we �nd that∥∥∥∥Op~

(
(P~

α)2χ2
0

)
ψ~ −Op~

(
(P~

α)2

P ~
α0
◦ g1−nχ

2
0

)
ψ~

∥∥∥∥ = O(~ν0) +O(~
b
2−2κ‖V ‖∞),

where the constant in the remainder is still uniform in α. Proceeding by induction, we get the
following approximation:∥∥Op~

(
(P~

α)2χ2
0

)
ψ~ −Op~

(
P~
αχ

2
0

)
ψ~
∥∥ = | log ~|

(
O(~ν0) +O(~

b
2−2κ‖V ‖∞)

)
.

Finally, thanks to lemma A.3, we obtain∥∥Op~
(
(P~

α)2χ2
0

)
ψ~ − παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥ = | log ~|
(
O(~ν0) +O(~

b
2−2κ‖V ‖∞)

)
,

with an uniform constant in α in the remainder.

Second case α 6= α′. In this case, there exists j such that αj 6= α′j . As in the �rst case, we use the
composition formula and the Egorov property to write∥∥∥∥∥Op~

(
P~
αP

~
α′χ

2
0

)
−Op~

(
P~
αP

~
α′

P ~
αj ◦ g1−n × P ~

α′j
◦ g1−nχ

2
0

)
(παjπα′j )(1− n)

∥∥∥∥∥
L2→L2

= O(~ν0),

with the same properties as above for the remainder. Recall again that our partition behaves like
orthogonal projectors when it acts on ψ~ (see paragraph 4.2). Hence, one �nds∥∥∥(παjπα′j )(1− n)ψ~

∥∥∥ = O(~
b
2−2κ‖V ‖∞).

Thanks to the Calderón-Vaillancourt Theorem, the operator Op~

(
P~
αP

~
α′

P ~
αj ◦ g1−n × P ~

α′j
◦ g1−nχ

2
0

)
has a norm bounded by a constant uniform in α and in ~. Finally, we obtain∥∥Op~

(
P~
αP

~
α′χ

2
0

)
ψ~
∥∥ = O(~ν0) +O(~

b
2−2κ‖V ‖∞).

Combining the two cases with (45). To conclude the proof of this paragraph, we combine equal-
ity (45) with the two cases treated above. We �nd that, for κ small enough, there exists a constant
ν0 > 0 (depending also on the partition M, the size of the energy layer and the smoothing pa-
rameters ν and b) and such that, for n = [κ| log ~|],∥∥∥∥∥∥

∑
[α]∈Σn(Wn0 ,τ)c

παn−1 . . . πα1(2− n)πα0(1− n)ψ~

∥∥∥∥∥∥
2

L2(M)

=
∑

[α]∈Σn(Wn0 ,τ)c

〈
παn−1 . . . πα1(2− n)πα0(1− n)ψ~, ψ~

〉
+ (]Σn)2O(~ν0).

As ]Σn is equal to Kn as ν0 > 0 can be chosen uniformly for κ small enough, one can �nd κ small
enough to have a remainder which goes to 0 as a positive power of ~ (which was the expected
property).

Appendix A. Pseudodifferential calculus on a manifold

In this appendix, we review some basic facts on semiclassical analysis that can be found for
instance in [10, 12]. We also give several lemmas that we use at di�erent steps of the paper.
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A.1. General facts. Recall that we de�ne on R2d the following class of symbols:

Sm,k(R2d) :=
{

(a~(x, ξ))~∈(0,1] ∈ C∞(R2d) : |∂αx ∂
β
ξ a~| ≤ Cα,β~−k〈ξ〉m−|β|

}
.

Let M be a smooth Riemannian d-manifold without boundary. Consider a smooth atlas (fl, Vl)
of M , where each fl is a smooth di�eomorphism from Vl ⊂ M to a bounded open set Wl ⊂ Rd.
To each fl correspond a pull back f∗l : C∞(Wl) → C∞(Vl) and a canonical map f̃l from T ∗Vl to
T ∗Wl:

f̃l : (x, ξ) 7→
(
fl(x), (Dfl(x)−1)T ξ

)
.

