ENTROPY OF SEMICLASSICAL MEASURES
FOR NONPOSITIVELY CURVED SURFACES

GABRIEL RIVIERE

ABsTracT. We study the asymptotic properties of eigenfunctions of the Laplacian in the case
of a compact Riemannian surface of nonpositive sectional curvature. To do this, we look at se-
quences of distributions associated to them and we study the entropic properties of their accumu-
lation points, the so-called semiclassical measures. Precisely, we show that the Kolmogorov-Sinai
entropy of a semiclassical measure u for the geodesic flow g¢ is bounded from below by half of
the Ruelle upper bound, i.e.
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where xT(p) is the upper Lyapunov exponent at point p. The main strategy is the same as

in [17] except that we have to deal with weakly chaotic behavior.

1. INTRODUCTION

Let M be a compact, connected, C* riemannian manifold. For all z € M, T} M is endowed
with a norm |.||, given by the metric over M. The geodesic flow g¢ over T*M is defined as the

Hamiltonian flow corresponding to H(z,&) := % This quantity corresponds to the classical
kinetic energy in the case of the absence of potential. As any observable, this quantity can be
quantized via pseudodifferential calculus and the quantum operator corresponding to H is —FLZTA
where 7/ is proportional to the Planck constant and A is the Laplace Beltrami operator acting on
L?(M). Our main concern in this article will be to study the asymptotic behavior, as i tends to

0, of the following sequence of distributions:
Vo € CE(TM), pnla) = [ aw&)dun(e,) i= (v Opy(ain)saqany
M
where Opy,(a) is a h-pseudodifferential operator of symbol a [8] and vy, satisfies

— B2 Ay, = by

An accumulation point (as i — 0) of such a sequence of distribution pyp is called a semiclas-
sical measure. Moreover, one knows that a semiclassical measure is a probability measure on
S*M = {||¢]|> = 1} which is invariant under the geodesic flow g on S*M. For manifolds of
negative curvature, the geodesic flow on S* M satisfies strong chaotic properties (Anosov property,
ergodicity of the Liouville measure) and as a consequence, it can be shown that almost all the
sequences (up)p—o converge to the Liouville measure on S*M [21, 24, 7]. This phenomenon is
known as the quantum ergodicity property. A main challenge concerning this result would be
to answer the Quantum Unique Ergodicity Conjecture [18], i.e. determine whether the Liouville
measure is the only semiclassical measure or not (at least for manifolds of negative curvature).

In [2], Anantharaman used the Kolmogorov-Sinai entropy to derive properties of semiclassical
measures on manifolds of negative curvature!. In particular, she showed that the Kolmogorov-
Sinai entropy of any semiclassical measure is positive. This result implies that the support of a
semiclassical measure cannot be restricted to a closed geodesic, i.e. eigenfunctions of the Laplacian
cannot concentrate only on closed geodesics in the high energy limit. In subsequent works, with
Nonnenmacher and Koch, more quantitative lower bounds on the entropy of semiclassical measures
were given [4, 3].

ITn fact, her result was about manifolds with Anosov geodesic flow, for instance manifolds of negative curvature.
1
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1.1. Kolmogorov-Sinai entropy. Let us recall a few facts about the Kolmogorov-Sinai (also
called metric) entropy (see [23] or appendix B for more details and definitions). It is a nonnegative
number associated to a flow (g'); and to a (g');-invariant measure p, that estimates the complexity
of u with respect to this flow. For example, a measure carried by a closed geodesic will have
entropy zero while the Liouville measure has large entropy. Recall also that a standard theorem of
dynamical systems due to Ruelle [19] asserts that, for any invariant measure p under the geodesic
flow:

) histua) < [ St

with equality if and only if x is the Liouville measure in the case of an Anosov flow [15]. In the
previous inequality, the X;r denoted the positive Lyapunov exponents of (S*M, gt, 11) [6].
Regarding these properties, the main result of Anantharaman, Koch and Nonnenmacher was to
show that, for a semiclassical measure 1 on an Anosov manifold, one has

