ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2

GABRIEL RIVIERE

ABsTracT. We study the high-energy asymptotic properties of eigenfunctions of the Laplacian
in the case of a compact Riemannian surface M of Anosov type. To do this, we look at families of
distributions associated to them on the cotangent bundle T* M and we derive entropic properties
on their accumulation points in the high-energy limit (the so-called semiclassical measures). We
show that the Kolmogorov-Sinai entropy of a semiclassical measure yu for the geodesic flow g? is
bounded from below by half of the Ruelle upper bound, i.e.

hrs(p,g) > %/SM xT (p)du(p),

where x T (p) is the upper Lyapunov exponent at point p.

1. INTRODUCTION

In quantum mechanics, the semiclassical principle asserts that in the high energy limit, one
should observe classical phenomena. Our main concern will be the study of this property when
the classical system is said to be chaotic.

Let M be a compact C* Riemannian surface. For all x € M, T*M is endowed with a norm ||.||,,
given by the metric over M. The geodesic flow g* over T*M is defined as the Hamiltonian flow

corresponding to the Hamiltonian H(z, ) := % This last quantity corresponds to the classical
kinetic energy in the case of the absence of potential. As any observable, this quantity can be
quantized via pseudodifferential calculus and the quantum operator corresponding to H is —Ff%
where h is proportional to the Planck constant and A is the Laplace Beltrami operator acting on
L?(M).

Our main result concerns the influence of the classical Hamiltonian behavior on the spectral as-

ymptotic properties of A. More precisely, our main interest is the study of the measure |y (x)|?dz
h2A
2

(1) —R2 APy = Uy,

This is equivalent to the study of large eigenvalues of A. As M is a compact Riemannian manifold,
the family —A~2 forms a discrete subsequence that tends to minus infinity. One natural question
is to study the (weak) limits of the probability measure |1, (z)|?dz as h tends to 0. This means
studying the asymptotic behavior of the probability to find a particle in z when the system is in
the state 15. In order to study the influence of the Hamiltonian flow, we first need to lift this
measure to the cotangent bundle. This can be achieved thanks to pseudodifferential calculus. In
fact there exists a procedure of quantization that gives us an operator Opy,(a) on the phase space
L?(M) for any observable a(z,£) in a certain class of symbols. Then a natural way to lift the
previous measure is to define the following quantity:

pn(a) = /*M a(z,§)dun(z, &) == (Yn, Opy(a)¥n) L2 (ar)-

This formula gives a distribution p; on the space T*M and describes now the distribution in
position and velocity.

Let (¢r,) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the
eigenvalues fh,f. Suppose that the corresponding sequence of distributions pz, on T* M converges!

where vy, is an eigenfunction of —

associated to the eigenvalue %, ie.

Yf we denote T*M = T*M U M x {oo0}, we consider convergence for the weak topology induced by the natural
topology on CO(T*M).
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as k tends to infinity to a limit p. Such a limit is called a semiclassical measure. Using standard
facts of pseudodifferential calculus, it can be shown that p is a probability measure that does not
depend on the choice of the quantization Op, and that is carried on the unit cotangent bundle

S*M = {(x,g)  H(z,€) = ;}

Moreover, another result from semiclassical analysis, known as the Egorov property, states that
for any fixed ¢,
(2) Va € C(T* M), U™0p,(a)U* = Opy(a g") + Oy(h),

2thA

where U? denotes the quantum propagator e 2 . Precisely, it says that for fixed times, the
quantum evolution is related to the classical evolution under the geodesic flow. From this, it
can be deduced that p is invariant under the geodesic flow. One natural question to ask is what
measures supported on S*M are in fact semiclassical measures. In quantum chaos, one studies
this question when the classical behavior is said to be chaotic. A first result in this direction has
been found by Shnirelman [28], Zelditch [31], Colin de Verdiére [10]:

Theorem 1.1. Let (¢) be an orthonormal basis of L?*(M) composed of eigenfunctions of the
Laplacian. Moreover, suppose the geodesic flow on S*M is ergodic with respect to Liouville mea-
sure. Then, there exists a subsequence (jux, ), of density one that converges to the Liowville measure
on S*M as p tends to infinity.

By ‘density one’, we mean that %ﬁ{p :1 <k, < n} tends to one as n tends to infinity. This

theorem states that, in the case of an ergodic geodesic flow, almost all eigenfunctions concentrate
on the Liouville measure in the high energy limit. This phenomenon is called quantum ergodicity
and has many extensions. The Quantum Unique Ergodicity Conjecture states that the set of
semiclassical measures should be reduced to the Liouville measure in the case of Anosov geodesic
flow [26]. This question still remains widely open. In fact, in the case of negative curvature, there
are many measures invariant under the geodesic flow: for example, there exists an infinity of closed
geodesics (each of them carrying naturally an invariant measure). In recent papers, Lindenstrauss
proved a particular form of the conjecture, the Arithmetic Quantum Unique Ergodicity [23].
Precisely, he proved that for a sequence of Hecke eigenfunctions of the Laplacian on an arithmetic
surface, [1|?dz converges to the Lebesgue measure on the surface. This result is actually the
closest positive result towards the conjecture.
In order to understand the phenomenon of quantum chaos, many people started to study toy
models as the cat map (a typical hyperbolic automorphism of T?). These dynamical systems
provide systems with similar dynamical properties to the geodesic flow on a manifold of negative
curvature. Moreover, they can be quantized using Weyl formalism and the question of Quantum
Ergodicity naturally arises. For example, Bouzouina and de Biévre proved the Quantum Ergodicity
property for the quantized cat map [7]. However, de Biévre, Faure and Nonnenmacher proved
that in this case, the Quantum Unique Ergodicity is too optimistic [15]. In fact, they constructed
a sequence of eigenfunctions that converges to %(50 + Leb), where Jp is the Dirac measure on
0 and Leb is the Lebesgue measure on T?. Faure and Nonnenmacher also proved that if we
split the semiclassical measure into its pure point, Lebesgue and singular continuous components,
W= fipp + fLeb + psc, then ppp(T?) < pren(T?) and in particular pp,(T?) < 1/2 [16]. As in the
case of geodesic flow, there is an arithmetic point of view on this problem and it has been proved
by Kurlberg and Rudnick that for sequence of Hecke eigenfunctions, one has Arithmetic Quantum
Unique Ergodicity [21]. Recently, Kelmer generalized this construction in higher dimension and
proved that in the case of T?? (d > 2, for a generic family of symplectic matrices), either there
exists co-isotropic submanifold invariant under the 2d cat map or one has Arithmetic Quantum
Unique Ergodicity [20]. Moreover, in the first case, he showed that we can construct semiclassical
measure equal to Lebesgue on the isotropic submanifold.

1.1. Statement of the main result. In recent papers [2], [5], Anantharaman and Nonnenmacher
got concerned with the study of the localization of eigenfunctions on M as in the case of the toy
models. They tried to understand it via the Kolmogorov-Sinai entropy. This paper is in the same
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spirit and our main result gives an information on the set of semiclassical measures in the case of
a surface M of Anosov type. Under this assumption (see section 3 for precise definition), one can
introduce the unstable jacobian at a point p in S*M, i.e.

J%(p) = det (dg\_Elu(glp)) ’

where E“(g'p) is the unstable space at point g'p. This quantity allows us to express our main
result which provides an information on the localization (or complexity) of a semiclassical measure:

Theorem 1.2. Let M be a C*™ Riemannian surface and p a semiclassical measure. Suppose the
geodesic flow (g%); has the Anosov property. Then,

/ log J*(p)du(p)
S* M

where J"(p) is the unstable Jacobian at the point p and where his(p, g) is the Kolmogorov-Sinai
entropy of the measure p with respect to the geodesic flow g.

(3) hrs(p,g) > %

)

We underline that log J“ is not a priori negative everywhere but its average on S*M is. We
also recall that the lower bound can be expressed in term of the Lyapunov exponent [6] as

@ hrs(ug) = 5 [ x*()duto)

where 1 (p) is the upper Lyapunov exponent at the point p [6]. In order to comment this result, let
us recall a few facts about the Kolmogorov-Sinai (also called metric) entropy. It is a nonnegative
number associated to a flow g and a g-invariant measure pu, that estimates the complexity of
with respect to this flow. For example, a measure carried by a closed geodesic will have entropy
zero. In particular, this theorem shows that the support of a semiclassical measure cannot be
reduced to a closed geodesic. Moreover, this lower bound seems to be the optimal result we can
prove using this method and only the dynamical properties of M. In fact, in the case of the toy
models some of the counterexamples that have been constructed (see [15], [20], [17]) have entropy

1
equal to '2 / log J“(p)du(p)’ . Recall also that a standard theorem of dynamical systems due
S*M

to Ruelle [27] asserts that, for any invariant measure p under the geodesic flow,

/ log J*(p)du(p)
S*M

with equality if and only if u is the Liouville measure in the case of an Anosov flow [22].

The lower bound of theorem 1.2 was conjectured to hold for any semiclassical measure for an
Anosov manifold in any dimension by Anantharaman [2]. In fact, Anantharaman proved that
in any dimension, the entropy of a semiclassical measure should be bounded from below by a
(not really explicit) positive constant [2]. Then, Anantharaman and Nonnenmacher showed that
inequality (4) holds in the case of the Walsh Baker’s map [4] and in the case of constant negative
curvature in all dimension [5]. In the general case of an Anosov flow on a manifold of dimension
d, Anantharaman, Koch and Nonnenmacher [3] proved a lower bound using the same method:

/ log J"(p)dp(p) —%-
S*M

where Apax := lims—, 400 %log SUD e 5+ 1 |d,g'| is the maximal expansion rate of the geodesic flow.
In particular if A\, is very large, the previous inequality can be trivial. However, they conjectured
inequality (3) should hold in the general case of manifolds of Anosov type [5], [3]. Our main result
answers this conjecture in the particular case of surfaces of Anosov type and our proof is really
specific to the case of dimension 2.

(5) hics (s, 9) <

his(p,g) >

Remark. We would like to mention that there are other classes of dynamical systems for which it
could be interesting to get an analogue of theorem 1.2. For instance, regarding the counterexamples
in [18], it would be important to derive an extension of theorem 1.2 to ergodic billiards. A first step
in this direction could be to study the case of surfaces of nonpositive curvature: they share enough
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properties with Anosov surfaces (no conjugate points, existence of stable/unstable foliations) so
that this first extension should not be so surprising [13]. For the sake of simplicity, we will not
discuss the details of this extension in this article and postpone the proof of this result to future
works [25].

Now let us discuss briefly the main ideas of our proof of theorem 1.2.

1.2. Heuristic of the proof. The procedure developed in [3] uses a result known as the entropic
uncertainty principle [24]. To use this principle in the semiclassical limit, we need to understand
the precise link between the classical evolution and the quantum one for large times. Typically,
we have to understand Egorov theorem (2) for large range of times of order ¢ ~ |logh| (i.e.
have a uniform remainder term of (2) for a large range of times). For a general symbol a in
C(T*M), we can only expect to have a uniform Egorov property for times ¢ in the range of times
[—2110g 1| /Amax 3] 108 1| /Amax] [8]. However, if we only consider this range of times, we do not
take into account that the unstable jacobian can be very different between two points of S*M.
In this paper, we would like to say that the range of times for which the Egorov property holds
depends also on the support of the symbol a(z,£) we consider. For particular families of symbol
of small support (that depends on %), we show that we have a ‘local’ Egorov theorem with an
allowed range of times that depends on the support of our symbol (see (65) for example). To
make this heuristic idea work, we first try to reparametrize the flow [11] in order to have a uniform
expansion rate on the manifold. We define " (p) := g*(p) where

(6) T = —/O log J“(g°p)ds.

This new flow g has the same trajectories as g. However, the velocity of motion along the trajectory
at p is |log J"(p)|-greater for g than for g. We underline here that the unstable direction is of
dimension 1 (as M is a surface) and it is crucial because it implies that log J* exactly measures
the expansion rate in the unstable direction at each point?. As a consequence, this new flow g has
a uniform expansion rate. Once this reparametrization is done, we use the following formula to
recover t knowing 7:

(7) 1(p) = inf {3 50— /O log J"(g* p)ds’ > T} .

The number t.(p) can be thought of as a stopping time corresponding to p. We consider now
7 = 3|log hi|. For a given symbol a(z, £) localized near a point p, t1)10g | (p) is exactly the range of
times for which we can expect Egorov to hold. This new flow seems in a way more adapted to our
problem. Moreover, we can define a g-invariant measure i corresponding to p [11]. The measure
7 is absolutely continuous with respect to p and verifies Z—g(p) =log J“(p)/ [g«pslog J*(p)du(p)-
We can apply the classical result of Abramov

/S*M log J*“(p)dp(p)| hics(F, 9)-

To prove theorem 1.2, we would have to show that hxg(@,g) > 1/2. However, the flow § has no
reason to be a Hamiltonian flow to which corresponds a quantum propagator U. As a consequence,
there is no particular reason that this inequality should be a consequence of [5]. In the quantum
case, there is also no obvious reparametrization we can make as in the classical case. However,
we will reparametrize the quantum propagator starting from a discrete reparametrization of the
geodesic flow and by introducing a small parameter of time 7. To have an artificial discrete
reparametrization of the geodesic flow, we will introduce a suspension set [11]. Then, in this
setting, we will define discrete analogues of the previous quantities (6) and (7) that will be made
more precised in the paper. It will allow us to prove a lower bound on the entropy of a certain

hKS(ﬂag) =

21n fact, for the Anosov case, the crucial point is that at each point p of S* M, the expansion rate is the same

_1_
in any direction, i.e. dgl_Elu is of the form J“(p)@-Twv, where d is the dimension of the manifold M and v,

(g'p)
is an isometry. The proof of theorem 1.2 can be immediately adapted to Anosov manifolds of higher dimensions

satisfying this isotropic expansion property (for example manifolds of constant negative curvature).
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reparametrized flow and then using Abramov theorem [1] deduce the expected lower bound on the
entropy of a semiclassical measure.

Finally, we would like to underline that in a recent paper [17], Gutkin also used a version of the
Abramov theorem to prove an analogue of theorem 1.2 in the case of toy models with an unstable
direction of dimension 1.

1.3. Organization of the paper. In section 2, we briefly recall properties we will need about
entropy in the classical and quantum settings. In particular, we recall the version of Abramov
theorem we will need. In section 3, we describe the assumptions we make on the manifold M and
introduce some notations. In section 4, we draw a precise outline of the proof of theorem 1.2 and
state some results that we will prove in the following sections. Sections 5 and 6 are devoted to the
detailed proofs of the results we admitted in section 4. Sections 7 and appendix A are devoted to
results of semiclassical analysis that are quite technical and that we will use at different points of
the paper (in particular in section 6).
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time and her patience spent to teach me so many things about the subject. I also thank her
for having read carefully preliminary versions of this work and for her support. I would also
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and stimulating suggestions about the application of the entropic uncertainty principle. Finally,
I would like to thank the anonymous referees for precious comments and suggestions to improve
the presentation of this article.