Consider now a smooth locally �nite partition of identity (φl) adapted to the previous atlas (fl, Vl).
That means

∑
l φl = 1 and φl ∈ C∞(Vl). Then, any observable a in C∞(T ∗M) can be decomposed

as follows: a =
∑
l al, where al = aφl. Each al belongs to C

∞(T ∗Vl) and can be pushed to a

function ãl = (f̃−1
l )∗al ∈ C∞(T ∗Wl). As in [10, 12], de�ne the class of symbols of order m and

index k

(46) Sm,k(T ∗M) :=
{

(a~(x, ξ))~∈(0,1] ∈ C∞(T ∗M) : |∂αx ∂
β
ξ a~| ≤ Cα,β~−k〈ξ〉m−|β|

}
.

Then, for a ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol ãl ∈ Sm,k(R2d) the
standard Weyl quantization

Opw~ (ãl)u(x) :=
1

(2π~)d

∫
R2d

e
ı
~ 〈x−y,ξ〉ãl

(
x+ y

2
, ξ; ~

)
u(y)dydξ,

where u ∈ S(Rd), the Schwartz class. Consider now a smooth cuto� ψl ∈ C∞c (Vl) such that ψl = 1
close to the support of φl. A quantization of a ∈ Sm,k is then de�ned in the following way:

(47) Op~(a)(u) :=
∑
l

ψl ×
(
f∗l Opw~ (ãl)(f−1

l )∗
)

(ψl × u) ,

where u ∈ C∞(M). This quantization procedure Op~ sends (modulo O(~∞)) Sm,k(T ∗M) onto the
space of pseudodi�erential operators of orderm and of index k, denoted Ψm,k(M) [10, 12]. It can be
shown that the dependence in the cuto�s φl and ψl only appears at order 1 in ~ (using for instance
Theorem 18.1.17 in [15]) and the principal symbol map σ0 : Ψm,k(M) → Sm,k/Sm,k−1(T ∗M) is
then intrinsically de�ned. Most of the rules (for example the composition of operators, the Egorov
and Calderón-Vaillancourt Theorems) that holds in the case of R2d still holds in the case of
Ψm,k(M). Because our study concerns behavior of quantum evolution for logarithmic times in ~,
a larger class of symbols should be introduced as in [10, 12], for 0 ≤ ν < 1/2,

(48) Sm,kν (T ∗M) :=
{

(a~(x, ξ))~∈(0,1] ∈ C∞(T ∗M) : |∂αx ∂
β
ξ a~| ≤ Cα,β~−k−ν|α+β|〈ξ〉m−|β|

}
.

Results of [10, 12] can be applied to this new class of symbols. For example, a symbol of S0,0
ν (T ∗M)

gives a bounded operator on L2(M) (with norm uniformly bounded with respect to ~).

A.2. Positive quantization. Even if the Weyl procedure is a natural choice to quantize an
observable a on R2d, it is sometimes preferrable to use a quantization procedure Op~ that satis�es
the property : Op~(a) ≥ 0 if a ≥ 0. This can be achieved thanks to the anti-Wick procedure

OpAW~ , see [13]. For a in S0,0
ν (R2d), that coincides with a function on Rd outside a compact subset

of T ∗Rd = R2d, one has

(49) ‖Opw~ (a)−OpAW~ (a)‖L2 ≤ C
∑
|α|≤D

~
|α|+1

2 ‖∂αda‖,

where C and D are some positive constants that depend only on the dimension d. To get a positive
procedure of quantization on a manifold, one can replace the Weyl quantization by the anti-Wick
one in de�nition (47). We will denote Op+

~ (a) this new choice of quantization, well de�ned for

every element in S0,0
ν (T ∗M) of the form c0(x) + c(x, ξ) where c0 belongs to S0,0

ν (T ∗M) and c

belongs to C∞o (T ∗M) ∩ S0,0
ν (T ∗M).

This positivity assumption was used at several steps of the paper when we argued that the
functional µΣ

~ was �almost positive� (see for instance paragraphs 4.4.4 and 4.4.5) or when we
proved that it was �subinvariant� (paragraph 6.3).
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A.3. Egorov property for long times. In this paragraph, we recall an Egorov property for
times of order κ0| log ~|, where κ0 is a small enough constant that we will not try to optimize.
Consider q1 and q2 two symbols belonging to S

0,0(T ∗M) (for the sake of simplicity, we also assume
that these symbols depend smoothly on ~ ∈ (0, 1]). In this article, we will use the symbols qi equal

to
√

2z(~)V or −
√

2z̄(~)V � see remark A.2.