~(d = 1) Amax
his (i, 9) / X —
Ks( S*MZ J 2

where A\pax = lim;— 40 %log SUD e 5+ 1 |d,g'| is the maximal expansion rate of the geodesic flow
and the X;“’s are the positive Lyapunov exponents [6]. Compared with the original result from [2],
this inequality gives an explicit lower bound on the entropy of a semiclassical measure. For
instance, for manifolds of constant negative curvature, this lower bound can be rewritten as %.
However, it can turn out that A, .x is a very large quantity and in this case, the previous lower
bound can be negative (which would imply that it is an empty result). Combining these two

observations [4], they were lead to formulate the conjecture that, for any semiclassical measure p,

one has
hics (i, 9) / ij )dp(p

They also asked about the extension of this conJecture to manifolds without conjugate points [4].
In a recent work [17], we were able to prove that their conjecture holds for any surface with an
Anosov geodesic flow (for instance surfaces of negative curvature). Regarding our proof and the
nice properties of surfaces of nonpositive curvature [20, 11], it became clear that our result can be
adapted in the following way:

Theorem 1.1. Let M be a compact, connected, C*° riemannian surface of nonpositive sectional
curvature and let p be a semiclassical measure. Then,

(2) his(p,g9) > %/*Mf(p)du(p%

where his(u,g) is the Kolmogorov-Sinai entropy and x " (p) is the upper Lyapunov exponent at
point p.

In particular, this result shows that the support of any semiclassical measure cannot be reduced
to closed unstable geodesics. We underline that our inequality is also coherent with the quasimodes
constructed by Donnelly. In [9], he considered the question of Quantum Unique Ergodicity for
packets of eigenfunctions and he proved that for this generalized question, you can construct
exceptional sequences of quasimodes that concentrate on flat parts of the surface (even if the
Liouville measure is ergodic) and that have in particular zero entropy. Our theorem on the
entropy of semiclassical measures holds for sequences of eigenfunctions of the Laplacian. So the
two situations are slightly different but our inequality on the entropy (if generalized to quasimodes)
would be consistent with Donnelly’s construction.

We can make a last observation on the assumptions on the manifold: it is not known whether
the Liouville measure is ergodic or not for the geodesic flow on a surface of nonpositive curvature.
In fact, if the genus of the surface is larger than 1, then the best known result in this direction
is that there exists an open and dense invariant subset U of positive Liouville measure such that
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the restriction Ly of the Liouville measure is ergodic with respect to gy [6]. The extension of
this result on the entropy of semiclassical measures raises the question of knowing whether one
could obtain an analogue of this result for weakly chaotic systems. For instance, regarding the
construction from [14], it would be interesting to have a lower bound for ergodic billiards.

Our purpose in this article is to prove theorem 1.1. Our strategy will be the same as in [17]
(and also [4]) so it is probably better (and easier) for the reader to have a good understanding
of the methods from these two references where the geometric situation is “simpler”. We will
focus on the main differences and refer the reader to [17, 4] for the details of several lemmas. The
crucial observation is that as in the Anosov case, surfaces of nonpositive curvature have continuous
stable and unstable foliations and no conjugate points. These properties were at the heart of the
proofs in [4, 3, 17] and we will verify that even if the properties of these stable/unstable directions
are weaker for surfaces of nonpositive curvature, they are sufficient to answer the question of
Anantharaman-Nonnenmacher in this weakly chaotic setting. In [4, 3, 17], there was a dynamical
quantity which was crucially used: the unstable Jacobian of the geodesic flow. In the case of
surfaces of nonpositive curvature, one can introduce an analogue of it. This quantity comes from
the study of Jacobi fields and is called the unstable Riccati solution U*(p) [20]. In the case of
surfaces without conjugate points, Freire and Mafié have shown that this quantity is related to
the upper Lyapunov exponent at point p [12]. In fact, for any (g');-invariant probability measure
on S*M, one has

1

T
pae., x*(p) = TETOOT/O U"(g°p)ds,

where xT(p) is the upper Lyapunov exponent at point p. Thanks to the Birkhoff ergodic theorem,
the Ruelle inequality can be then rewritten as follows:

his(p,g) < U*(p)dp(p).
S*M

And also, the lower bound of theorem 1.1 can be rewritten as

(3) hies(p.0) > /S U )dn(p)

The main adavantage of this new formulation is that the function in the integral of the lower
bound is defined everywhere (and not almost everywhere).