2. CLASSICAL AND QUANTUM ENTROPY

2.1. Kolmogorov-Sinai entropy. Let us recall a few facts about Kolmogorov-Sinai (or metric)
entropy that can be found for example in [30]. Let (X, B, ;1) be a measurable probability space, I a
finite set and P := (P,)acs a finite measurable partition of X, i.e. a finite collection of measurable
subsets that forms a partition. Each P, is called an atom of the partition. Assuming 0log0 = 0,
one defines the entropy of the partition as

®) H(p, P):= = p(Pa)log p(Pa) > 0.
acl

Given two measurable partitions P := (P,)qes and Q := (Qg)gek, one says that P is a refinement
of @ if every element of () can be written as the union of elements of P and it can be shown that
H(p, Q) < H(u, P). Otherwise, one denotes PV Q := (P, N Q3)acr,gek their join (which is still
a partition) and one has H(u, PV Q) < H(u, P) + H(u, Q) (subadditivity property). Let T be a
measure preserving transformation of X. The n-refined partition \/?Z_OlT*iP of P with respect to
T is then the partition made of the atoms (P,, N---NT~"" VP, ),cr». We define the entropy
with respect to this refined partition

(9) HH(M7T7 P) = - Z M(Pao n---nN T_(n_l)Poznfl) log M(Pao n---n T—(n—l)Pa7l71).
lol=n

Using the subadditivity property of entropy, we have for any integers n and m,

(10) Hner(:U"Tv P) < Hn(ﬂa T, P) + Hm(Tnﬁﬂa T, P) = Hn(ﬂvTa P) + Hm(/iaTa P)

For the last equality, it is important to underline that we really use the T-invariance of the measure
1. A classical argument for subadditive sequences allows us to define the following quantity:

H, (u,T,P
(11) hics(u T, P) = lim 2T P)

n— oo n
It is called the Kolmogorov Sinai entropy of (T, u) with respect to the partition P. The Kol-
mogorov Sinai entropy hxs(u, T') of (u,T) is then defined as the supremum of hxg(u, T, P) over
all partitions P of X. Finally, it should be noted that this quantity can be infinite (not in our
case thanks to Ruelle inequality (5) for instance). Note also that if, for every integer n and for

all index (ag, -+, n-1), (Pay N---N T*(”*l)Pan_l) < Ce P" with C positive constant, then
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hixs(u, T) > B: the metric entropy measures the exponential decrease of the atoms of the refined
partition.

2.2. Quantum entropy. One can defined a quantum counterpart to the metric entropy. Let
‘H be an Hilbert space. We call a partition of identity (74 )acs a finite family of operators that
satisfies the following relation:

(12) D Tt = Idy.
a€cl
Then, one defines the quantum entropy of a normalized vector v as

(13) he() = = |[7ats]|* log | ratd]®.

acl
Finally, one has the following generalization of a theorem from [5] (the proof immediately gener-
alizes to this case), known as the entropic uncertainty principle [24]:

Theorem 2.1. Let Og be a family of bounded operators and U a unitary operator of an Hilbert
space (H,||.||). Let &' be a positive number. Given (To)acr and (73)sek two partitions of identity
and ¢ a vector in H of norm 1 such that

I(Id — Og)mat|| < ¢
Suppose both partitions are of cardinal less than N, then
he (U) + ha(¢p) > —2log (co(U) + N&'),

where co(U) = - (lraUn508]), with |7aUn50g] the operator morm in H.

2.3. Entropy of a special flow. In the previous papers of Anantharaman, Koch and Nonnen-
macher (see [3] for example), the main difficulty that was faced to prove main inequality (3) was
that the value of log J*(p) could change a lot depending on the point of the energy layer they
looked at. As was mentioned (see section 1.2), we will try to adapt their proof and take into
account the changes of the value of log J*(p). To do this, we will, in a certain way, reparametrize
the geodesic flow. Before explaining precisely this strategy, let us recall a classical fact of dynam-
ical system for reparametrization of measure preserving transformations known as the Abramov
theorem.

First, let us define a special flow (see [1], [11]). Let (X, B, 1) be a probability space, T an auto-
morphism of X and f a measurable function such that f(z) > a > 0 for all z in X. The function
f is called a roof function. We are interested in the set

(14) X :={(z,s):2€X,0<s< f(z)}.
X is equipped with the o-algebra by restriction of the o-algebra on the cartesian product X x R.
For A measurable, one defines i(A) := f% J J4dp(z)ds and @(X) = 1.

X

Definition 2.2. The special flow under the automorphism 7, constructed by the function f is
the flow (Tt) that acts on X in the following way, for t > 0,

n—1

(15) T (z,8) = (T":z:7 s+t— Z f (Tkx)> ,

k=0

n—1 n
where n is the only integer such that Z f(TFz) <s+t< Z f(TFz).
k=0 k=0

For t < 0, one puts, if s+t > 0,
t

T (z,8) = (v,8+1),
and otherwise,
-1
T (z,s) := <T”x,s—|—t+ Z f (T’%)) ,

k=—n
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-1 -1
where n is the only integer such that — Z f(TFz) <s+t<— Z f(TFz).
k=—n k=—n+1

Remark. A suspension semi-flow can also be defined from an endomorphism.

It can be shown that this special flow preserves the measure 7z if T" preserves p [11]. Finally,
we can state Abramov theorem for special flows [1]:
Theorem 2.3. With the previous notations, one has, for all t € R:

2|

(16) hks (Ttaﬁ) =7 fduhKS (T, ).
X

3. CLASSICAL SETTING OF THE PAPER

Before starting the main lines of the proof, we want to describe the classical setting for our
surface M and introduce notations that will be useful in the paper. We suppose the geodesic flow
over T* M to have the Anosov property (it is for instance the case if M is negatively curved). This
means that for any A > 0, the geodesic flow g is Anosov on the energy layer £()\) := H~1()\) C
T*M and in particular, the following decomposition holds for all p € E()\):

T,E(\) = E"(p) © E*(p) ® RX11(p),

where X is the Hamiltonian vector field associated to H, E" the unstable space and E° the
stable space [9]. It can be denoted that in the setting of this article, they are all one dimensional
spaces. The unstable Jacobian J"(p) at the point p is defined as the Jacobian of the restriction
of g~! to the unstable subspace E%(g'p):

J(p) := det (dg‘};‘,(glp)) .

For 6 small positive number (6 will be fixed all along the paper), one defines

g9 .=H'(J1/2-0,1/2+4)).
As the geodesic flow is Anosov, we can suppose there exist 0 < ag < by such that

Vpe &% ag < —logJ(p) < bo.
Remark. In fact, in the general setting of an Anosov flow, we can only suppose that there exists
ko € N such that det (dgl_E]f?(gkop)) < 1forall p € &Y. So, to be in the correct setting, we should
take g* instead of g in the paper. In fact, as hxs(u, g*°) = kohxs(i, g) and

—k _ -1
- /S *Mlogdet (dg‘ (g0 p)> du(p) = —ko /S *Mlogdet (dg| Bu(g! p)) du(p),

theorem 1.2 follows for ky = 1 from the case ko large. However, in order to avoid too many
notations, we will suppose kg = 1.

We also fix € and n two small positive constants lower than the injectivity radius of the manifold.
We choose 7 small enough to have (2 + Z—‘;)bon < § (this property will only be used in the proof
of lemma 4.1). We underline that there exists € > 0 such that if

YV (p,p') € € x E%, d(p,p') < &= |log J(p) —log J*(p)| < age.
Discretization of the unstable Jacobian. As was already mentioned, our strategy to prove
theorem 1.2 will be introduce a discrete reparametrization of the geodesic flow. Regarding this
goal, we cut the manifold M and precisely, we consider a partition M = |_|fi1 O; of diameter

smaller than some positive §. Let (£;)%, be a finite open cover of M such that for all 1 <i < K,
O; € Q. For v € {1,--- , K}?, define an open subset of 7 M:

Uy = (T*Q N g "T*Q,, ) NEY.
We choose the partition (O;)%; and the open cover (Q;)XX, of M such that (Uy)eqa,... k)2 is a

finite open cover of £, of diameter smaller® than . Then, we define the following quantity, called

3In particular, the diameter of the partition § depends on the parameters 6, €, n and e.
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the discrete Jacobian in time #:
(17) Jy () =sup{J“(p) : p € Uy},

if the previous set is non empty, e~ otherwise. Outline that J#('y) depends on 1 as U, depends
on 7. The definition can seem quite asymmetric as we consider the supremum of J*(p) and not
of Jy/(p). However, this choice makes things easier for our analysis.

Finally, let @ = (agp,a1,---) be a sequence (finite or infinite) of elements of {1,---, K} whose
length is larger than 1 and define

€
(18) fi(a) == —nlog Jj (g, 1) < mbo < >
where the upper bound follows from the previous hypothesis. We underline that, for v = (y9,71),
we have

(19) VpeU,, |fr(v)+nlogJ"(p)| < agne.

Remark. This last inequality shows that even if our choice for J;j(*y) seems quite asymmetric, it
allows to have a linear bound in 7 for quantity (19) and it will be quite useful. With a more
symmetric choice, we would not have been able to get an explicit bound in 7 for (19).

In the following, we will also have to consider negative times. To do this, we define the analogous
functions, for 8 := (---,8_1, By) of finite (or infinite) length,

f=(B) == f+(B-1,B0)-

Remark. Let o and (8 be as previously (finite or infinite). For the sake of simplicity, we will use
the notation

ﬂ.O{ = ( 5/8—17505&07a17"')'

The same obviously works for any sequences of the form (---,8,-1, 5,) and (o, g1, - ).

4. OUTLINE OF THE PROOF

Let (vr,) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the
eigenvalues —1/ h;z such that the corresponding sequence of distributions py on T* M converges as
k tends to infinity to the semiclassical measure . For simplicity of notations and to fit semiclassical
analysis notations, we will denote A tends to 0 the fact that k tends to infinity and v, and A~2
the corresponding eigenvector and eigenvalue. To prove theorem 1.2, we will in particular give a
symbolic interpretation of a semiclassical measure and apply the previous results on special flows
to this measure.

Let € > 4e be a positive number, where ¢ was defined in section 3. The link between the two
quantities € and ¢’ will only be used in section 7 to define v. In the following of the paper, the
Ehrenfest time ng(h) will be the quantity

(20) ng(h) == [(1—€)|loghl].

We underline that it is an integer time and that, compared with usual definitions of the Ehrenfest
time, there is no dependence on the Lyapunov exponent. We also consider a slightly smaller time

(21) Te(h) := (1 — e)ng(h).

4.1. Quantum partitions of identity. In order to find a lower bound on the metric entropy of
the semiclassical measure u, we would like to apply the entropic uncertainty principle (theorem 2.1)
and see what informations it will give (when % tends to 0) on the metric entropy of the semiclassical
measure p. To do this, we define quantum partitions of identity corresponding to a given partition
of the manifold.
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4.1.1. Partitions of identity. In section 3, we considered a partition of small diameter (O;)X
of M. We also defined (€2;)X, a corresponding finite open cover of small diameter of M. By
convolution of the characteristic functions 1o,, we obtain P = (P;),_, , a smooth partition of
unity on M i.e. for all x € M, 7

K
> Pix) =

We assume that for all 1 < ¢ < K, P; is an element of C>°(2;). To this classical partition
corresponds a quantum partition of identity of L?(M). In fact, if P; denotes the multiplication
operator by P;(z) on L?(M), then one has

K
(22) > PP =Ty,

i=1
4.1.2. Refinement of the quantum partition under the Schriodinger flow. Like in the classical setting
of entropy (9), we would like to make a refinement of the quantum partition. To do this refinement,
we use the Schrddinger propagation operator Ut = ¢, We define A(t) := U~ AU", where A is
an operator on L?(M). To fit as much as possible with the metric entropy (see definition (9) and

Egorov property (2)), we define the following operators:

(23) Ta = Pay (k1) -+ Pay (1) Pay

and

(24) T = Pa_, (=kn) - Pa_,(=2n) P, Ps_, (—n),

where o = (o, - -+ , ) and 8 = (S_x, - - - , Bo) are finite sequences of symbols such that a; € [1, K]

and f_; € [1,K]. We can remark that the definition of 74 is the analogue for negative times of
the definition of 7,. The only difference is that we switch the two first terms Gy and 5_;. The
reason of this choice will appear later in the application of the quantum uncertainty principle (see
equality (41) in section 5.3). One can see that for fixed k, using the Egorov property (2),

(25) || Pay(kn) -+ Pay (1) Pagonl|* — (P2, 0 g™ x -+~ P2 og" x P2 ) as h tends to 0.

This last quantity is the one used to compute hxs(i, g7) (with the notable difference that the P;
are here smooth functions instead of characteristic functions: see (9)). As was discussed in the
heuristic of the proof 1.2, we will have to understand for which range of times, the operator 7, is a
pseudodifferential operator of symbol P,, o g*" x --- P, 0 g" x P, (see (25)). In [5] and [3], they
only considered kn < |log fi|/Amax Where Apax = lims 100 %log SUD e 5+ M1 |d,g'|. This choice was
not optimal and in the following, we try to define sequences a for which we can say that 7, is a
pseudodifferential operator.

4.1.3. Indez family adapted to the variation of the unstable Jacobian. Let o = (v, 1,---) be a
sequence (finite or infinite) of elements of {1,---, K'} whose length is larger than 1. We define a
natural shift on these sequences

o+((ag,a1,--+)) == (ag,---).

For negative times and for 8 := (--- ,8_1, Bo), we define the backward shift
U—((' o 5/8—1750)) = ( o 75—1)'

In the paper, we will mostly use the symbol x for infinite sequences and reserve « and 3 for finite
ones. Then, using notations of section 3 and as described in section 5, index families depending
on the value of the unstable Jacobian can be defined as follows:

k—2
(26)  I"(h) :== I"(Tg(h)) = {(ao, coag) k>3, fy (0ha) < Te(h) < Zf+ ola }

=1

i=1

k—2 k—1
(27) K"(h) := K"(Tg(h)) = {(ﬁk, e Bo) k>3, fo (0"8) <Tp(h) <> _ f- (a"ﬁ)} :
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We underline that we will consider any sequence of the previous type and not only sequences for
which U, is not empty. These sets define the maximal sequences for which we can expect to use
the semiclassical rules (composition, Egorov property) for the corresponding 7. The sums used
to define these sets are in a way a discrete analogue of the integral in the inversion formula (7)
defined in the introduction*. The sums used to define the allowed sequences are in fact Riemann
sums (with small parameter n) corresponding to the integral (6). We can think of the time |a|n
as a stopping time for which semiclassical rules will hold for an operator symbol 7, corresponding
to a.

A good way of thinking of these families of words is by introducing the sets

Z+ = {]_’ 7I(}N and YX_ := {1; 7K}7N'

We will see that the sets I"(h) (resp. K"(h)) lead to natural partitions of ¥ (resp. ¥_). In the
following, it can be helpful to keep in mind picture 1. On this figure, we draw the case K = 4. The
biggest square has sides of length 1. Each square represents an element of I"(%) and each square
with sides of length 1/2% represents a sequence of length k + 1 (for & > 0). If we denote C(«)
the square that represents «, then we can represent the sequences .y for each v in {1,---,4}
by subdividing the square C'(«) in 4 squares of same size. Finally, by definition of I"(h), we can
remark that if a7y is represented in the subdivision (for v in {1,---,4}), then «.y’ is represented
in the subdivision for each 4’ in {1,---,4}. Families of operators can be associated to these

c(11) |Cc(12) _I_

_l_

C(30) C(ap1)

_l_

FIGURE 1. Schematic representation of a refinement of variable size for ¥ := {1,--- 4}

families of index: (74)aerm(n) and (7g)geckn(r). One can show that these partitions form quantum
partitions of identity (see section 5), i.e.

Z T;Ta = IdLQ(M) and Z 772;77,3 = IdL2(JVI)-
aeln(h) BEKM(h)

4.2. Symbolic interpretation of semiclassical measures. Now that we have defined these
partitions of variable size, we want to show that they are adapted to compute the entropy of a
certain measure with respect to some reparametrized flow associated to the geodesic flow. To do
this, we start by giving a symbolic interpretation of the quantum partitions. Recall that we have
denoted X, := {1, -, K}N. We will also denote C; the subset of sequences (x,),en such that
rg = i. Define also

[ag, -, ag] == Cq, O-~-ﬂa;kcak,

where o is the shift o4 ((2,)nen) = (Tnt1)nen (it fits the notations of the previous section). The
set 34 is then endowed with the probability measure (not necessarily o-invariant):

/”'?Jr ([040, s ,Oék]) = M§+ (Cao n---N OJ—rkcak) = HPO% (kn) T PaowRHQ'

4In the higher dimension case mentioned in the footnote of section 1.2, we should take (d — 1)Tg (k) (where d is
the dimension of M) instead of Tk (k) in the definition of I"(k) and K" (h).
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Using the property (12), it is clear that this definition assures the compatibility conditions to
define a probability measure

St (oo o)) = iyt (Joos -+ o).