A.3.1. The case of �xed times. We consider a smooth function b on T ∗M which is compactly
supported in a neighborhood of S∗M , say supp(b) ⊂ {(x, ξ) : ‖ξ‖2 ∈ [1/2, 3/2]} and which belongs
to S−∞,0(T ∗M). The following operator is a pseudodi�erential operator, for every t ∈ R,

A(t, b) =
(
e
− ıt~

“
− ~2∆

2 −ı~ Op~(q1)
”)∗

Op~(a)e−
ıt
~

“
− ~2∆

2 −ı~ Op~(q2)
”
.

We brie�y recall how such a fact can be proved by a direct adaptation of the arguments used in
the selfadjoint case [10, 12, 6, 28]. Take q = q1 + q2, and introduce, for t, s ∈ R, the symbol

At(s) := a ◦ gt−s exp
(
−
∫ t−s

0

q ◦ gτdτ
)
.

To alleviate our notations, we call

Us~(qi) := e
− ıs~

“
− ~2∆

2 −ı~ Op~(qi)
”
, i = 1, 2 ,

so that the operator A(t, b) = (U t~(q1))∗Op~(a)U t~(q2). Fixing t, we then introduce the auxiliary
operators

R(~, s) = (Us~(q1))∗Op~(At(s))Us~(q2).
Like in the classical proof of the Egorov Theorem (i.e. in the selfadjoint case), one can compute
the derivative of R(~, s):

d

ds
(R(~, s)) = (Us~(q1))∗

(
ı

~

[
−~2∆

2
,Op~(At(s))

]
−Op~(q1)∗Op~(At(s))−Op~(At(s)) Op~(q2)

)
Us~(q2)

−(Us~(q1))∗
(

Op~ ({p0, At(s)})−Op~(At(s)(q1 + q2))
)
Us~(q2).

We integrate this equality between 0 and t [6]:(
U t~(q1)

)∗Op~(a)U t~(q2) = Op~

(
a ◦ gte−

R t
0 q◦g

τdτ
)

+
∫ t

0

(Us~(q1))∗R̃(~, s)Us~(q2)ds,

where R̃(~, s) is a pseudodi�erential operator in Ψ−∞,−1(M) thanks to pseudodi�erential rules.
Proceeding by induction and using pseudodi�erential calculus perfomed locally on each chart [10,
12] (respectively Chapter 7 and 4) and the fact that Us~(q2) is a bounded operator (with a norm

depending12 on q2 and s), one in fact �nds that (U t~(q1))∗Op~(a)U t~(q2) is a pseudodi�erential
operator in Ψ−∞,0(M),

(50)
(
U t~(q1)

)∗Op~(a)U t~(q2) = Op~(ã(t)) +O(~∞),

where ã(t) ∼
∑
j≥0 ~jaj(t),

a0(t) = At(0) = a ◦ gt exp
(
−
∫ t

0

(q1 + q2) ◦ gτdτ
)
,

and all the higher order terms (aj(t))j≥1 in the asymptotic expansion depend on a, t, q1, q2 and the
choice of coordinates on the manifold. Moreover, for a �xed t ∈ R, one can verify that every term

aj(t) is supported in g−tsupp(b). Each aj(t) can be written as bj(t) exp
(
−
∫ t

0
(q1 + q2) ◦ gτdτ

)
,

where bj(t) ∈ S−∞,0(T ∗M). The Calderón-Vaillancourt Theorem [12, Chap.5] tells us that there
exist constants Ca,t and C

′
a,t (depending on b, q1, q2, t and M) such that∥∥∥(U t~(q1)
)∗Op~(a)U t~(q2)

∥∥∥
L2(M)→L2(M)

≤ Ca,t‖a0(t)‖∞,

12It is in fact bounded by a constant of order e|s|‖q2‖∞ .
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and also

(51)
∥∥∥(U t~(q1)

)∗Op~(a)U t~(q2)−Op~(a0(t))
∥∥∥
L2(M)→L2(M)

≤ C ′a,t~.

A.3.2. The case of logarithmic times. All the above discussion was done for a �xed t ∈ R. In
this article, we needed to apply Egorov property for long range of times of order κ0| log ~| [6, 3].
This can be achieved as all the arguments above can be adapted if we use more general classes of
symbols, i.e. S−∞,0ν (T ∗M) where ν < 1/2 is a �xed constant13.