Remark. One could also ask whether it would be possible to extend this result to surfaces without
conjugate points. In fact, these surfaces also have a stable and unstable foliations with nice
properties [20] (and of course no conjugate points). The main difficulty is that the continuity of
U“(p) is not true anymore [5] and at this point, we do not see any way of escaping this difficulty.

1.2. Organization of the article. In section 2, we will give a precise survey? on surfaces of
nonpositive curvature and highlight the properties we will need to make the proof works. As
rewriting all the details of the proofs from [17, 4] would be very long and very similar to what
was already done in these earlier works, we will refer the reader to them for the proofs of some
lemmas and we will explain precisely which points need to be modified at the different stages of
the argument. In section 3, we will draw a precise outline of the proof. Then, in section 4, we
will explain how the main result from [4] can be adapted in the setting of surfaces of nonpositive
curvature. In section 5, we follow the same strategy as in [17] to derive a crucial estimate on the
quantum pressures. Finally, in the appendix, we recall some results on quantum pressure from [4]
and some facts about the Kolmogorov Sinai entropy.

Acknowledgements. I would like to sincerely thank my advisor Nalini Anantharaman for intro-
ducing me to this question and for encouraging me to extend the result from [17] to nonpositively
curved surfaces. I also thank her for many helpful discussions about this subject.

2We refer the reader to [11, 20] for more details.
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2. CLASSICAL SETTING OF THE ARTICLE

2.1. Background on surfaces of nonpositive curvature. In this first section, we recall some
facts about nonpositively curved manifolds [20] (chapter 3), [11]. From this point of the article,
we fix M to be a smooth, compact and connected riemannian surface of nonpositive sectional
curvature.

2.1.1. Stable and unstable Jacobi fields. We define w : S*M — M the canonical projection
m(z,§) := x. The vertical subspace V, at p = (z,£) is the kernel of the application d,m. We
underline that it is in fact the tangent space at p of the 1-dimensional submanifold S M.

We can also define the horizontal subspace at p. Precisely, for Z € T,5*M, we consider a
smooth curve c(t) = (a(t),b(t)), t € (—e,€), in S*M such that ¢(0) = p and ¢/(0) = Z. Then, we
define the horizontal space H, as the kernel of the application K,(Z) = V4/(0)b(0) = Vg,(2)b(0),
where V is the Levi-Civita connection. This subspace contains Xy (p) the vector field tangent to
the Hamiltonian flow and it is of dimension 2.

We know that we can use these two subspaces to split the tangent space T,5*M = H, ® V,.
This allows us to define the Sasaki metric on S*M [20] (p. 18) that splits these two subsaces into
orthogonal spaces, namely for every p = (z,£) € S*M and for every X,Y € T,5*M,

(X,Y)p = o (dpm(X), dpm(Y)) + g2 (Ko (X), Kp(Y)),

where g, is the metric at = on the riemannian manifold M. Using this decomposition, we would
like to recall an important link between the linearization of the geodesic flow and the Jacobi fields
on M. To do this, we underline that for each point p in S*M, there exists a unique unit speed
geodesic 7,. Then we define a Jacobi field in p (or along ~,) as a solution of the differential
equation:
I7(t) + R(7,(t), 3(£))7,(t) = 0,

where R(X,Y)Z is the curvature tensor applied to the vector fields X, Y and Z and J'(t) =
V%(t)q]] (t).

Recall that we can interpret Jacobi fields as geodesic variation vector fields [11]. Precisely,
consider a C* family of curves ¢ : [a,b] — M, s in (—¢,€). We say that it is a smooth variation of
¢ = ¢p. It defines a corresponding variation vector field Y (t) = %(cs (t))js=0 that gives the initial
velocity of s — cs(t). If we suppose now that c is a geodesic of M, then a C? vector field Y (t) on
¢ is a Jacobi vector field if and only if Y (¢) is the variation vector field of a geodesic variation of
c (i.e. Vs € (—€,¢€), cs is a geodesic of M). For instance, 7,(t) and tv,(t) are Jacobi vector fields
along ,,.