Then, we can define a suspension flow, in the sense of Abramov (section 2.3), associated to this
probability measure. To do this, the suspension set (14) is defined as

(28) Y ={(z,8) €Ty xRy : 0< s < fr ()}
Recall that the roof function f, is defined as fy () := f4 (zo,z1). We define a probability measure

ﬁ?* on Y, :
) dt » dt
(29) 7 =t x = pip " % :
" " Yact e Fr@IPaunll? T TS (@)t (o))
The semi-flow (15) associated to o is for time s:
n—2 ]
(30) 7 (@,t) = |07 @) s+t =3 fy (aix) :
=0
n—2 ) n—1 ]
where 7 is the only integer such that Z fi (Uim) <s+t< Z I (Uix). In the following, we
=0 =0

will only consider time 1 of the flow and its iterates and we will denote 7, := Ei.

Remark. It can be underlined that the same procedure holds for the partition (73). The only
differences are that we have to consider X_ := {1,--- , K} 0_((2n)n<0) = (n—1)n<o and that
the corresponding measure is, for & > 1,

’ug— ([ﬁfka co ’ﬁo]) = :U’§7 (E:k657,€ n---N Cﬁo) = HPﬁLk(_kn) T Pﬁopﬁfl(—ﬁ)wh”?

For k = 0, one should take the only possibility to assure the compatibility condition

K
i (Bo]) =3 m (B o))

The definition is quite different from the positive case but in the semiclassical limit, it will not
change anything as Pg, and Pz _1(—7) commute. Finally, the ‘past’ suspension set can be defined
as

Y_oi={(x,5) €X_xRy:0<s< f_(x)}.

Now let o be an element of I"(h). Define:
(31) Co:=CopN---N a;kcak.

This new family of subsets forms a partition of X, (see picture 1). Then, a partition @; of X4
can be defined starting from the partition C and [0, f1 (). An atom of this suspension partition

is an element of the form C, = Cy x [0, f4 ()] (see figure (a) of 2). For ¥ (the suspension set

corresponding to ¥_), we define an analogous partition C; = ([8] % [0, f—(8)[)gexn(r). Finally,
with this interpretation, equality (40) from section 5.3 (which is just a careful adaptation of the
uncertainty principle) can be read as follows:

(32) H (7.8 ) + H (.8 ) = (1= )(1 =€) = o) [log il + C,

where H is defined by (8) and d¢ is some small fixed parameter. To fit as much as possible with the
setting of the classical metric entropy, we would like E;{ to be the refinement (under the special
flow) of an A-independent partition. It is not exactly the case but we can prove the following
lemma (see section 5.2 and figure 2):
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Lemma 4.1. There erists an explicit partition C,. of X, independent of h such that \/?jo(h)_lﬁfé+

is a refinement of the partition 5; Moreover, let n be a fized positive integer. Then, an atom of

the refined partition Vi@, 'C is of the form [a] x B(a), where a = (ag, -+ , ) is a k+ 1-uple
k—1
such that (ap,- -, ag) verifies n(l —e€) < Zf+ (aia) < n(l+e€) and B(w) is a subinterval of
§=0
[07 f+ (O[)[
R R [T U
(a) (b)) LI ] T

¥ = {0, 1} ¥ = {0, 1}

FIGURE 2. The basis of each tower corresponds to the set of sequences starting
with the letters (ag, o), where ag and oy are in {0, 1} and each tower corresponds
to the set Coy.ay X [0, f+ (0, 1)). Compared with figure 1, we use here a 1D
schematic reprensatation of ¥ (and not a 2D representation). The set ¥, admits
several partitions. The figure on the left corresponds to the partition @; ofij_.
The figure on the right corresponds to the refinement of the fixed partition C
der & . ng(h)—1l——im
under o4, i.e. V,2 o.'Cq.

This lemma is crucial as it allows to interpret an inequality on the quantum entropy as an
inequality on classical entropy. In fact, applying basic properties of H between two partitions (see
section 2.1 and figure 2), one finds that

3. 5+ > ng(h)—1_——im 3, — 5
(33) H (:U/thaCh) < H (Mtha \/z:EO( ) 04 C+) = HnE(h) (/’Lh+70+7c+) :
One can obtain the same lemma for the ‘past’ shift and in particular, it gives an Ai-independent

partition C_. To conclude this symbolic interpretation of quantum entropy, with natural notations,
inequality (32) together with (33) gives the following proposition

Proposition 4.2. With the previous notations, one has the following inequality:

(34) #(h) (HnE(h) (ﬁ§+a6+76+) + Hpp () (ﬁ§’7a,@)) > (1—e—cdo) + ©

ng(h)

The quantum entropic uncertainty principle gives an information on the entropy of a special
flow. Now, we would like to let & tends to O to find a lower on the metric entropy of a limit
measure (that we will precise in section 4.3) with respect to .. However, both ng(h) and pp
depend on & and we have to be careful before passing to the semiclassical limit.

4.3. Subadditivity of the entropy. The Egorov property (2) implies that p?’ tends to a
measure p>+ on ¥, (as h tends to 0) defined as follows:

(35) MZJr([aOa"'70[/6]):/'1‘(]33;,;09]“7X“'X'Pago)a

where k is a fixed integer. Using the property of partition, this defines a probability measure on
¥,. To this probability measure corresponds a probability measure 77>+ on the suspension set

Y, . It is an immediate corollary that ﬁir is the limit of the probability measure ﬁ?*. Moreover,
using the invariance of the measure p under the geodesic flow, one can check that the measure p>+
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is o -invariant and using results about special flows [11], ot s G 4-invariant. The same works
for u?’ and ﬁ?’.

Remark. In the following, we will often prove properties in the case of ¥,. The proofs are the
same in the case of >_.

As ng(h) and pj depend both on 7, we cannot let £ tend to 0 if we want to keep an information
about the metric entropy. In fact, the left quantity in (34) does not tend a priori to the Kolmogorov-
Sinai entropy. We want to proceed as in the classical case (see (10)) and prove a subadditivity
property. This will allow to replace ng(h) by a fixed ng (see below) in the left hand side of (34).
This is done with the following theorem that will be proved in section 6:

Theorem 4.3. Let C. be the partition of lemma (4.1). There exists a function R(ng,h) on
N x (0, 1] such that
Vno € N, %ir% |R(ng, k)| =0,

and such that, for any h € (0,1] and any ng, m € N satisfying no + m < ng(h), one has
Hygim (ﬁ§+a5+»€+) < Hp, (ﬁ§+75+f+) + Hm (ﬁ§+,5+,5+) + R(no, h).
The same holds for (Z,,é,,ﬁg’).

This theorem says that the entropy satisfies almost the subadditivity property (see (10)) for
time lower than the Ehrenfest time. It is an analogue of a theorem from [5] (proposition 2.8)
except that we have taken into account the fact that the unstable jacobian varies on the surface
and that we can make our semiclassical analysis for larger time than in [5]. The proof of this
theorem is the object of section 6 and 7 (where semiclassical analysis for "local Ehrenfest time’ is
performed). Then, one can apply the standard argument for subadditive sequences. Let ng be a
fixed integer in N and write the euclidian division ng(h) = gng + r with r < ng. The previous
theorem then implies

> S - A T - A
HnE(h) (#ﬁ+70+7c+> H"o (,[Lﬁ+,0'+,C+) H, ('LLFL+’U+’C+) R(’I’Lo,h)
< + + .
ng(h) no ng(h) ng

As r stays uniformly bounded in ng, the inequality (34) becomes

C(no) . ZR(no,h)
ng(h) ng
4.4. Application of the Abramov theorem. Using inequality (36), we can conclude using

Abramov theorem (16). Making % tend to 0, one finds that (as was mentioned at the beginning
of 4.3)

(36) nio (Hno (ﬁ?,m,@) + Hp, (ﬁ?,a_,é_)) > (1 —¢e—cbo) +

1 — o = —

;0 (H”O <ﬁ2+v5+ac+) + Hno (HE_ ,E_,C_)) 2 (1 —€- CdO) .

The Abramov theorem holds for automorphisms so one can look at the natural extension of
(X4,04)and (X_,0_). To do this, we introduce ¥’ = {1,--- , K}* and o' ((zn)nez) := (Tni1)nez-
With these notations, the natural extension of (X4,04) is (X/,0’) and the one of (X_,0_) is
(X',0'~1). We define the following measure on ¥':

Vk,l € Z, ME, ([oy -+ ) == (Pak oghm... x P, ogl”) )
We define then two associated suspension sets
fl_,_ = {(z,8) e ¥’ xRy : 0 < s < fy(mg,71)} and Y o= {(z,5) eX' xR : 0< s < fr(x_1,20)}-

We also denote &/, (resp. o) the suspension flow on i; (resp. il) associated to the automor-
phism ¢’ (resp. o/~!). We define the corresponding measures as

ZI
5 5 w= x Leb
u2+ = ,LLZ— =T T
fz/ J+dp
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Finally, we underline that Cy (resp. C_) can be viewed as partitions of the set i;_ (resp. il_)
This discussion allows us to derive that

1 =/ _ =/ —
(37) = (Hn (ﬁ2+,a;,c+) + H,, (y&,a',,c_)) > (1—€— cd).

0

In view of section 5, we have an exact expression for C, in terms of the functions (P;); (see proof of
lemma 4.1). The measure ﬁzir (resp. ﬁzi) is o7 _-invariant (resp. o’_-invariant) as p* is o-invariant
(resp. o~ l-invariant) [11]. In the previous inequality, there is still one notable difference with the
metric entropy: we consider smooth partitions of identity (P;); (as it was necessary to make the
semiclassical analysis). To return to the classical case, the procedure of [5] can be adapted using
the exact form of the partition C; (see lemma 4.1). Recall that each P; is an element of C2°(Q;)
and that we considered a partition M = | |, O; of small diameter §, where each O; C €; (see
section 3). Omne can slightly move the boundaries of the O; such that they are not charged by
u (see appendix of [2]). By convolution of the 1p,, we obtained the smooth partition (P;); of
identity of diameter smaller than 20. The previous inequality does not depend on the derivatives
of the P;. Regarding also the form of the partition C, (see lemma 4.1), we can replace the smooth
functions P; by the characteristic functions 1¢, in inequality (37). One can let ng tend to infinity
and find

hics (77,7 ) + hucs (57,70 = hics (774,581 ) + hucs (777,52,C) 2 (1= e = ed)
Then, using Abramov theorem (16), the previous inequality implies that

his (ME’,U’) +his (/ﬁ/,a"l) >(L—e—cd) Y. fr(eF ().

’YE{L"' 7[{},2
Moreover, one has hxgs(u, g") > his (uzl,o') as one can verify that the entropy of (u,¢") with
respect to the partition (O;)X; is equal to hxs (uzl,a’) [30] (chapter 4). The same holds for

negative times and one has hxs(u,g~") > hixs (u2/70'_1). After division by 7 and letting the
diameter of the partition ¢ tends to 0, then € tends to 0 and finally §g to 0, one gets

his(u,g) = % /S*Mlog J“(p)du(p)’ 0

Notations. In the following, we have to prove the various results for both ¥, and ¥_. We will
always treat the case of 3, and the case of ¥_ can always be deduced using the same methods.
For the sake of simplicity, we will forget the notation + for (X4,04, f+) when there will be no
ambiguity and we will use the notation (¥, o, f).

5. PARTITIONS OF VARIABLE SIZE

In this section, we define precisely the index families 17 and K" depending on the unstable
jacobian used in section 4. These families are used to construct quantum partitions of identity
and partitions adapted to the special flow (see section 5.2). In the last section, we apply the
uncertainty principle to eigenfunctions of the Laplacian for these quantum partitions of variable
size.

5.1. Stopping time. Let ¢ be a real positive number that will be greater than 2byn. Define index
families as follows (see section 4.1.3 for definitions of f;, o4, f— and o_):

k—2 k—1
I(t) = {oz:(ozo,"' ,ak)tk23,2f+ (o)) §t<2f+ (aia)},

i=1 i=1

k—2 k—1
K(t) := {6= Bk 2 P0) k=3 f(0"B) <t <> f- (aiﬂ)} :

i=1 i=1
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Let = be an element of {1,---, K}. We denote k;(x) the unique integer k such that
k—2 k—1

Z f+ (aim) <t< Zf+ (Uil‘) .
i=1 i=1

In the probability language, k; is a stopping time in the sense that the property {k;(z) < k}
depends only on the k + 1 first letters of z. For a finite word @ = («g, -+, ), we say that
k = ki(«) if « satisfies the previous inequality. With these notations, I7(t) := {« : |a| = k() +1}.
The same holds for K" (t).

Remark. This stopping time k;(a) for ¢t ~ ”ET(h) will be the time for which we will later try to

make the Egorov property work. Precisely, we will prove an Egorov property for some symbols
corresponding to the sequence « (see (65) for example).

Remark. We underline that our choice of defining the sets I and K" with sums starting at ¢ = 1
(and not 0) will simplify our construction in paragraph 5.2.2.

5.2. Partitions associated.

5.2.1. Partitions of identity. Let o = (ayg, -+ ,a) be a finite sequence. Recall that we denoted
Ta = Pa, (k) -+ Pa,, where A(s) := U °AU®. In [5] and [3], they used quantum partitions of
identity by considering (7,)|q|=¢- In our paper, we consider a slightly different partition that is
more adapted to the variations of the unstable jacobian:

Lemma 5.1. Let t be in [2bon, +00[. The family (To)acrn(r) @5 a partition of identity:
Z TaTa = Idp2(ar.
acln(t)
Proof. We define, for each 1 <1 < N (where N + 1 is the size of the longest word of I"(t)),
I't) =={a=(ag, - ,ou) : Iy = (Vig1, ), N>k >1lst. ayel’(t)}.

We recall that we defined a.y := (ag, -+ , a1, Y41, ,7%)). For I = N, this set is empty. We
want to to show that for each 2 <1 < N, we have:

(38) Z ToTa + Z ToaTa = Z T Ton

acln(t),la|=1+1 acl]'(t) aell | (t)

To prove this equality we use the fact that fo:l P, ()" Py(I) = Id2(ar) to write:

K
(39) Z T;TQZZ Z Tovy Tay-

aell | (t) Y=lael (1)

We split then this sum in two parts to find equality (38). To conclude the proof, we write

N
I DD DR
a€eln(t) k=2 acln(t),|a|=k+1
As t > 2byn > max, f(7), the set I](¢) is equal to {1, -, K}?. By induction from N to 1 using
equality (38) at each step, we find then:

Z ’T;’Ta = IdL2(M)
acln(t)

O

Remark. A step of the induction can be easily understood by looking at figure 3 where each square
represents an index over which the sum is made (as it was explained for figure 1). In fact, at each
step of the induction I, we consider the smallest squares (which correspond to the longest words of
length [+ 1) and use the property of partition of identity to reduce them to a larger square of size
27! (i.e. a word of smaller length [). Doing this exactly corresponds to step (39) of the induction.
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Following the same procedure, we denote mg = Pg_, (—kn)--- Pg,Ps_,(—n) for 8 in K"(t).

These operators follow the relation: Z msmg = Idp2(ary. As was mentioned in section 4.1.2,
BEKN(t)

because of a technical reason that will appear in the application of the entropic uncertainty prin-

ciple (see (41)), the two definitions are slightly different.