In particular, one can show that, for a ∈ S−∞,0(T ∗M) supported near S∗M as above and κ1

small enough (depending on the support of a, on ν, on q1 and on q2), the operator A(t, b) is

a pseudodi�erential operator in Ψ−∞,0ν (M) for all |t| ≤ κ1| log ~|. Precisely, its symbol has an
asymptotic expansion of the same form as in the case of �xed times, except that for every j ≥ 0
the symbol bj(t) belongs to S

−∞,kj
ν (T ∗M) for every |t| ≤ κ1| log ~|, where j − kj is an increasing

sequence of real numbers converging to in�nity as j → +∞.
We also mention that all the seminorms of the symbols bj(t) can be bounded uniformly for

|t| ≤ κ1| log ~|. Finally, using pseudodi�erential calculus (performed locally on every chart), one
can verify that the following uniform estimates hold:

Proposition A.1. There exist constants κ1 > 0 and ν0 > 0 (depending only on q1, q2, ν and M)
such that for every smooth function a compactly supported in {(x, ξ) : ‖ξ‖2 ∈ [1/2, 3/2]}, there
exists a constant Ca > 0 such that for every |t| ≤ κ1| log ~|, one has∥∥∥ (U t~(q1)

)∗Op~(a)U t~(q2)
∥∥∥
L2(M)→L2(M)

≤ Ca‖a0(t)‖∞,

and ∥∥∥(U t~(q1)
)∗Op~(a)U t~(q2)−Op~(a0(t))

∥∥∥
L2(M)→L2(M)

≤ Ca~ν0 .

Remark A.2. We will mostly use evolutions involving the propagator U t~ of (8). Then, the expres-

sion (U t~)∗Op~(a)U t~ has the form of (50), with q1 = q2 =
√

2z(~)V . As a result, in this case the

principal symbol is a0(t) = a ◦ gt e−2
R t
0 V ◦g

τ dτ .

Another operator will be used: (U t~)−1 Op~(a)U t~ also has the form (50), now with q1 = −
√

2z̄V ,
q2 =

√
2z(~)V . In this case, the principal symbol a0(t) = a ◦ gt.

A.4. Product of pseudodi�erential operators. In the last two paragraphs of this appendix,
we �x a smooth partition satisfying the assumptions of paragraph 4.2. In particular, all the
functions P ~

j belong to a class of symbol S0,0
ν (T ∗M) with 0 < ν < 1/2. Then, one can verify that

the following lemma holds:

Lemma A.3. Let χ∗ be one of the cuto� function supported in a small neighborhood of S∗M
that were de�ned in paragraph 4.1. There exists κ0 > 0 depending only on δ (the size of the
energy layer), on ν (the parameter for the regularization of the partition) and on the choice of the
partition such that

∀0 ≤ m ≤ κ0| log ~|, παm−1(m− 1) . . . πα1(1)πα0 Op~(χ∗)

is a pseudodi�erential operator in Ψ0,−∞
ν0

(M) (where 0 < ν0 < 1/2) with principal symbol equal to

P ~
αm−1

◦ gm−1 . . .× P ~
α1
◦ g1 × P ~

α0
χ∗.

The proof14 of this lemma relies on the fact that for κ0 small enough, the operators we consider
are amenable to semiclassical calculus: composition rules, Egorov property (paragraph A.3).

Using this lemma, one also has the following property that we used in the proof of lemma 4.6:

13In order to avoid too many indices, we take the same ν as in the de�nition of ΘΛ,~,ν .
14For instance, similar properties on product of pseudodi�erential operators were proved in [26] (section 7) in

a selfadjoint context. They can be adapted in a nonselfadjoint setting and the situation is even simpler here as we
do not try to optimize the parameter κ0 > 0.
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Lemma A.4. Let χ∗ be one of the cuto� function supported in a small neighborhood of S∗M that
were de�ned in paragraph 4.1. There exist κ0 > 0 and c1 ≥ 1 depending only on δ (the size of
the energy layer), on ν (the parameter for the regularization of the partition) and on the choice of
the partition such that for ~ > 0 small enough, for every 0 ≤ n ≤ κ0| log ~| and for every subset
W ⊂ Σn, ∥∥∥∥∥∥

∑
γ∈W

U~πγn−1 . . .U~πγ0U~ Op~(χ∗)U−n~

∥∥∥∥∥∥
L2(M)→L2(M)

≤ c1.