Consider now a vector (V,W) in T,5*M given in coordinates H, @ V,. Using the canonical
identification given by d,m and K,, there exists a unique Jacobi field Jy,w(t) in p whose initial
conditions are Jy,w (0) = V and Jy,y,(0) = W, such that

dpgt(vv W) = (JV,W(t)v /V,W(t))

in coordinates Hy:,®Vy¢, [20] (lemma 1.4). Define N, the subspace of 7),5* M of vectors orthogonal
to X (p) and H, the intersection of this subspace with H,. Using the previous property on Jacobi
fields, we know that the subbundle N perpendicular to the Hamiltonian vector field is invariant
by ¢g* and that we have the following splitting [20] (lemma 1.5):

T,S*M =RXy(p) & H, &V,

These properties can be extended to any energy layer £()\) := {||¢||2 = A} for any positive \.
Following [20] (lemma 3.1), we can construct two particular Jacobi fields along 7,. We denote
(7,(t), e(t)) an orthonormal basis defined along 7,(t). Given a positive 7" and because there are
no conjugate points on the surface M (Hadamard-Cartan theorem [11, 20]), there exists a unique
Jacobi field J7(t) such that J7(0) = e(0) and J7(7') = 0. Moreover, Jr(t) is perpendicular to ,(t)
for all ¢ in R [20] (p. 50). As a consequence, Jr(t) can be identified with its coordinate along e(t)
(as T, )M is of dimension 2). A result due to Hopf (lemma 3.1 in [20]) tells us that the limits

TEIEOO JT(t) and TEIPOO JT(t)



ENTROPY OF SEMICLASSICAL MEASURES 5

exist. They are denoted J5(t) and Jj(t) (respectively the stable and the unstable Jacobi field).
They satisfy the simplified one dimensional Jacobi equation:

@)+ K@)J() =0,
where K(t) = K(v,(t)) is the sectional curvature at v,(t). They are never vanishing Jacobi
fields with J7(0) = ¢(0) and for all ¢ in R, they are perpendicular to 7, (¢). Moreover, we have

HJZI (Mt < VEo||T5(t)| for every t in R (where — K is some negative lower bound on the curvature).

Using the previous link between geodesic flow and Jacobi fields, we can lift these subspaces
to invariant subspaces E*(p) and E"(p) called the Green stable and unstable subspaces. These
subspaces have dimension 1 (as M is a surface) and are included in N,. A basis of E*(g'p) is given
by (J;(t),ﬂ;l (t)) in coordinates Hy:, ® Ve ,. We can underline that both subspaces are uniformly
transverse to V, and that it can happen that they are equal to each other (which was not the case
in the Anosov setting). In the case of nonpositive curvature, these subspaces depend continuously
in p and are integrable as in the Anosov case [11].

Remark. We underline that we could develop the same construction for manifolds without con-
jugate points and the same properties would be true except the continuity of the stable/unstable
foliation [5].

In the case where the Green subspaces attached to p are linearly independent, a splitting of IV,
is given by E“(p) @ E*(p) and the splitting holds for all the trajectory. For the opposite case, we
know that the Green subspaces attached to p (and hence to a geodesic v,) are linearly dependent
if and onmly if the sectional curvature is vanishing at every point of the geodesic 7, [20]. As a
consequence, we cannot use the same kind of splitting. However, there exists a splitting of IV,
that we can use in both cases, precisely E*(p) @ V,,.

2.1.2. Riccati equation. The one dimensional Jacobi equation defined earlier gives rise to the Ric-
cati equation:

U'(t) + U(t) + K(t) = 0,
where U(t) = J'(¢)J(t)~! for non vanishing J. Then, we define the corresponding unstable Riccati
solution associated to the unstable Jacobi field as U (t) := Jz,(t)(,l];j(t))_l. It is a nonnegative
quantity that controls the growth of the unstable Jacobi field (in dimension 2) as follows:

1I4(8)]| = [132(0)|elo Ui (o)ds.