_|_

_|_

S
(a) (b)

FIGURE 3. A step of the induction in lemma 5.1

5.2.2. Partitions of {1,--- K}N associated to 1"(1). In this section, we would like to consider
some partitions of ¥ := {1,--- , K} and of ¥ (see (28)) associated to the family I”(1). Precisely,
we will construct an explicit partition C of 3 such that its refinement at time n under ¥ is linked
with the partitions ([a] x [0, f(a)[)acinn) (see lemma 4.1).

In this paragraph, we give an explicit expression for C and in the next one, we prove lemma 4.1
that gives a link between the partition V"' 'C and ([e] x [0, f(@)[)aern(n)- Recall that

k—2 k—1
I"Q1) := {a:(ao,~-~ ,ak):kZ?),Zf(aia) < 1<Zf(oia)}.
i=1 i=1

k—1
For a € I"(1), it can be easily remarked that Z f (Uja) > 1. It means that there exists a unique
j=0
integer k' < k such that
k' —2 k-1

ZfO'J <1<Zfa]

In the following, k and k" will be often denoted k(«) and k' () to remember the dependence in .
The following lemma can be easily shown:

Lemma 5.2. Let « € I"(1). One has |k(a) — k' (a)| < 2—2 +1.
Proof. Suppose k' + 1 < k (otherwise it is trivial). Write:

k—2 k' —1 k—2
Zf (eroz) - Z f (aja) <1 -1 implies Z f (aja) < fla).
j=1 3=0 j=k'

And finally, one finds (k — 2 — k' 4+ 1)agn < bon. O

Let « be an element of I"7(1). We make a partition of the interval [0, f(«)[ under a form that
will be useful (as it is adapted to the dynamics of the special flow). Motivated by the definition
of a special flow, let us divide it as follows for k = k(a) and k' = k'(«):

k'—1 p—2

I —o( Zf JJ "I;Df?(a):[Zf(Uja)_1,Zf(0ja)—
=0

=0
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I—o( Zf oa) =1, f ()],

where k' (a) < p < k(a). If k(a) = k'(@), one puts I _9(a) = Iy_2(a) = [0, f()]-
A partition C of ¥ can be defined. Tt is composed of the following atoms:
C,:=C,N---Nno~kc,,,

where v be an element of 1 "(1). A partition C of ¥ can be constructed starting from the partition
C and the partition of [0, f()[. This partition C is defined as

Ci={Crp=C x Iy a() sy € I(1), and K'(7) <p < k(7)}

We will verify in next paragraph that this partition satisfies the properties of lemma 4.1. The
choice of these specific intervals can seem quite artificial but it allows to know the exact action of
@ on each atom of the partition

¥(w.t) €Ty Tlast) = (" (@) 14+t = Y floa)

If we had only considered the partition made of the atoms C~’A, x [0, f(7)[, we would not have a
precise definition for 7 (x,t).

5.2.3. Proof of the crucial lemma 4.1. In this paragraph, lemma 4.1 is shown and proves in par-
ticular that the previous partition C is well adapted to the special flow on X. Let (’yi,pi)ogign,l
be a family of couples such that vt € I"(1) and k' (v%) < p; < k(7%). Suppose the considered atom
is a non empty atom of Vi, '5'C (otherwise the result is trivial by taking B(«a) empty).

We begin by proving the second part of lemma 4.1. Let (z,t) be an element of C7 Po N
g (-1 )Cwnq,pn_l. We denote k; = k(7). Thefequence x is of the form (vJ, - ,’yko,x’) and t
belongs to I, —2(7%). We recall that for (z,t) € Co p,:

po—2

(z,t) = [ oPo (), 14+t — Z f(o7z)

Necessarily, one has v" = (Yp _1,- "~ s TRy» Vho—pot2> "~ + Wk, )- Proceeding by induction, one finds

-1 ] -1
that x = (783 o ”7207 7]1071;04»2’ e 77]?”71 ’ x’ ) Define then o = (78) e arygov ’7]1071;04»2’ o 77]?”71)
and

B(y,p) = {t € [0, f(1°)[: 3z 5:t. (2,8) € Coopy N -+ N7 ", Y

oo NeNE =D . C Co X B(7,p) is clear.
Now we will prove the converse inclusion. Consider (z,t) an element of C

The first inclusion C
70l 1 ’Ei(nil)av"*l,pnfl-
The only thing to prove is that (X,t) = (%0, » VRy> Vho—pot2r " ,’y,?;ll,:z:’),t) is still an ele-

ment of C.o N *_(”_1%% 1., for every 2/ in {1,--- , K}. We proceed by induction and
suppose (X, t) belongs to C,o ,, 7 U- )C,YJ 1p

57 (X,t) belongs to C.j ;. As (X t) belongs to C.o

, for some j < n. We have to verify that

.z-U-be_,
40.po N Cyi-1p,_,, we have

pot-+pj—1—j—1

(X, t) = | oot trii(X), j+t — Z f(o'X)
i=0
It has already been mentioned that for all i, (v5,--, vk, _p41) = (V107270 ) (as the

considered atom is not empty). It follows that oot +Pi-1=J(X) belongs to C,;. We know that

i‘] . -
o (z,t) is an element of C.; , and as a consequence,

pottpj—1—j—1 pottpj—1—j—1

jrt= Y JEX)=jti— Y o' € Lya(y).

i=0 =0
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By induction, we find that C.o ,, M- ~.ng-(=LE =Co X B(v,p). Foreach 0 < j <n-1,

t belongs to B(’y, p) implies that:

Y P

pot-+pj—1—j—1

tely o) —j+ > floia).

i=0
The set B(v,p) is then defined as the intersection of n subintervals of [0, f(7°)[ and is in fact a
subinterval of [0, f(7°)[.

k-1
It remains now to prove upper and lower bounds on Z f (O’jOé). Recall that:
j=0
0 0 .1 1
a = (703 9 Vkos Vho—po+20 """ 0 Tk """ a’}/kn 1)

As 0 < f(y) < § for all v (finite or infinite subsequence: see inequality (18)), we have then

k—1 n—2k —2 kn_1—1
Zf (07a) < Z Z f o7y + Z (o) <n(1+e).
j=0 1=0 j=0 j=0
For the lower bound, the same kind of procedure works with a little more care. For ~°,
ko—1 ko—1
Zfoj Zfaj )>1>1—e
j=1

and for 1 <1 <n — 1, one has, using lemma 5.2,

ki—1 bo
Do F@) > 1= (e =y Dbon > 1 (24 )bo77>1*6
Jj=ki—1—pi—1+1

k—1
where the relations between ¢, 7, ag and by are defined in section 3. A lower bound on Z flo’a)
j=1
is n(1 — €). This achieved the proof of the second part of lemma 4.1.
Recall that we have defined
k—2 k—1
I"(n(1—¢€)) =< (ag, - ,a}) k> 2, Zf(O'J Y <n(l-¢) < Zf(ajo/)
Jj=1 j=1
So we have also proved that there exists o’ in I7(n(1 — €)) such that
6707}70 n--- 05_("_1)57%1,%,1 I éa’ x [0, f(vo)[
In other words, VI'-;' ‘C is a refinement of the partition (éa/ x [0, f(o/)[) (1-0)) for any
a’'eln(n(l—e

integer n, which is slightly stronger than the first part of lemma 4.1.00

Remark. As a final comment on this section, we underline again that all the proofs have been
written in the case of {1,---, K}V but can be adapted to the case of {1,---, K}~

5.3. Uncertainty principle for eigenfunctions of the Laplacian. In the previous section 5.2,
we have seen that the partitions of variable size are well adapted to the reparametrized flow (used
in the Abramov theorem). Moreover, we have given a proof of lemma 4.1 that gives a link
between the different partitions introduced. In this section, we will use the entropic uncertainty
principle (theorem 2.1) to derive a lower bound on the classical entropy of ﬁ% with respect to the
partition Cp, := ([a] x [0, f(@)[)aern(r)- Precisely, we will prove:

Proposition 5.3. Let g be a real positive number. With the notations of section 4, one has:
(40) H (n%,a;;) +H (ﬁgf ,E,;) > (1= ¢)(1 - €)|log hi| — edo|log h| + C,
where H is defined by (8) and where C,c € R do not depend on the parameters h, €, € and dy.



ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2 19

To prove this result, we will proceed in three steps. First, we will introduce an energy cutoff in
order to get the sharpest bound as possible in the entropic uncertainty principle. Then, we will

apply the entropic uncertainty principle and derive a lower bound on H (ﬁ?* , é;:) +H (ﬁ?’ ,é,;).

Finally, we will use sharp estimates from [3] to conclude.

5.3.1. Energy cutoff. Before applying the uncertainty principle, we proceed to sharp energy cutoffs
s0 as to get precise lower bounds on the quantum entropy (as it was done in [2], [5] and [3]). These
cutoffs are made in our microlocal analysis in order to get as good exponential decrease as possible
of the norm of the refined quantum partition. This cutoff in energy is possible because even if the
distributions uy are defined on T*M, they concentrate on the energy layer S*M. The following
energy localization is made in a way to compactify the phase space and in order to preserve the
semiclassical measure.

Let o be a positive number less than 1 and xs,(¢) in C*(R,[0,1]). Moreover, xs,(t) = 1 for
t| < e=%/2 and yg,(t) = 0 for |t| > 1. As in [5], the sharp /i-dependent cutoffs are then defined
in the following way:

Vhe (0,1), YneN, Ype T*M,  x™(p,h) := xs,(e "R+ (H(p) - 1/2)).

For n fixed, the cutoff (™ is localized in an energy interval of length 2e™% k! =% centered around
the energy layer £. In this paper, indices n will satisfy 2e™%0 A =% << 1. It implies that the widest
cutoff is supported in an energy interval of microscopic length and that n < Kj,|log#|, where
Ks, < 6;'. Using then a non standard pseudodifferential calculus (see [5] for a brief reminder of
the procedure from [29]), one can quantize these cutoffs into pseudodifferential operators. We will
denote Op(x(”)) the quantization of (™. The main properties of this quantization are recalled
in section A.2. In particular, the quantization of these cutoffs preserves the eigenfunctions of the
Laplacian defined by (1), i.e.

[n — Op(xX"™)on|| = O(h)|[¢n]l-

5.3.2. Applying the entropic uncertainty principle. Let |[¢y| = 1 be a fixed element of the sequence
of eigenfunctions of the Laplacian defined earlier, associated to the eigenvalue —%.

To get bound on the entropy of the suspension measure, the entropic uncertainty principle should
not be applied to the eigenvectors 5 directly but it will be applied several times. Precisely, we
will apply it to each Pty := Py, Py, (—n)yn where v = (y9,71) varies in {1,---, K}?. In order to
apply the entropic uncertainty principle to P4, we introduce new families of quantum partitions
corresponding to each ~.

Let v = (Y0,71) be an element of {1,---, K}2. Introduce the following families of indices:

In(y) = {(a') s v.d" € I"(h)},
Kn(7) :=={(8) : 8"y € K"(h)}.

Recall that we have defined v.a' = (79,71, @’) in section 3. We underline that each sequence o of
I"(h) can be written under the form v.a/ where o/ € I(v) for some « in {1,--- , K}2. The same
works for K" (k). The following partitions of identity can be associated to these new families, for
a’ € In(y) and " € Kx(7),
Tor = Poy, (nn) -+ P, (2n),
Ty = Py (—nn)--- Py (—2n).

For analogous reasons as the case of I"(h), the families (7ar)arer,(y) and (7pr)grer, (v) form quan-
tum partitions of identity.

Given these new quantum partitions of identity, the entropic principle (theorem 2.1) should be

applied for given initial conditions v = (9, 71) in times 0 and 1. We underline that for o/ € Ij;(7)
and 5/ € Kh(7)7

(41) 7~'O[/Uv_"7_[:),y = T’y‘a’U_n and ﬁ',@/PA/ = T8 ~,

where v.o/ € I"(h) and .y € K"(h) by definition. In equality (41) appears the fact that the
definitions of 7 and 7 are slightly different (see (23) and (24)). It is due to the fact that we want
to compose 7 and 7 with the same operator P,.
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Suppose now that ||Pyyx| is not equal to 0. We apply the quantum uncertainty principle (2.1)
using that
o (Tar)areln(y) and (Tp/)grek, () are partitions of identity;
e the cardinal of I;() and Kj(7) is bounded by N ~ h~%¢ where K is some fixed positive
number (depending on the cardinality of the partition K, on ag, on by and 7);
e Op(x*)) is a family of bounded bounded operators Op (where k' is the length of §');
e the parameter §’ can be taken equal to ||P,is||~'Al where L is such that Al—Fo «
pL/20-)(1=e)=cdo for o given constant ¢ (see corollary A.2);
o U is an 1sometry,
° ¢h HP w 0 is a normalized vector.

Applying the entropic uncertainty principle (2.1), one gets:
Corollary 5.4. Suppose that || Py is not equal to 0. Then, one has
hi (U™"p) + ha (¥r) > —2log (L(U") + KE=50| Py 71

where (U™ = max ( T U175, 0 (") )
(U™ wen I | 5 Op(x“" )|l

Under this form, the quantity ||P,yp||~! appears several times and we would like to get rid of
it. First, remark that the quantity c;(U ~) can be easily replaced by

42 e (U™ = max ( 7,075, 0p(x*) ) ,
(42 U= e e ([ U7 0p0C)]
which is independent of . Then, one has the following lower bound:

(43) —2log (c;(Ufn) + hL7K°||P,Y¢h||*1) > —2log (cX(Ufn) + hLiK“) + 2log HPﬂ,z/Jth.

as ||Pyys|| < 1. Now that we have given an alternative lower bound, we rewrite hz(U~"4y) as
follows:

he(U M) == > 70U Wl log |7 U™ Pypnl* + > |7 U~"s]| log || Pyl |*.
o’ €TR(7) o’ €In(y)

Using the fact that 15 is an eigenvector of U" and that (7o/)aser, () is @ partition of identity, one
has

1
T Pynl? 3 el log 7.0l + log | Pyanl |
a’ €T ()

The same holds for hz (1) (using here equality (41)):

ha (U™"py) =

~ 1
he(n) =~ O Imertinl*log mprpwnl® + log || Pyin
[Pl 2
r(v)
Combining these last two equalities with (43), we find that

(44)
= Y ImatnlPlog It tnl® = Y Il tnl*log s ol > —2(1Pyibn]|* log (ex (U™7) + A2 750) .
a'€ln () B €K (7)

We underline that this lower bound is trivial in the case where ||Pyt5|| is equal to 0. Using the
following numbers:

f()
27’6{1,~~ JK}2? f('}/)HPw’z/’ﬁn27

one easily checks that Z ey ||Pyvr|® = 1. If we multiply (44) by ¢, and make the sum
vE{l,  K}?
over all v in {1,--- , K}?, we find

= Y callratnllPloglratinl® = > collmatn]|* log|lmatnl|* > —2log (ey (U™") + RH750) .
acIn(h) BEKM(h)

(45) Crar = Cpry = Cy =
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Finally, we use that Z cal|Ta®n)|®* = 1 and Z cgllmpun|®> = 1 and derive the following
aeln (k) BEKM(R)
property:

Corollary 5.5. One has:

(46) H (ﬁ?’,@}f) +H (ﬁ%‘,@;) > —2log (¢, (U™") + BY~50) —log <maxc,y> .
B!

As expected, by a careful use of the entropic uncertainty principle, we have been able to obtain

a lower bound on the entropy of the measures ﬁ?* and ﬁg’.