Proof. Let γ be an element in Σn. As in lemma A.3, one can verify that, for κ0 small enough
(uniform in γ) and for any 0 ≤ n ≤ κ0| log ~|,

U~πγn−1 . . .U~πγ0 Op~(χ∗)U−n~ = πγn−1(−1) . . . πγ1(1− n) (πγ0 Op~(χ∗)) (−n)

is a pseudodi�erential operator in Ψ0,−∞
ν′ (M) (for some ν < ν′ < 1/2) with principal symbol equal

to
P ~
γn−1

◦ g−1 . . .× P ~
γ1
◦ g1−n × P ~

γ0
◦ g−nχ∗ ◦ g−n.

From the de�nition of χ∗, one has χ∗ ◦ gt = χ∗ for every t in R. Moreover, there exists ν0 > 0
such that, for every 0 ≤ n ≤ κ0| log ~|, one has∥∥∥U~πγn−1 . . .U~πγ0 Op~(χ∗)U−n~ −Op~

(
P ~
γn−1

◦ g−1 . . .× P ~
γ1
◦ g1−n × P ~

γ0
◦ g−nχ∗

)∥∥∥ = O(~ν0),

where the constant in the remainder can be chosen uniform15 for γ ∈ Σn and 0 ≤ n ≤ κ0| log ~|.
One knows that ]W is at most equal to Kn. Hence, one can verify that, for κ0 > 0 small

enough, there exists ν′0 > 0 (both independent of W ) such that, for every 0 ≤ n ≤ κ0| log ~|,∑
γ∈W

U~πγn−1 . . .U~πγ0 Op~(χ∗)U−n~

= Op~

∑
γ∈W

P ~
γn−1

◦ g−1 . . .× P ~
γ1
◦ g1−n × P ~

γ0
◦ g−nχ∗

+OL2(M)→L2(M)(~ν
′
0).

As (P ~
i )i=1,...,K is a family of nonnegative functions satisfying a property of partition of identity(see

paragraph 4.2), one knows that∥∥∥∥∥∥
∑
γ∈W

P ~
γn−1

◦ g−1 . . .× P ~
γ1
◦ g1−n × P ~

γ0
◦ g−nχ∗

∥∥∥∥∥∥
∞

≤ 1.

By similar arguments, one can verify that PW =
∑
γ∈W P ~

γn−1
◦ g−1 . . .×P ~

γ1
◦ g1−n×P ~

γ0
◦ g−nχ∗

belongs to some class S−∞,0ν′ (T ∗M) for some 0 < ν′ < 1/2 � with seminorms that can be chosen
uniform in W and 0 ≤ n ≤ κ0| log ~|. Thus, one can apply Calderón Vaillancourt Theorem �
Chapter 5 in [12] for instance. It tells us that there exist constant C ′ > 0 and C ′′ > 0 (depending
only on M and on the choice of coordinate charts) such that

‖Op~(PW )‖L2(M)→L2(M) ≤ C ′
∑

|α|≤C′′d

~
|α|
2 ‖∂αPW ‖∞.

Thus, combined to the rest of the proof, it implies the existence of κ0 and c1 ≥ 1 (depending on
the choice of the partition (Mi)Ki=1, on ν, on the size of the size energy layer but not on ~) such
that, for ~ > 0 small enough, one has

∀0 ≤ n ≤ κ0| log ~|, ∀W ⊂ Σn,

∥∥∥∥∥∥
∑
γ∈W

U~πγn−1 . . .U~πγ0U~ Op~(χ∗)U−n~

∥∥∥∥∥∥
L2(M)→L2(M)

≤ c1.

�

15It depends on the choice of the partition (Mi)
K
i=1, on the regularization parameter ν and on the size of the

energy layer.
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A.5. Inserting cuto�s functions. Recall that we used the notation, for γ = [γ0, γ1, . . . , γp−1]
in Σp,

Π̃γ = U~πγp−1 . . .U~πγ1U~πγ0 .

As we needed it in paragraph 6.2.2, we brie�y explain here that we can insert a �nite number k
of cuto� functions in a cylinder of length kn, where n is a short logarithmic time for which the
operators are amenable to pseudodi�erential calculus. Precisely, it is a consequence of the following
lemma which can be obtained as a combination of lemma A.3 on long product of pseudodi�erential
operators and of the property of the cuto� functions.

Lemma A.5. There exists κ > 0 small enough (depending on the smooth partition and on the
size of the energy layer) such that for every 0 ≤ j ≤ k − 2, for every 0 ≤ p ≤ [|κ| log ~|] and for
every [γ] ∈ Σp,

(Id−Op~(χ−j))Π̃γ Op~(χ−j−1) = O(~∞).
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