The same works for the stable Jacobi field. Both quantities are continuous® with respect to
p.  We underline that, we can use the previous results to obtain the bound ||dpngu(p)||

VI T Koelo Us (s)ds [20] (p-53 — 54). So the unstable Riccati solution describe the infinitesimal
growth of the geodesic flow along the unstable direction. As for the unstable Jacobian, Freire
and Mané showed that the unstable Riccati solutions are related to the Lyapunov exponents [12].
In fact, they proved that in the case of nonpositive curvature (and more generally for surfaces
without conjugate points), the upper Lyapunov exponent at point p of a (g*);-invariant measure
1 is given by

+ _ u
wae., X" (p) _TETOOT/ U“(g°p)d

2.1.3. Divergence of vanishing Jacobi fields. A last point we would like to recall is a result due to
Green [13] and to Eberlein in the general case [10]. It asserts that for any positive ¢ there exists a
positive T' = T'(c) such that for any p in S*M and for any nontrivial Jacobi field J(¢) along v, such
that J(0) = 0 and ||J'(0)|| > 1, for all ¢ larger than T, we have ||J(¢)|| > ¢ (proposition 3.1 [20]). In
the case of manifolds without conjugate points, this property of uniform divergence only holds in
dimension 2 and it will be crucially used in the following (for manifolds without conjugate points
of higher dimension, the same result holds but without any uniformity in p). Finally, all these
properties allow to prove the following lemma:

3The continuity in p is a crucial property that we will use in our proof. We underline that it is not true if we
only suppose the surface to be without conjugate points [5].
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Lemma 2.1. Let v = (0,V) be a unit vertical vector at p. Then for any ¢ > 0, there exists
T =T(c) > 0 (independent of p and of v) such that for any t > T, ||d,g'v| > c.

As g preserves the riemannian volume on S*M (given by the Sasaki metric), we know that the
jacobian of d,g' from N, = E*(p)®V, to Ny, = E*(g'p) &V, is uniformly bounded. Combining
the fact [|d,g'v"|| is nondecreasing for every v* in E%(p) (and every ¢ > 0) and lemma 2.1, we
find that, for k > 0, there exists 7" = T'(k) such that the angle between E“(g'p) and Rd,g'v is
bounded by some x for every ¢t > T, for every p in S*M and for every unit vector v in V.

As, it will be useful in the article, we would like to show that our discussion allows to have a
control of ||d,g*| (for ¢ > 0) in terms of the unstable Riccati solution.

In order to obtain this control, we use the splitting of 7,S*M given by RXg(p) ® E*(p) ®
V,. These three subspaces are uniformly transverse so we only have to give an estimate of
||dpgtEHT*t |l when E'is one of them. In the case where E = RXy(p), it is bounded by 1

g p

and in the case where E = E%(p), it is bounded by /1 + Koelo Us ()45 Tn the last case, we fix a

small step of time i > 0. Then, we consider ¢y a unit vector in V, and for 0 < pn < ¢, we define
%. We can write, for k := [t/n)],

h he uni r
the ey, as the unit vecto Tdog

Hdpgkneong’“”p = |<dl)gkn€05 ekﬂ>g’€"p|

= |<dg(k—1)npgn€(k;,1)n, ekn>gknp ce (dpg"eo, €n>gnp|.

u
d,gPey

M U pp—
We also define the corresponding sequence e, := TdogPietT

(72(0),7 (0)) . . u
[CACEFACIP From lemma 2.1, we know that e, becomes uniformly close (in p) to ey, . So,

log [(dyw-11n,9"€(p—1)n: €pn) gvnp| becomes uniformly close to log [(dgw-1n,9"€(, 1), €py)grnpl- In

of unit unstable vectors, where eff :=

particular, for every ¢’ > 0, there exists a constant C' > 0 such that
k kns’
Hdpg 7760”9’”’;) < Ce™ |<dg(k*1)"pgneq(lk—1)n’ e}stn>g""’p e <dﬂgn€g’ €Z>gnp|.

Again, this last quantity is equal to Cek”5'||dpgk’766‘||gknp. From the properties of the unstable
Riccati solution, this quantity is bounded by Ceknd’ efo Uy ()ds (with C uniform in p). As the
subspaces RXf(p), V, and E*(p) are uniformly transverse to each other, we finally deduce that

for every ¢’ > 0, there exists C' > 0 such that for every p € S*M, ||d,g"| < Cettd' oo Up(s)ds

2.2. Discretization of the unstable Riccati solution. For 6 small positive number (6 will be
fixed all along the paper), one defines

E={(z,§) e T"M :1-20 < ||¢||2 < 1+20}.
From previous section, we know that there exists a constant by such that
Vpe & 0<U(p) < bo.