5.3.3. Ezponential decrease of the atoms of the quantum partition. Now that we have obtained the
lower bound (46), we give an estimate on the exponential decrease of the atoms of the quantum
partition. As in [2], [5], [3], one has®:

Theorem 5.6. [2] [5] [3] For every 0 < K < Kj,, there exists hix and Cix such that uniformly
for all h < b, for all k + K < K|loghl,

| Pa,,U" Py

k—1

- UM Pa U Py U -+ Poy Op(x™ )| 22 (ar)

k'—1

k-1
(47) < Cxch™ 2% exp —% Zf(aja) + Z floeia) | |,
j=0 7=0

where ¢ depends only on the riemannian manifold M .

Outline that the crucial role of the sharp energy cutoff appears in particular to prove this
theorem. In fact, without the cutoff, the previous norm operator could have only be bounded by
1 and the entropic uncertainty principle would have been empty. The previous inequality (47)
allows to give an estimate on the quantity (42) (as it allows us to bound ¢, (U~")). In fact, one
has, for each v € {1,--- , K}?:

17U 750D )| = [[Pa,U" Py, -+ U"Pay U1 P, U" - P, Op(x ")),

where (ag, -+ ,ar) € In(y) and (B_g, -+ ,0B-2) € Kp(y). Using the definition of the sets
< 2

I"(h) (26) and K"(h) (27), one has k + k' < -2 |logh|. Using theorem (5.6) with K = -2

aon aon’
one has:
k—1 k' —1
o , i, 1 ; ,
7750 )| < Cch™2 =P exp | =5 | D Seloha) + Y f-(18) | | .
=2 =2

where Cx does not depend on h and c is some universal constant. Using again the definition of
the sets I"(h) (26) and K" (%) (27), one has

c (U™ =  max max (f’aU—"ﬁ*O (k) )<C~V h%(l_e/)(l_s)h_c‘so7

ol ) vE{1,+  K}? a€ln(v),BEKR(7) | S0P ) < Or

where Cx does not depend on h. The main inequality (46) for the quantum entropy can be
rewritten using this last bound and it concludes the proof of proposition 5.3.0]

1
5In the higher dimension case mentioned in the footnote of section 1.2, we should replace A~ 2 (where d is the
—1

dimension of M) by A~ “2" in inequality (47).
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6. SUBADDITIVITY OF THE QUANTUM ENTROPY

As was mentioned in section 4 and proved in section 5, the uncertainty principle gives an explicit

lower bound on

1 . - & s =
m (Hm-;(h) (/‘h+,0+ac+> + HnE(h) (/Lh ,(T_,C_)) .
To prove our main theorem 1.2, we need to show that this lower bound holds also for a fixed ng

on the quantity

L (H,, (55,548 + Hay (55 15..C

no ( no (;U'h » 0+, +) + oy, (/th » 0 — 7)> .
(as we need to let & tend to 0 independently of n to recover the semiclassical measure 7i™: see
section 4.3). To do this we want to reproduce the classical argument for the existence of the
metric entropy (see (10)), i.e. we need to prove a subadditivity property for logarithmic time as
was given by theorem 4.3. A key point to prove the subadditivity property in the case of the metric
entropy is that the measure is invariant under the dynamics (see (10)). In our case, invariance of
the semiclassical measure under the geodesic flow is a consequence of the Egorov property (2): to
prove that subadditivity almost holds (in the sense of the previous theorem), we will have to prove
an Egorov property for logarithmic times. We will see that with our choice of 'local’ Ehrenfest
time, this will be possible and the theorem 4.3 will then hold.
The proof of theorem 4.3 is the subject of this section (and it also uses results from section 7).

Remark. In this section, only the case of {1,---, K} is treated. As was mentioned, the proof of
the backward case {1,---, K}~ works in the same way.

Let ng and m be two positive integers such that que m + ng < Tg(h). One has
H (v?;t”ﬂ*la—ié, ﬁhf) —H ( mAGTiC v yrotmla—ig, EE) :
Using classical properties of the metric entropy, one has (see section 2.1)
Hininy (7,77,C) < Hu (7.757.C) + Hay (7,547,
where Emﬁﬁg is the measure defined by E’"ﬁﬁg(B )= ﬁg(ﬁ_mB) for any measurable set B. Using
proposition 6.1 and the continuity of the function zlogx on [0, 1], there exists a function R(ng, k)
with the properties of theorem 4.3 such that H,, (E, Emﬁﬁgf) = H,, (E, ﬁ%,@) + R(ng, h) and
thus:
(48) Hpiny (7,7,C) < Hu (7.757.C) + Hay (7,77,C) + R(ng, h).0
So the crucial point to prove this theorem is to show that the measures of the atoms of the ng-
refined partition is almost invariant under @™ (proposition 6.1). In the following of this section,
A is defined as: ~ ~
A=Chope M- mﬁ_(no_l)c’}/no—lapno—l'

6.1. Pseudo-invariance of the measure of the atoms of the partitions. From this point,

our main goal is to show the pseudo invariance of the atoms of the refined partition. More precisely:

Proposition 6.1. Fizv := % (< 1/2). Let m,nq be two positive integers such that m+ng <
Tg(h). Consider an atom of the refined partition A = C., 5o N---Na ("0~ 1C One has

Yng—1,Png—1"
i (07" A) =7y (A) + O(R2/9),
with a uniform constant in ng and m in the allowed interval.

This result says that the measure 7i; is almost & invariant for logarithmic times. As a conse-
quence, the classical argument (see (10)) for subadditivity of the entropy can be applied as long
as we consider times where the pseudo invariance holds (see (48)).

Let A be as in the proposition. From lemma 4.1, there exists (ap,- - ,ax) and B(«) such that

A= (CopN---07%Cy,) x B(a).
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Still from lemma 4.1, one knows that B(«) is a subinterval of [0, f()[. Moreover, from the proof
of lemma 4.1, the following property on « holds:

(49) 1—e<ZfaJ ) < no(1 + ).

The plan of the proof of proposmon 6.1 1is the following. First, we will give an exact expression
in terms of o and B(«) of 71y ( mA) Then, we will see how to prove the proposition making
the simplifying assumption that all operators (P;(kn)); » commute. Finally, we will estimate the
error term due to the fact that operators do not exactly commute.

6.1.1. Computation of ph( ~™A). We choose a positive integer m. As a first step of the proof,
we want to give a precise formula for the measure of =™ A. To do this, we have to determine the
shape of the set 3™ A. Let us then define:

p—2 p—1
i;n =<¢(z,t) €X Zf(aja:) <m+t< Zf(ojx)
j=0 =0

We underline that because m > 1, we have that f;n is empty for p < 3. One has then ¥ = |_| b))

p>3
and as a consequence
e A = || (i;” m&*mA)
p=>3
p—2
= |_| (.T,‘,t)Ez;nIm—|—t—Zf(O']$)EB(&),(a?p_l,---,pr+k_1)=()é
p>3 j=0

Note that ¢t € B(y) — m + Z?;g f(o7x) together with (z,_1, -+ ,Zprk—1) = « imply that
Z?;g (0lz) <m+t< Z?;é f(oiz). Tt allows to rewrite

A= [{(@,t) €D xRL:0<t < f(x),t € Bla m+ZfUJ (Tp_1, > Tprk1) = @

p>3

Finally, one can write the measure of this suspension set

Tin (7 "A) = 3 6.0 ()| Py, (k4p=100) Psy,, (k+p—2)n) - - Payton|?,
p>1 Bl=p+k
(Bp—1s-"+ s Bptr—1) =
where
p—2 . p—2 .
cpa(m)=Leb [ Bla)N[m—>_ f(o'B),m—=> f'B)|/ S D
j=0 j=1 v e{l, -, K}?

For the sake of simplicity, we will denote A the normalization constant of the measure, i.e.

A= > R (D

Y E(L - K2

We underline that the sum defining 7y ( mA) has a finite number of non vanishing terms.
Moreover, there are at most 2by/ap non zeros terms in each string 3 (as ce o(m) is zero except
a finite number of times). For simplicity of the following of the proof, we reindex the previous
expressions

(50)

72 7_mA Z Z Cﬁya(m)”Pﬁk((k"i_p_1)77)Pﬁk—1((k+p_2)77)"'Pﬁ—p+1wﬁ”27

p=>3 Bl=p+k
Bo, 5 Br) =«
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where cg o (m) = A Leb (B(a) N[m— Zf;g (698),m — Z?;f (ajﬁ)[) with \ defined as previ-
ously. We underline that for a given word 5 := (Bk, -+, 01), f(B) := f(Bk, Br+1). Then, to prove
proposition 6.1, we have to show that the previous quantity (50) is equal to

A Leb (B(Oé)) ||P06k (kT,) e Pag¢h”%2 + OLz (h(l—Qu)/G).

6.1.2. If everything would commute... We will now use our explicit expression for 7y ( mA)
(see (50)) and verify it is equal to 713 (A) under the simplifying assumption that all the involved
pseudodifferential operators commute. In the next section, we will then give an estimate of the
error term due to the fact that the operators do not exactly commute. In order to prove the
pseudo invariance, denote

Kn(a) :={8=(B-ps1,--,0k) : (Bo,--+,Bk) = a,cp,a(m) # 0}
and
Kgg)(a) = A{Bgr1, 5 Be) Iy = (Vepr1, 5 Y—g) 88 ¢ <p, 7B € Kip()}.
With these notations, we can write (50) as follows:

G1)  m @A) = > cpa(m)|manl? Z > cg.a(m)||75vn]%.

BEKm () p=3 BEKm (a):|Bl=k+p

Recall that by definition (see (23)) 73 := Pg, ((k +p — 1)n)Ps,_,((k+p —2)n)---Ps_,,. For
simplicity of notations, let us denote B(«) = [a, b[ (where a and b obviously depend on the atom
of the partition C we considered). A last notation we define is for 3 such that |3| = k + ¢ and
o118 =
-2
(52) Cs.0(m) := X Leb | [a,b]N[a,m — Y f(a?B)[],

J

2

I
o

where ) is the normalization constant of the measure previously defined. We underline that the
interval B(y) = [a,b] can be divided in smaller intervals (see the definition of cg(m)). The
number c¢g o(m) corresponds to the length of one of this subinterval (weighted by A) and €3 o(m)
corresponds to the sum of the lengths of the first intervals. Suppose now that all the operators
(P;(kn))ir commute. We have the following lemma:

Lemma 6.2. If all the operators (P;(kn));, commute, then one has, for 2 < q < N:

> cpa(mlmstnl® + Y0 Cpalmlmsvnl®= Y Csalm)|meval.

BEKm(a):|Bl=k+q BEKL (a) BEKS ()

Proof. Let 2 < g < N. Consider 8 an element of Kfr‘f*l)(a). Using the property of partition of
identity, we have

Yo Csalm)Tanl® = Z ST Tpa(m)|Pi(—n)mavn]®.

Bek™ (a) = ger(iT (a)
For each 1 <i < K, we have the following property for ¢; g o(m) (as f > 0):
e8,a(m) =Tiga(m) + cipalm).

We can write then

Y alm)lmsvnl? Z Y (@palm) +cipa(m)| Pi(=n)msnll®.

peR (@) = ek ()

Notice that, as we have assumed the operators commute, we have

(53) Pi(=n) P ((k+q—2)n) - Ps_,,ton = Pg,((k+q—1)n) - Ps_, ., Pi(—n)n.
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As a consequence, we have

Y Calm)lsvnl’ Z Y (@isalm) + cipa(m)lTsPi(=n)vnl*.

BeKI™ (a) =1 ek {17 (a)

By definition of the different sets K,, and as 1y is an eigenfunction of the Laplacian, this last
equality allows to conclude the proof of the lemma. O

Proceeding then by induction (as in lemma 5.1) from N to 1 (see equality (51)) and using the
previous lemma at each step, we can conclude that if all the operators commute,

min (7 A) =, (A).

6.1.3. Estimates of the error terms. Regarding to the previous section, we have to see what is
exactly the error term we forgot at each step of the recurrence and we have to verify that it is
bounded by some positive power of . Precisely, we have to understand what is the error term in
equation (53) if we do not suppose anymore that all the operators commute. Precisely, the error
term we have to take into account in (53) is

k

Rﬁ’%ﬁ = Z Pﬁk((k +q- 2)7’) T Pﬁj+1((j +q- 1)77)Rj(/877)P,3j71((j +q— 3)77) T Pﬁ—q+2¢ha
Jj=—q+2

where R’(3,7) = [Py(—n), P, ((j +q—2)n)] is the bracket of the two operators. We denote Ré h
each term of the previous sum. The error term we forgot at each step ¢ of the induction in the
previous section is then

K
(54) E(hag):=Y > (Raqn Py(=n)7s0n) + (TaPy (=), R yn)) -

y=1 ﬂeK,(,‘f*l)(a)

So, for each step g of the induction, if we want to prove the pseudo invariance of the measure, a
first error term we have to estimate is of the form

k K
(55) S Y Galm) (R Pym)matn).
I=Ta2= gek (i (o)

Using Cauchy Schwarz inequality twice and the fact that 0 < g o(m) < ALeb(B(7)) < Abon, this
last quantity is bounded by

k K k K
56)  Aoon | Do > > R, LIP S > T IP (-t

I=maR2 = gk (o) i==at27=1 ge g7 (a)

N
Nl

The last factor of the product is bounded as

k K
o > P wrtnlP < k+ 9K > lmavnl* = (k+q)K = O(| logh]).

J==a+27=1 ge g (a=D (o) |Bl=k+q—1

We also underline that \bgn is bounded by bg/ag. As a consequence, the error term (56) is bounded
by

k K
Clloghl* | 37 3> >0 IRh.l7]

Jj=—q+2~y=1 ﬁer,‘{’l) ()

where C' is some positive uniform constant (depending only on the partition and on 7). We extend

now the definition of R’(/3,v) (previously defined as [P, (—n), Pg, ((j+q¢—2)n)] for § in Kr(,fffl)(a))
to any word (3 of length k + ¢ — 1. If j + g — 1 letters of § are also the j + g — 1 first letters
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of a word 8 in K,g‘f_l)(a), we take RY(83,v) := [Py(—n), P3,((j + ¢ — 2)n)]. Otherwise, we take
RI(B,7) :=h Idz2(ary- We define then for any sequence of length £ + ¢ — 1

Ré;y,h = Pﬁk((k +q - 2)77) e Pﬁj+1((.j +q— I)U)RJ(BaV)PﬁJ71((.] +q - 3) ) Pﬁ q+2¢
In theorem 6.3 from the section 6.2, we will prove in particular that for every (3 of size g + k — 1
and for each —g+2 < j <k,
(57)
1R (B,7)Ps,_, (G +a=3)n) -+ Po_, n¥ull2ary < Ch 2 ||Ps,_, (G +a—3)n) -+ Ps_, ¥l L2y,

where C is a uniform constant for the considered words® and where v < 1/2 (defined in section 7).
We underline that the bracket R7(,v) of the two operators is of order O(h'~2") because we have
made a phase space localization thanks to the operator Ps, , ((j+¢—3)n)---Ps_,,,. Theorem 6.3

q+2
can be applied as Zk+q 2 £(678) < (ng+m)(1+¢) < np(h) (see (49) and (52)). Using bound (57)
and the property of partition of identity to bound all the remainders appearing in (57), we have

> B, ulP =00,
|Bl=k+q—1
The error term (56) (and as a consequence (55)) is then bounded by

1

k K 2
~ ; 1-2
Cllogh | >, > > IRl =00,
j=—a+27=1|B|=k+q—1
Looking at equation (54), we see that the other error term for the step ¢ of the induction can

be estimated with the same method and is also a O(h = ). As the number N of steps in the
induction is a O(]log fi|), the error term we forgot in the previous section (due to the fact that the

operators do not commute) is a O(hl%zy ). This concludes the proof of proposition 6.1.00

6.2. Commutation of pseudodifferential operators. In order to complete the proof of the
pseudo invariance of the measure (proposition 6.1), we need to prove inequality (57). It will be a
consequence of (59) below. Once we have proved this inequality, the subadditivity property will
be completely proved. The exact property we need is stated by the following theorem:

Theorem 6.3. Fiz v := # (< 1/2). Let (y0,- -+ ,vk) be such that

(58) Zf (077) < np(h).
One has:
(59)
’|[P7k(kn)?P70]P7k—l((k_1)77).. wﬁHLz <C ((k_l)n)"'P’h(n)whHLz’

where v < 1/2 is defined in section 7, C is a constant depending on the partition and uniform in
all 7y satisfying (58).