This function will replace the logarithm of the unstable Jacobian log J* in the proof from [17].
The situation is slightly different from the case of an Anosov flow as we do not have that U is
uniformly bounded from below by some positive constant, a property that was crucially to prove
theorem 1.2 in [17]. We solve this problem by introducing a small positive parameter ¢, and
defining an auxiliary function
Ug'(p) := sup{U*"(p), €0}.

We also fix € and 7 two small positive constants lower than the injectivity radius of the manifold
(that we suppose to be larger than 2). We choose 7 small enough to have (2 + Z—g) on < 5 (as
in [17], this property is only used in the proof of lemma 3.1). We underline that there exists dy > 0
such that if

(4) YV (p,p') €€ x E%, d(p,p) < do = |U"(p) = U ()| < eoe.
We also choose 17 small enough to have

Vp e’ V0 < s <n, [U"(p)—U"(g°p)| < eco.
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We make the extra assumption that the small parameter € used for the continuity is smaller than
€0, ie.

b
(5) (2 + 0) bon < < < €.
€0 2

In particular, do can (and will) be chosen independently of €y (by taking €2/2 instead of eg in the
previous continuity relations).

Discretization of the manifold. Asin the case of Anosov surfaces, our strategy to prove theorem 1.1
will be to introduce a discrete reparametrization of the geodesic flow. Regarding this goal, we cut
the manifold M and precisely, we consider a partition M = [_|fi1 O; of diameter smaller than some
positive 8. Let (€;)X, be a finite open cover of M such that for all 1 < i < K, O; € ;. For
v €{l,---,K}?, define the following open subset of T*M:

V, = (T*Q,, N g "T*Q,, ) N EY.

We choose the partition (0;)%; and the open cover (€;)%, of M such that (V) eq1,... k)2 is a
finite open cover of diameter smaller* than dy of £%. For v := (7, 71), we define f(v) and fo(7)
as in the case of an Anosov flow i.e.

fo(v) = ninf{Ug(p) : p € V5 } and f(y) :=ninf{U"(p) : p € V4 },
if V, is nonempty, nby otherwise. Compared with the Anosov case, we will have slightly different
properties for the function f(y), i.e.

n
(6) VpeV,, / Uy (s)ds — f(7)] < nege.

0
We also underline that the function fy satisfies the following bounds, for v € {1,--- , K}?,

eon < fo(v) < bon.
Finally, let @ = (ag,1,---) be a (finite or infinite) sequence of elements in {1,---, K} whose
length is larger than 1 and define:
€ €

@ F1(@) = o (av,n) < § and f(a) = flag, ) < 5.

In the following, we will also have to consider negative times. To do this, we define the analogous
functions, for 8 :=(---,8_1,0o) of finite (or infinite) length,

f-(B) == fo(B-1,B0) and f(B) := f(B-1,00)-

Remark. We underline that the functions f, and f_ are defined from Uy while f is defined from
U*. This distinction will be important in the following.

3. PROOF OF THEOREM 1.1

Let (vr,) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the
eigenvalues —h,:Q such that the corresponding sequence of distributions g on 7% M converges as k
tends to infinity to the semiclassical measure u. For simplicity of notations and to fit semiclassical
analysis notations, we will denote A tends to 0 the fact that k tends to infinity and 1, and —h~2
the corresponding eigenvector and eigenvalue. To prove the inequality of theorem 1.1, we will give
a symbolic interpretation of a semiclassical measure and apply results on suspension flows to this
measure [1].

Let ¢ > 4¢ be a positive number, where € was defined in section 2.2. As in the Anosov setting,
the link between the two quantities ¢ and ¢ is only used to obtain a theorem on product of
pseudodifferential operators from sections 6 and 7 in [17] (here theorem 3.2). In the following of
the article, the Ehrenfest time ng(h) will be the quantity

(8) np(h) :=[(1 - €)[loghl.