In this theorem, we underline that there are no particular reasons for the bracket [P, (k7n), Py,]
to be small: it will be in fact small thanks to the phase space localization induced by the operator
Py (k=1)n) - Py, (n).

k(v)-1
Let «y be a finite sequence as in the previous theorem. Denote ¢(~y Z f( U] . This quantity

is less than ng (%) in the setting of theorem 6.3. There exists a umque 1nteger I(v) < k() such
that:

U(v)—2 _ (’y I(v)—1
J < J
;:0 ') < =5 §j /o

61t means for every word that will appear when we consider any integer m and any initial atom A as in
proposition 6.1.
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In the following, the dependence of [ and k in « will be often omitted for simplicity of notations
and will be recalled only when it is necessary. This definition allows to write the quantity we want
to bound

H [PWk (kn>7 PVO] P’Yk—l ((k - 1)”) T PM (n)whHLz
in the following way:
(60)
[Py ((k = 14 1)m), Pog (=1 + 1)i)] Py, (k= D)) -+ Py () Py, -+ Poy (=1 + 2)0)t0n |

The reason why we choose to write the quantity we want to bound in (59) in the previous form
instead of its original form is to have a more symmetric situation for our semiclassical analysis.
To prove the bound in theorem 6.3, a class of symbols taken from [12] will be used (see (77) for
a definition) and results about them are recalled in appendix A. Before starting the proof, using
proposition A.3, we can restrict ourselves to observables carried on a thin energy strip around the
energy layer £7. It means that the quantity we want to bound is the following norm:

(61)

[P0 = 14 1), oy (4 )] P (= ) Py )Py - Py (<L 2}

where P; is now equal to Oph(PZ-f ), where P/ s compactly supported in T7%Q; N 9 (see proposi-

(2

tion A.3). We underline that we have (61) = (60) + O(h*>°).

)

L2

6.2.1. Defining cutoffs. If we consider quantity (61), we can see that because we consider large
times k7, we can not estimate directly the norm of the bracket | Py, ((k — I + 1)1), Py, ((~1 + 1)1])}

as there is no particular reason for P, ((k—1I+1)n) and P, ((~I+1)n) to be pseudodifferential op-
erators in a nice class amenable to symbol calculus. However, the quantity we are really interested
in is the norm of this bracket on the image of P, ((k—1)n)--- Py,(n)Py,_, -+ Py, (=1 + 2)n).
So we Will introduce some cutoff operators to localize the bracket we want to estimate on the
image of P, ((k—1)n)--- P, (n)Py,_, --- Py, _, ((—1+2)n). Then, as was discussed in section 1.2,
we will have to verify that it defines a particular family of operators for which the Egorov theorem
can be applied for large times.

First, we introduce a new family of functions (Q;)X ; such that such that for each 1 < i < K,
Q; belongs to C®(T*Q;NEY),0<Q; <1and Q; =1 on suppPif. We then define two cutoffs
associated to the strings (y1,---,v-1) and (v, -+, Vk—1):

(62) Qoo = Qo0 g D1 Q o
and
(63) Qu oy = Qr 00" Q0 gt b,

The first point of our discussion will be to prove that Egorov theorem can be applied for large
times to the pseudodifferential operators corresponding to these two symbols.

We prove the Egorov property for @, ;... ,, for example (the proof works in the same way for
the other one). Recall that one has the exact equality, for a symbol a:

(64) U~ 0py,()U" — Opy (a(t)) = /0 U=+ (Diffa'~*)U* ds,

where a(t) := a o g* and Diffa := %] TA Opy(a(?))] — Opr({H,a(t)}). Here, we will consider
—y

7
2[-
a:=Q~, 4, Onehas, for 0 <t < (k Dn:
Qv (t) = Qe © g' = Qy, © g—(k—l)n+t Qe 0 g "t

There exists a unique integer 1 < j < (k — ) such that ¢t — jn is negative and ¢t — (j — 1)n is
nonnegative. This allows us to rewrite:

Q’)’k—h"' R (t) = (Q’)’L © gi(kilij)n T Q'mq) © 97jn+t (Q'mﬂ'ﬂ c Q"/k—l © 9(]‘72)”) © gi(jil)n+t~

Using the last part of theorem 7.1 and its subsequent remark, we know that @, og—(k=l=dm ... Q~,
and Q,_, - Q,_, gU=2" are symbols of the class S, >° (see the appendix for a definition
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of this class of symbols), where v := %. Moreover the constants in the bounds of the
derivatives are uniform for the words v in the allowed set (see theorem 7.1 and proposition 7.3).
As —np<t—jn<0<t—(j—1)np<nand as the class S, > is stable by product, we have then
that Q, ... 4, (t) is in the class S, >0, for 0 < ¢ < (k — [ 4 1)n, with uniform bounds in ¢ and
7 in the allowed set. As, in [5], we can verlfy that DiffQ?, | .. isin ¥, °*~! and then apply
the Calderén-Vaillancourt theorem for W, >2*~1 Ag a consequence, there exists a constant C
depending only on the family @; and on the derivatives of ¢* (for —n < s < 5) such that

(65) VO<t<(k—1+1)n, [I0py(Qy s )(t) = OPR(Quyio o )l cz2ary < OB 2

As we mentioned it in the heuristic of the proof (section 1.2), taking into account the support
of the symbol, we have proved a ’local’ Egorov property for a range of time that depends on the
support of our symbol. Precisely, we have shown that the Egorov property holds until the stopping
time defined in section 5.1.

6.2.2. Proof of theorem 6.3. Before proving theorem 6.3, we define (in order to have simpler
expressions):

wg = P’Yk—l ((k - 5)77) o 'p’n ((_l + 2)77)1/1h-
To prove theorem 6.3, we need to bound quantity (61) and precisely to estimate (61), we have to
estimate:

(66) (61) = || [Pro (=1 + 1y, P (k= 1+ 1] 43

L2(M)

Now we want to introduce our cutoff operators Op;(Q.) in the previous expression:

o (=4 Dm) Py (b = 14 1) = Poo((—1 4+ 1) (P = (P OPa(Qu s o)) (6 = 14 1))
(P OBA( Qo)) (e = L 1)

We will first estimate the norm
| P (=14 1) (B, = (P OP(@s o)) (e =1+ 1)) 33

We can apply the strategy of the previous section to prove an Egorov property for the operator
Ops(Qnyy 1, p)- S0, up to a Opz (A=), Opp(Qay e ) (kK — 1+ 1)) is equal to the following
pseudodifferential operator in W;;°0

Opy, (Q'Yk'—h‘" i © g(kiHl)n)

supported in g="7T*€,, N--- ﬂg_(k_l'*‘l)"T*Q% N&Y. Using then theorem 7.1, the following holds:

(10— 0p (@ 0 0 7) ) Pry (k= D) P (<1 2 = Opa ()

Even if the proof of this fact is rather technical, it is intuitively quite clear. In fact, if we suppose
that the standard pseudodifferential rules (Egorov, composition) apply, P, , (k—0)n)--- Py, ((—I+
2)n) is a pseudodifferential operator whose symbol is compactly supported (modulo O(A*)) in
g1 N ngt=RmTHQ.  NEY. On this set, by definition of the cutoff operators (Q; = 1
on supp(P;)), (1 — Qqy_, ... 5 © g* =11 is equal to 0. As a consequence, we consider the prod-
uct of two pseudodifferential operators of disjoint supports: it is Op2(A>°). The statement of
theorem 7.1 makes this argument work. To conclude the previous lines of the proof, we have
(67)

[ 2o 1m) (P = (PoOpr(@u o) (= 0 w3, < ORI 07 2 ar

200

Performing this procedure for the other operators, we finally obtain that the only quantity we
need to bound to prove theorem 6.3 is the following quantity:

68)  ||[(POPa( Qs (U = L 1), (P 0P Qs ) (=1 + D) |

L(L2(M))
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Using the property of the product on ¥, we know that, up to a Op2(h'~2¥), the previous
quantity is equal to

| [0Pa(P], Qs ) (k= 14 1), Op (P Gy ) (<1 )|

Using the same method that in the previous section (which uses theorem 7.1), we can prove an
Egorov property for the two pseudodifferential operators that are in the previous bracket and show
that, up to a Or2(h'~2¥), the quantity (68) is equal to

| [OPH((P], @i ) 0 g5 H9), 0D (P Qs ) 0 907

L(L2(M))

H[:(LQ(M)) '

Using the pseudodifferential rules in W, >°(M) (proceeding as in the previous section, the two
symbols stay in the good class of symbol using theorem 7.1), we know that the previous bracket is in
U-o02v=1 Using the Calderén-Vaillancourt theorem, we know that quantity (68) is a Oz (A=),
where the constant depends only on the partition. This concludes the proof of theorem 6.3.00

7. PRODUCTS OF MANY EVOLVED PSEUDODIFFERENTIAL OPERATORS

The goal of this section is to prove a property used in the proof of theorem 6.3. Precisely,
the following theorem states that the product of a large number of evolved pseudodifferential
operators remains in a good class of pseudodifferential operators provided the range of times is
smaller than the ‘local’ Ehrenfest time. First, recall that using proposition A.3, we can restrict
ourselves to observables carried on a thin energy strip around the energy layer £°. We underline
that we do not suppose anymore that this thin energy strip is of size A'~°: we only need to have a
small macroscopic neighborhood of the unit energy layer. Moreover, the class of symbols we will
consider will be the class S, (see (77) for a precise definition) with v := # (< 1/2, see
section 4).

Theorem 7.1. Let (Q;)E | be a family of smooth functions on T* M such that for each 1 <i < K,
Q; belongs to C(T*Q; N EY) and 0 < Q; < 1. Consider a family of indices (vy1,--- ,7) such that

-1
> ) < nEZ(h) :
j=1

Then, for any 1 < j <1, one has
Opp (@) Opp (@2 ) (=n) -+ Opp(Q~, ) (= (5 — 1)) = Opy, (A7) (=) + Or2(h*),

where AV s in the class S;;°°°. Precisely, one has the following asymptotic expansion:

AV E hPAglv“‘v’)’j,

p=>0

where A} is in the class S °%%PY (with the symbols semi norm uniform for ~ in the allowed
set of sequences and 1 < j < I: see proposition 7.3) and compactly supported in g="T*,, N
oo g7IT*Q,, N EY. Finally the principal symbol A" is given by the following formula:

Agl’m i Q%‘ ogh--- Q-+, © g(jfl)nQvl ° gjn.

Remark. We underline that the asymptotic expansion (except for the order 0 term) is not in-
trinsically defined as it depends on the choice of coordinates on M. We also remark that this
theorem holds in particular for the smooth partition of identity we considered previously on the
paper. Note also that the the result can be rephrased by saying that Op;(Q-,)(j7)Ops(Q~,)((J —
1)n) -+ Opx(Q+,)(n) is, up to a Or2(h>), a pseudodifferential operator of the class ¥, >? and
of well determined support. As we also have to consider ‘past’ evolution, we mention that we
can also suppose Zé;ll F(v:7541) < "ET(E) Under this assumption, we would have proved that
Ops(Q4,) (= O0ps(Q~,)(—=(F — 1)n) - - Opp(Q~, ) (—n) is, up to a Or2(h*°), a pseudodifferential
operator of the class ¥, >V and of well determined support. These are exactly the properties we
used in section 6.2.
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The plan of the proof is the following. First, we will construct formally A7 % and its
asymptotic expansion in powers of . Then, we will check that these different symbols are in a
good class. Finally, we will check that these operators approximate the product we considered.
For simplicity of notations, we will forget (for a time) the dependence on v and denote the previous
symbol A7 for [ > j > 1.

7.1. Definition of A", In this section, we construct formally the symbol A7. The way to
do it is by induction on j. First, we will see how to define formally A7 from A7~'. Then, using the
formulas of the previous section, we will construct the formal order IV expansion associated to this
AJ. We only construct what the order IV expansion should be regarding to the formal formulas.

7.1.1. Definition at each step. To construct A7, we proceed by induction and at the first step, we
consider Op;,(Q-,) and we write it into the form Opp(A')(—n). This means that we have defined
formally for 0 <t < n:
Opn(A' (1)) = U™ Opi(Q,,)U".

Using Egorov theorem for fixed time 7 and the corresponding asymptotic expansion (see sec-
tion A.3.2 for explicit formulas of the asymptotic expansion), we prove that, up to a Op2(h>),
Op;(Q-,) is equal to Opy,(A'(n))(—n), where Al(n) is in S7°Y given by the asymptotic expan-
sion of the Egorov theorem and supported in g="777(, N &Y. We can continue this procedure
formally. At the second step, we have

Op5(Q+,)0Py(Q42) (1) = U"Opy (A (1)) Opp(Q+; ) U "

We want this quantity to be of the form Op,(A2(n))(—2n). This means that we have defined
formally for 0 < ¢ < n:

Opp(A%(t)) == U""Opp(A" (7)) Ops(Q,)U".

Using rules of pseudodifferential operators (see section A.3.1 and A.3.2), we can obtain a formal
asymptotic expansion for A?(n) (see next section) starting from the expansion of A(n). One can
easily check that this formal expansion is supported in g="7*Q,, N g~ 21T*Q.,, N &Y. Following
the previous method, we will construct a formal expansion of A7(t) (for 0 < t < ) starting from
the expansion of A771(n) (see next section). To do this, we will write at each step 1 < j <1,

(69) Opy,(A7(1)) := U™ Opy (A7 (n))Opy(Q-,)U".
We also introduce the intermediate operator
(70) Opy(A”) := Opy (A7~ (1)) Opp(Qy, )-

With this definition, we will have
Opy (A7 () (—jn) == (Op4(A7 (1)) Opx(Q~,)) (= — 1)) -

Using again rules of pseudodifferential calculus (see section A.3.1 and A.3.2), we can obtain a
formal asymptotic expansion for A7(t) (see next section) starting from the expansion of A47=1(n).
One can easily check that this formal expansion is supported in g~ * (T*Q,, N---N g /1T*Q,, )NET.
In the next section, we will use the induction formula (69) to deduce the h-expansion of AJ(t)
from the expansion for the composition of Op,(A7~!(n)) and Op,(Q,) and from the expansion
for the Egorov theorem for times 0 < ¢ <1. At each step 1 < j <[ of the induction, we will have
to prove that A7 stays in a good class of symbols to be able to continue the induction.

7.1.2. Definition of the order N expansion. We fix a large integer N (to be determined). We study
the previous construction by induction up to O(RY). From this point, we truncate A’(t) at the
order N of its expansion. First, we see how we construct the symbols A7(¢) by induction. To do
this, we use the formulas for the asymptotic expansions for the composition of pseudodifferential
operators and for the Egorov theorem (see section A.3.1 and A.3.2). Suppose that

N
AT ) = WAL (n)

p=0
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is well defined, we have to define the expansion of A7(¢) from the asymptotic expansion of A771(n),
for 0 <t <. First, we define:

N P
(71) A .= Z hPA;, where A; = Z (Aiii(ﬁ)ﬁMij)r-

p=0 r=0
The symbol iy, represents an analogue on a manifold of the Moyal product (see appendix A.3.1):
(afiarb), is the order p term in the expansion of the symbol of Opy(a)Op,(b). Recall from the
appendix that (Ag,:(l]
and on the (Q;);) of the derivatives of order less than ¢ of Aﬁ;}l(n). Using proposition A.4 in
appendix A.3.2, one has the following order N — p expansion, for the symbol of the operator

U~t0p, (AU,

famQ,;)q is a linear combination (that depends on the local coordinates

. N-op .
A; = Z hkA;,k(t),
k=0

where A;,o = A; og' and A;k(t) = ;:01 fot {H, A;l(t — s)}M (g°(p)) ds. Then, we can define

AJ(t) using these different expansions. Precisley, we define
AI(t) :=> " hPA)(t) where, for 0 <p < N, AJ(t):= > A, (t).
p=0 q=0

This construction is the precise way we want to define the asymptotic expansion of the symbol
AJ(t) in theorem 7.1. If we want the theorem to be valid, we have to check now that the remainders
we forget at each step are negligible (with an arbitrary high order in #). To do this, we will first
have to control at each step j the derivatives of A7(t) (see next section).

Remark. The support of A7 (t) is included in g=* (T*Q,, N -+~ N g~U=D1T*Q, YNE? as the support
of every Z;k(t) is.

Finally, we underline that, according to our construction, A{;(t) can be written as follows:
(72)

‘ . p ) p q—1 ¢ . (@.0)
A1) = (A) (Qx, ) 09"+ (A 160 Qs )rog' + DY /0 (B =9} (5" () ds
r=1 g=11=0

For the following, we need to know precisely on how many derivatives of A7~! depends A7. We
analyse the three terms of the previous sum separately:

e the first term is explicit and it depends linearly on A{fl;

e according to appendix A.3.1, the second term depends linearly on (aaAZivlﬂ)lfrnga\Sr;

e according to corollary A.5, the third term depends linearly on (8“2;7(1)1@3,7‘&52(1 and

consequently, according to appendix A.3.1, it depends linearly on (8°‘A§;i)1§,§p7‘a|§2,..

7.2. Estimates of the derivatives. The goal of the first part of this section is to prove the
following lemma.

Lemma 7.2. Let N be a fized integer. Fiz also two integers 0 < p < N and m < 2(N —
p+1). Then, there exists a constant C(m,p) such that for all j > 1 and for all p in the set
g (T, N Ng= U1 ) N EY,

VO <t <, |dTAY(L p)] < Cm,p)j T H dygt UM,

If p is not in this set, the bound is trivially O by construction. Here the constant C(m,p) depends
only on m, p, the atlas we chose for the manifold and the size of the (€2).

Once this lemma will be proved, we will check that it also tells us that the A;’s are in a nice
class of symbols.
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7.2.1. Proof of lemma 7.2. To make all the previous pseudodifferential arguments work, we will

have to obtain estimates on the m-differential forms dmA{), for each m < 2(N + 1 —p). If we have

estimates on these derivatives, we will then check that all the asymptotic expansions given by the

pseudodifferential theory are valid. To do these estimates, we will have to understand the number

of derivatives that appear when we repeat the induction formula (69). The spirit of this proof is

the same as in [5] (section 3.4) when they iterate the WKB expansion K|log A times. We define

a vector A’ with entries Aszm)(t’p) = dyr Al (t) (where 0 < p < N and 0 <m < 2(N —p+1)).

Precisely, we order it by the following way, for 0 <t <mnand p € T*M,

(A}, dAY, - d>N+D AT

] ] Aj dAj___ dZNAj

A]:Aj(t,p) = 1 1 ) 1
Al dAN d2AY).

The induction formula (72) of the previous section can be rewritten under the following form

(73) Al(t,p) = (A7 ()Qy,) 0 g'(p) + L7 () (AT~ () (p),

where L7 (t) acts linearly on Afp . m)( 1), where ¢ > 1 and m < 2q. We underline that this linear

application depends on derivatives of ¢g® for 0 < s < 5, on the choice of the coordinates and on
the maps @Q;. We would also like to have an expression for dj' AJ(t) for m < 2(N +1 —p). To do
this, we start by writing that for an observable a, one has

dmaog Zdt a.Omi(t, p),
I<m

where 0, (¢, p) sends (T,T*M)™ on (T,:,T*M)'. We can write the explicit form of 0,,

m
Om,m(t, p) == (dpg")
Using these relations, we can rewrite the induction formula (73) as follows:
AJ(t) = (M (t) + M () + M5 (£) AT (),
where an exact expression of M% is given by
(M%Ajfl)(p oy (P) = Qs (9'p) X AL (1,9°0)-Orm (2 p)-

In particular, Mg is a diagonal matrix. We will not give explicit expression for the two other
matrices. We onlylneed to know that the matrix Mj(t) relates AJ, (t) to (A;;l(n))K'm and
that the matrix MJ(t) relates A (t) to (A77'(n))g<p. Precisely, we obtain the matrix Mj(t) by

differentiating the first term in the right hand side of (72) and the matrix M (t) by differentiating
the two other terms. Iterating the induction formula, one then has:
2

A(ty= Yy ML (OML () MZ (n)A ().

€2, ,EJ'ZO

From this expression, one can estimate how many terms contributes to the definition of AJ

(p,m)”
For instance, suppose that |[{j':e€;; =2}| > p, the contribution of such a string of matrices to
Azp m) is 0 (using the nilpotence property). We can also give an upper bound on the number

of terms of type M in string of matrices that contributes to Ajp )+ Yo do this, we underline
that the action of a matrix of the type M7 add a block equal to 0 at the begining of every A7
(as it is nilpotent). In particular, consider a given block A¥ of the form (0,---,0,%) (where the
(lp — 2p'p) first terms are equal to 0). After the action of a series of M7 (say l;) and of M
(in any order), we get a p-block of the form (0,---,0,x*), where the (Ip + Iy — 2p’p) first terms
are equal to 0. On the other hand, we know that, if A7 := M%(n)A7~!, then the term of order
(p,m) depends only on (AZ71) <, 1 r<2(p—g)+m. S0 after the action of a matrix M3, the p-block

q,r
is still of the form (0,--- ,0, ), where now only the (lo +1; — 2(p’ + 1)p) first terms are equal to
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0. By an immediate induction, we find that the contribution of a string of matrices to Ag),m is0
if [{7"c ey =1} = 2p[{5" 1 ¢y = 2}/ > m. ,

As a conclusion, the product of matrices that contributes to the expression of A% m) €an only
be non zero if |{j’ : € =2} < p and |{j' : e =1} < m+2p|{j’ : ¢, =2}|. As a consequence,
for large j, to be non zero, a string of rnatrices need to be made of at most (N + 1)2 matrices
of the form M? (for e € {1 2}). Finally, we need to compute the number of string of matrices
that contributes to a given A(p )" To do this, we consider the set of symbols {(e1, - ,ex) : k <
m + 2p%, ¢; € {1,2}}. For a given (e1,--- ,€x) in this set, the number of ways of putting these
symbols in a string of length j is bounded by j*. Moreover, we know that there are at most
2% sequences of length k. These two remarks implies that the number of string of matrices that
contributes to a given Agp, ) is bounded by Zm+2p (2j), which is a O((2j)™+20"+1),

Then, to estimate the norm of the derivatives of 47, we should look how the different matrices act.
First we study the action of the diagonal matrix. As 0 < Qw < 1, one has that, for 0 < ¢t <7 and
for any p € g~ (T"Q,, N---Ng=U=U17*Q, ) N EY (otherwise the following quantity is clearly
equal to 0),

IMATL (1 0)| < Idpg' ™ |ATE (1,9 (o).
We note that we can iterate this bound and find, for any j and j' in N, we have, for any 0 < ¢t < 7,

M MALL (1 )| < [dog" AL (0,67 ().

Now, using the fact that for every iteration, we consider a fixed interval of time [0, 5] and the fact
that the set of observables (Q;), is fixed, we get that there exists a constant C(m, p) such that,
for e € {1, 2},

sup |[MZA7~

j—1
i (®)llze < C(m, p) max max [[Ag .|z

(p, Tn)
The only thing we need to know is that the constant depends only on m, p, the manifold, n, the
coordinate maps and the partition. The difference with the action of the diagonal matrix is that
we have constant prefactor that can accumulate and become large (without any precise control on
it).

These different observations allow us to prove lemma 7.2. In fact, by construction, the total
number of derivatives of g* that appears in the definition of A( m)( ) is bounded by m + 2p.
Moreover, a given string Mg (t )MgJ L (n)---M2 (n) is made of long string only made of matrices
of the form Mg (n) and of short strings of matrices of the form M (n) (where € € {1,2}). We know
that only the long strings made of M{(n) will contribute to make the norm of a given Azp m) (t)

explodes and as we know that the number of derivatives involved is bounded by m + 2p, we have,
for any p € g~ (T*Q, N---Ng= U~ ) N EY,

‘(Mi’ (ML, () - M2, () A () <p>\ < C'(p,m)ldyg 0N | A ()]

(p,m)
Finally, the number of matrices that contributes to the (p,m)-term of the vector A/ is bounded
by O((25)™+2P*+1). It gives that, for any p € g~ (T*Q,, N---N g~ U~D1T*Q, ) N €Y,

~ -m 2 j— m
(AL (1 p)] < Cp, m) ™| d gt G= Dm0 AT () O

7.2.2. Class of symbol of each term of the expansion. Using the previous lemma, we want to show
that AJ(t) is an element of S,°>%". Let p be an element of g~* (T*Q% N---N g_(j_l)"T*Q%) N
&Y. Using the fact that E* is of dimension 1, we get that there exists a constant C' such that, for
any positive ¢ and any p in €%, |d,gt| < CJ**(p)~1, where J*“!(p) := det (d9|_Etu(gtp)) . Then we

can write the multiplicativity of the determinant and get

U0 () = JH ()T (g p) JUN g Mp) o T (g 2)
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Remark. Before continuing the estimate, let us underline some property of the Jacobian. Suppose
S is a positive integer and 1/n also (large enough to be in our setting). We have, for all 0 < k <

1/77 - 17
T4 (g*p) T (g" R p) - T (g5 TR p) = T (gh M p) T (g p) g (g5 RN ),

where J*(p) is the unstable Jacobian in time 1 that appears in the main theorem 1.2. We make
the product over k of all these equalities and we get

T (p)" T (g"p)" -+ T (g% p)" < C(n) T (gp) T (g p) -+ T (g% "p),
where C(n) only depends on 7 and does not depend on S.

Finally, using previous remark and inequality (19), the following estimate holds, for p in
gt (T*QW N---N g_(j_l)"T*Q%) nee’:
|dog" I < C(n)e? M0 T (5, 75-1) T T (Vi1 vi—2) T T (2, ) T
with C(n) independent of j. Then, one has
|dpgt+(j*1)n| < C(n)el(v)enaoet(v)7

where t(y) = Zé;% F(vj+1,75)- As t(y) < ng(h)/2, this last quantity is bounded by heTt e (as
I(7)aon < ngp(h)/2). Using lemma 7.2, we want to estimate the m derivatives of the symbol AJ.
According to the previous paragraph, they can be estimated up to order 2(N 4+ 1 — p). To get a
control on an arbitrary order m, we can fix a large N such that m < 2(N — N) and use the result
of the previous section for this N. Finally, we have, forp < N,meNand 0 <t <,

(74) ™ AL (1, )| < Cm, p)R™+20) (529,

Here appears the fact that we only apply the backward quantum evolution for times ! (we also
used the fact that j = O(|loghl)). In fact, as we want our symbols to be in the class S, >,
we need derivatives to lose at most a factor A~/ (this would have not been the case if we had
considered times of size ng(h) instead of size ng(h)/2). The previous estimate (74) is uniform for
all the ~y in the allowed set of theorem 7.1.

Finally, to summarize this section, we can write the following proposition:

Proposition 7.3. Let p and m be elements of N. There exists C(m,p, (Q;):,n) (depending on m,
p, 0, (Q:)E | and the coordinate charts) such that for all v = (7o, -+ ,7) such that

-1
> ) < nET(h)»
=0

for all 0 < j <1 and for all 0 <t <m,

AT AT (8 )| < C(my p, (Qi)s, )2 (55 =20

Then, as the Ag; are compactly supported, A; is in class S, %PV where v = #.

So, our formal construction allows us to define a family of symbol A{; and each of them belongs to
S;7°0:2P¥  Moreover the constants implied in the bounds of the derivatives are uniform with respect
to the allowed sequences. We underline that the same proof would show that the intermediate

symbols Z; (71) are also in the same class of symbols.

7.3. Estimate of the remainder terms. We are now able to conclude the proof of theorem 7.1

starting from the family we have just constructed. We have to verify that the remainder is of
N

small order in 7. Fix a large integer N and denote A7 (n) := z hpAg;(n). We want to estimate
p=0

Ry = 1004(Q11) ++ Op1(@4, ) (= = 1)) = Opw (A7) (—im)l 2 nny,
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Using the induction formula (69), we write
Ry < |U"0p4(A7 ™ (1)Op4(Q4,)U" = Opn(A7 ()l ez (any) + BN

where Ry = [[0p,(Qs,) -+~ 0Dy Qs ) (= (= 2)m) = Opy (A7~ (1)) | e(12(ary) - We start by giving
an estimate on the first term of the previous upper bound. To do this, we first give a bound on

R(;\(;mp’j = ”Oph(Aj_l(n))Oph(Qw) - Oph(ZJ)HE(LQ(M))-

Using the expansion of A771(n) and A7, this can rewritten

N N—p
R < ST | Opy (477 ()Op(Qs,) = Y W Opy (4] Q5 )0)
= r=0 L£(L2(M))

Then, we can use section A.3.1 and the estimates (79), to bound each term of the previous sum
as follows:
N-p

Oph(A;_l( ))Oph Q’yJ Z hrop A] 1ﬁMQVJ) ) S CN’ph(N—i-l—p)(l—u)—qu—(C-‘,—C’)u.

L(L2(M))
In particular, we find that RY™7 = Oy (h(N"‘l)(l_z”)_(C'*‘C/)”) (as v < 1/2). We have now to
give a bound on Ry := ||Opy, (A7 (1)) — U~"0p, (A" YU (12 (ar))- We will now use results on

Egorov theorem from section A.3.2 to get this bound. First, we write the expansion of A’ to get

R%gorov,] < Z BP

p=0

U~ nopﬁ Z hropﬁ pr ))

L(L2(M))
According to the rules for Egorov expansion from section A.3.2 (see estimates (82)) and as we

know the class Z]Jg from the last remark of the previous section, we find that each term of the
previous sum can be bounded as follows:

U~"0p(A Zh’Oph o (n)) SC’N’ph(N"rl)(l—V)—?)pl/—Du.

L(L*(M))

This implies that RYETOVT = On (RNHDA-20)=D¥) (a5 1 < 1/2). Finally, it tells us that R}, =
R On (RNFD=20)=Dv) “for some fixed integer D’. By induction on 7, we find that

HOPE(Q%) e Opﬁ(Q’Yj)(_(j - ]-)77) - Oph(Aj(n))(_jn)||L(L2(M)) = ON(jh(N+l)(1_2y)_D/V)'

As j = O(]logh|) and as v < 1/2, we find that, for large N, the remainder tends to 0 as & tends
to 0. This concludes the proof of theorem 7.1.00

APPENDIX A. PSEUDODIFFERENTIAL CALCULUS ON A MANIFOLD

In this appendix, a few facts about pseudodifferential calculus on a manifold and the sharp
energy cutoff used in this paper are recalled. Even if most of this setting can be found in [5], it is
recalled because it is extensively used in section 6.2 and 7. The results from the two first sections
of this appendix can be found in more details in [29] or [5]. The results of the last section of this
appendix are the extension to the case of a manifold of standard results from semiclassical analysis
that can be found either in [8], [12] or [14].

A 1. Pseudodifferential calculus on a manifold. We start this appendix by recalling some
facts of h-pseudodifferential calculus that can be found in [12] (or in [14]). Recall that we define
on R?? the following class of symbols:

Sk (R2) .= {ah(x,g) € C®(R* x (0,1]) : [920 an| < caﬂhﬂ@mf\m} .

Let M be a smooth Riemannian d-manifold without boundary. Consider a smooth atlas (f;, V)
of M, where each f; is a smooth diffeomorphism from V; C M to a bounded open set W; C R
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To each f; correspond a pull back f; : C*°(W;) — C*°(V;) and a canonical map fi from T*Vj to
T*W;:

Jii(@,8) = (filz), (Dfi(x)"H7TE).
Consider now a smooth locally finite partition of identity (¢;) adapted to the previous atlas (f;, V}).

That means ), ¢; = 1 and ¢, € C*°(V}). Then, any observable a in C°°(T* M) can be decomposed
as follows: a = ), a;, where a; = a¢;. Each a; belongs to C°>°(T*V}) and can be pushed to a

function @, = (f;)*a; € O°(T*W;). As in [12], define the class of symbols of order m and index
k

(75) S™R(T* M) = {ah € O™ (T"M x (0,1)) : [050an| < ca,ﬁh-k@yﬂ—lﬁl} .

Then, for a € S™*(T*M) and for each [, one can associate to the symbol a; € S™F(R2?) the
standard Weyl quantization

W/~ 1 2 (e - x +
Onf (@nu(e) = g [ R (T2 eon ) v

where u € S(R?), the Schwartz class. Consider now a smooth cutoff ¢, € C°(V;) such that ; = 1
close to the support of ¢;. A quantization of a € S™* is then defined in the following way:

(76) Opp(a)(u) =Y x (fyOpi (@) (f7")") (v x ),
l

where u € C°°(M). This quantization procedure Opj, sends (modulo O(A*)) S™*(T*M) onto the
space of pseudodifferential operators of order m and of index k, denoted ¥™* (M) [12]. It can be
shown that the dependence in the cutoffs ¢; and v; only appears at order 2 in £ (using for instance
theorem 18.1.17 in [19]) and the principal symbol map o : U™k (M) — S™Fk/Smk=1(T*\r)
is then intrinsically defined. Most of the rules (for example the composition of operators, the
Egorov and Calderén-Vaillancourt theorems) that holds in the case of R2 still holds in the case
of U™k (M). Because our study concerns behavior of quantum evolution for logarithmic times in
h, a larger class of symbols should be introduced as in [12], for 0 < v < 1/2,

(77)  S™R(TM) = {ah € O™ (T"M x (0,1]) : [0200an| < ca,ﬁh—’f—vla+ﬁl<g>m-lﬁl}.

Results of [12] can be applied to this new class of symbols. For example, a symbol of S%0 gives a
bounded operator on L?(M) (with norm uniformly bounded with respect to ).

As was explained, one needs to quantize the sharp energy cutoff x() (see section 5.3.1) to get sharp
bounds in 5.6. As x(9 localize in a strip of size A'~% with &y close to 0, the m-th derivatives
transversally to € grows like 7%~ As §; is close to 0, x(?) does not belongs to the previous
class of symbols that allows v < 1/2. However, as the variations only appears in one direction,
it is possible to define a new pseudodifferential calculus for these symbols. The procedure taken
from [29] is briefly recalled in [5] (section 5) and introduces a class of anisotropic symbols S 0.0
(where £ := S*M and v/ < 1) for which a quantization procedure Opg ,, can be defined. In the
next section, we recall briefly a few results about the quantization Opyg ,. (x™) of the symbol ().

A.2. Energy cutoff. Let x() be as in section 5.3.1. Consider d, > 0 and K, associated to it
(see section 5.3.1). Taking v’ =1 — dy, it can be checked that the cutoffs defined in section 5.3.1
belongs to the class Sg ‘Z‘f’o defined in [5]. A pseudodifferential operator corresponding to it can
be defined following the nonstandard procedure mentioned above. Using results from [5] (section
5), one has ||Opg’y,(x("))|| =14 O(h”'/?) for all n < Kj,|logh|. For simplicity of notations, in

the paper Op(x(™) := Opg ./ (x™). In [5], it is also proved that

Proposition A.1. [5] For h small enough and any n € N such that 0 < n < Kj;,|logh| and for
any eigenstate ¥y = —h2AYy, one has

on — Op(x™)nll = O(h™)||1hn]].
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Moreover for any sequence o and (3 of length n less than Ks,|logh|, one has

) A S ) M AT
where 7 and © are given by (23) and (24).

This proposition tells that the quantization of this energy cutoff exactly have the expected
property, meaning that it preserves the eigenfunction of the Laplacian. So, in the paper, introduc-
ing the energy cutoff Op(X(")) does not change the semiclassical limit. Moreover this proposition
implies the following corollary that allows to apply theorem 2.1 in section 5.3.2:

Corollary A.2. [5] For any fivzed L > 0, there exists hy such that for any h < hp, any n <
Ks,|log hi| and any sequence B of length n, the Laplacian eigenstate verify

| (1= 0n (x)) mawn | < A" f1wnl.

A last property of the quantization of this cutoff that we can quote from [5] (remark 2.4)
is that we can restrict ourselves to study observables carried in a thin neighborhood around
S*M = H~1(1/2):

Proposition A.3. [5] For ki small enough and any n € N such that 0 < n < Ks,|logh|/2, one
has:

Vvl =n, |7 0p(x"™) =7 Op(x ™) || = O(h™),
where nyj = Opy(Py,f), [ is a smooth compactly supported function in a thin neighborhood of

S*M (also f =1 in a thin neighborhood S*M) and 75 = PJ _ ((n—1)n)--- PL.

A.3. h-expansion for pseudodifferential operators on a manifold. The goal of this last
section is to explain how the usual A-expansion of order N for composition of pseudodifferential
operators and Egorov theorem can be extended in the case of pseudodifferential calculus on a
manifold. The A-expansion will depend on the partition of identity in section A.l. In fact, on a
manifold, the formulas for the terms of order larger than 1 on the fi-expansion will depend on the
local coordinates. For simplicity and as it is the case of all the symbols we consider (thanks to the
energy cutoff: for example, see proposition A.3), we now restrict ourselves to symbols supported
in 89 = H='([1/2 — 60,1/2 + 6]). The symbols are now elements of S °9(T*M).

A.3.1. Composition of pseudodifferential operators on a manifold. First, recall that the usual semi-
classical theory on R? (see [12] or appendix of [8]) tells that the composition of two elements
Op} (a) and Op}’ (b) in W%k (R?) is in ¥ °>*2k(R?) and that the essential support of its symbol
is included in supp(a) Nsupp(b). More precisely, it says that Opy (a) o Opy (b) = Opy, (afb), where
atb is in S;;7°>2F and its asymptotic expansion in power of A is given by the Moyal product

k
(78) ait(.6) ~ 3 3 (De D6 D D)) e ey o
k

where w is the standard symplectic form. Outline that it is clear that each element of the sum is
supported in supp(a)Nsupp(b). As quantization on a manifold is constructed from quantization on
R4 (see definition (76)), one can prove an analogue of this asymptotic expansion in the case of a
manifold M (except that it will not be intrinsically defined). Precisely, let a and b be two symbols
in S °9(T*M). For a choice of quantization Op, (that depends on the coordinates maps), one
has Opy,(a) o Opy,(b) is a pseudodifferential operator in ¥;°%:%(M). Its symbol (mod O(h™)) is
denoted afij/b and its asymptotic expansion is of the following form:

agab ~ > P (afarb)p.
p=>0

In the previous asymptotic expansion, (afarb), is a linear combination (that depends on the
cutoffs and the local coordinates) of elements of the form 87ad" b with |y| < p and |7/| < p. As a
consequence, (afiarb), is an element of S, °2P"(T*M).
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Remark. We know that we have an asymptotic expansion so by definition and using Calderon-
Vaillancourt theorem, we know that each remainder is bounded in norm by a constant which is
a power of /i with large exponent (in fact CA(N+tD(1=2") for the remainder of order N). In our
analysis, we need to know precisely how these bounds depend on a and b as we have to make
large product of pseudodifferential operators (see section 7) and to use the composition formula
to get Egorov theorem (see next section). The following lines explain how the remainder in the
asymptotic expansion in powers of % is bounded by the derivatives of a and b.

In the appendix of [8], they defined the remainder of the order N expansion, in the case of R??,

N
WV Ry g1 (a,b,h) == agb — > hP(afh),
p=0
and, using a stationary phase argument, they get the following estimates on the remainder, for all
~ and all N,

107 Riv 1 (a, b, 2, )| < paky (V1) sup ol Ha(u + 2)[|0 )b + )],
where (x) means
u,v € R* x R*, |u| + |v| <4d+ |y, |(a, B)| = N+1, a,8 € N

Applying Calder6n-Vailancourt theorem (see [12]-theorem 7.11), one knows that there exist a

constant C' and a constant D (depending only on d), such that for a symbol a in S]g’zod(l):

ET
[0px (a)llzz < C sup h'2 [|0%a|cc-
|a|<D

Combining this result with the previous estimates on the RN+ one finds that

(79) |Opy (Rn+1(a, b, z,h))|L2 < C(d,N) s(u;ﬂi

|
2

| ’ ’
1077 all oo 077 bl oo,

where (x) means
lal <O B < N+1, 7| <N+ 1Land [B/|+ ]| < C+|al.

The constants C and C’ depend only on the dimension d. The same kind of estimates holds on the
remainder in the asymptotic expansion for change of variables. As the asymptotic expansion for
composition of pseudodifferential operators is obtained from the composition and variable change
rules on R2? [19] (theorem 18.1.17; see also [14]-chapter 8), the previous estimates (79) hold for
semiclassical analysis on a manifold.

A.3.2. Egorov expansion on a manifold. In this section, we want to recall how we prove an Egorov
property with an expansion of any order. We follow the proof from [8]. First, for the order 0 term,
we write the following exact expression for a symbol a in S, °0(T*M),

(80) U~ 0py (@)U — Opy(a(t)) = h /0 U~ (RO (¢ — 8))U*ds,

2
where a(t) :=aog', H(p) = % is the Hamiltonian and

R = (4 [—hf Op(a(t)] ~ Op({HL.a(0))).

According to the rules of pseudodifferential calculus described in the previous section, we know
that there exists some constants such that
lal
IRM (t = 8)|| c(z2any < C(M, 1) sup = (107 (als))lloos
0<s<t,|a|<D,|8|<1+D+|a

where D depends only on the dimension of the manifold and C'(M,1) depnds on the choice of
coordinates on the manifold. We proceed then by induction to recover the terms of higher order.
For these higher order terms, we will see terms depending on the local coordinates appear in the
expansion and we will obtain expressions as in [8] for the higher order terms of the expansion that



ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2 39

will be different from the case of R? [8]. However, we do not need to have an exact expression
for each term of the expansion: we only need to know on how many derivatives the order p term
depends and how the remainder can be bounded at each step. To obtain, the # formal term
of the Egorov expansion, we first outline that R()(t — s) is a pseudodifferential operator whose
asymptotic expansion is given by the composition rules on a manifold (see previous section). One
can compute its principal symbol and verify that it is a linear combination (depending on the
manifold and on the choice of coordinates) of derivatives of a o g*~* := ag(t — s) of order at most
2. We denote {H, ao(t — s)}g\lfo) its principal symbol. Then, we can apply the same procedure as
in equation (80) to get the exact expression

t
Op;(a)(t) = Opy(a'D () + h? /0 URP(t — s)U?ds.
where .
amuwzao¢+ﬁ/YUi%u—s»$”wgms
0

We denote the previous formula in a more compact way

alV (t) == ao(t) + hay (t),
¢
where a4 (t, p) := / {H,ap(t — s) 5\2’0) (¢°(p)) ds. As was mentioned, this generalized ‘bracket’ is
0

a linear combination depending on the devivatives of order at most 2 of a;_, (it also depends on
H, M and the choice of the quantization procedure). The operator norm of the remainder R(®)
is, once more, controlled by the derivatives of ag(t) and a;(t). Precisely, one has

laf
IR @)l 22y < C(M72)S(u§>ﬁ 2167 (a;(s)) lloo:

where C (M, 2) depends on the manifold M (and on the choice of the quantization procedure) and
(*) means
J<1,0<s<t |a|<D, |B|<2—j+D+|a

Suppose the terms of order less than p, i.e. ag(t), ..., ap—1(t), are constructed. Then, we want to
construct the term of order p. There will be several contributions. First, we write that the symbol
(up to O(h>®) of R (t — s) has an asymptotic expansion where the term of order p — 1 depends
on at most p+ 1 derivatives of ag(t — s). We can apply (80) to this term of order p — 1 and it will
provide a symbol in S’l,_oo’_p+(p+1)”(T*M) that we denote WP?{H, ao(t — s)}P?). Using the same
procedure for every a; (where j < p — 1), we can show finally that for any order N,

t
Opy(a)(t) = Opy(a™ () + BN+ / U RN (¢ — s)U*ds.
0

In the previous formula, o) (t) is defined as follows:
N
aM(t) = Z RPa,(t) where ag(t) :=aog"
p=0

and for 1 <p < N,

p—1 .t )

nltp) = 3 [ A0yt = )G (") s

§=0
where {., .}E\Z’j) is a generalized ’bracket’ of order (p,j) depending on the local coordinates on the
manifold (it is the analogue of formula given by theorem 1.2 in [8]). We do not need to have an
exact expression for these brackets: we only need to know on how many derivatives it depends.
From the previous section, we know how the order p term in the expansion of afy/b depends
linearly on products of the p derivatives of a and b. The term {H, ao(t — s)}®°) comes from the
order p — 1 term of the asymptotic expansion of the symbol of R (t — s). According to the rules

of composition of pseudodifferential operators on a manifold, it is a linear combination (depending
on H and the choice of coordinates) of derivatives of a of order at most p + 1. More generally,
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{H,a;(t—2s) 5@’]) is a linear combination of derivatives of a;(t) of order at most p+1—j. For the
remainder term RN+ (s) of order N, using the formulas for the composition of pseudodifferential
operators, one can control it by the derivatives of the lower terms of the expansion. The previous
discussion can be summarized in the following proposition:

Proposition A.4 (Egorov expansion on a manifold). Let a be a symbol in S, >°(T*M). One
has the exact expression for every N >0,

(81) Opy,(a)(t) = Opp(a™) (1)) + BN+ /0 t USRWNHD (¢t — 5)U*ds.

In the previous formula, one has
N
a™M () = thap(t) where ag(t) :==ao g
p=0
and for1 <p <N,
p—1 .t )
) = 3 [ A0yl =) (o (o) s
j=0

For each 0 < j <p-—1, {H,a;(t - s)}s\’/}’j) is a linear combination of derivatives of a;(t — s) of
order at most p + 1 — j that depends on the choice of coordinates on the manifold. Finally, the
norm of RNtV (t) satisfies the following bound:

(82) IRY+D (1) 2 < C(M, N) sup W5 107 (ap(5)) lloes

where C(M, N) depends on N and on the manifold M (also on the choice of coordinates) and
where (x) means:

p<N,0<s<t |af|<D, |B|<N+1-p+D+|al
The constant D depends only on the dimension of the manifold.

Remark. Theorem 1.2 in [8] gives an exact expression of each term of this exact expansion in
the case of R2. We also mention that if a is in the class S, °°(T*M), then each term of the
expansion a,, is in the class S, 2P,

Finally, we underline that, by an induction argument, one can derive the following corollary:

Corollary A.5. Using the notations of proposition A.4, one has that every a,(t) depends linearly
on the derivatives of order at most 2p of a.
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