4Tn particular, the diameter of the partition depends on 6 and € (but not on €g).
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We underline that it is an integer time and that, compared with usual definitions of the Ehrenfest
time, there is no dependence on the Lyapunov exponent. We also consider a smaller non integer
time

(9) T (h) = (1 np(h).

Before entering the details of the proof, we would like to say a few words about the Ehrenfest
time and about ideas that are behind our strategy from [17]. In order to prove theorem 1.1, we
need to have a precise understanding of the range of validity of the semiclassical approximation.
For instance, if one considers a smooth symbol a compactly supported in a small neighborhood of
S*M, it can be shown [4] that

Te(h) || _uwna wha
Vit < , >0 = -0 og" = 0,4(1),
] < e pr(a)e prlacyg’) e ()22 () 0a(1)
where Amax = limi—ioo %log SUD e 5+ 11 |d,g'| is the maximal expansion rate of the geodesic

flow. This result tells us that the semiclassical approximation remains valid for times of order
Tr(h)/Amax- This was the version of The Egorov theorem that was used by Anantharaman, Koch
and Nonnenmacher in [4, 3] and the Ay« term in their lower bound came from this Egorov prop-
erty. In [17], we managed to overcome this problem by observing that the range of validity of
the semiclassical approximation depends also on the symbol you consider. In order to compute
entropy, the symbols we will be interested in will in fact be of the form Q,, X - - Qq, © g*" where
Qa, is compactly supported in T*Q,; N E? (see (41) for instance). An important aspect of the
proof is that this symbol remains in a nice class of symbols amenable to pseudodifferential calculus
as long as

e

-2

(10) folay,aji1) < Te(h),

2

<.
I
<)

An analoguous property was used in [17] (section 7) in order to prove a subadditivity property
(here theorem 3.2). This property means that there exists a local time for which the range of
validity of the semiclassical approximation is longer than the usual Ehrenfest time Tr(%)/Amax-
Precisely, the largest integer k for which relation (10) is true will be the local Ehrenfest time for the
symbol Qu, X -+ - Qq, © g*". In order to prove our main theorem, we will introduce a “suspension
of the quantum dynamics” for which the sum in (10) will appear naturally.

We draw now a precise outline of the proof of theorem 1.1 which is similar to the one we used in
the Anosov case [17]. We will refer the reader to this reference for the proof of several lemmas. The
main differences with the Anosov case is that we have to introduce a thermodynamical formalism
to treat the problem of flat parts of the surface.

3.1. Quantum partitions of identity. In order to find a lower bound on the metric entropy of
the semiclassical measure u, we would like to apply the uncertainty principle for quantum pressure
(see appendix A) and see what informations it will give (when & tends to 0) on the metric entropy
of the semiclassical measure . To do this, we define quantum partitions of identity corresponding
to a given partition of the manifold. We recall the notations from [17].

3.1.1. Partitions of identity. In paragraph 2.2, we considered a partition of small diameter (O;)X
of M. We also defined (€2;)X, a corresponding finite open cover of small diameter of M. By
convolution of the characteristic functions 1o,, we obtain P = (P;),_; , a smooth partition of
unity on M i.e. for all x € M:

K
ZPE(:E) =1

We assume that for all 1 < ¢ < K, P; is an element of C°(€2;). To this classical partition
corresponds a quantum partition of identity of L?(M). In fact, if P; denotes the multiplication
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operator by P;(x) on L?(M), then one has:

K

=1

3.1.2. Refinement of the quantum partition under the Schrodinger flow. Like in the classical setting
of entropy, we would like to make a refinement of the quantum partition. To do this refinement,
we use the Schrédinger propagation operator U' = ¢ ™2 . We define A(t) := U~ AU", where A is
an operator on L?(M). To fit as much as possible with the metric entropy, we define the following

operators:

(12) Ta = Pay (k1) -+ Pay (1) Pay

and

(13) T3 = Pﬁ—k(_kn)"'Pﬁfz(_2n)Pﬁ0Pﬁ71(_n)7

where a = (o, - -+ , ) and 3 = (B_x, -+ , o) are finite sequences of symbols such that «; € [1, K|

and B_; € [1, K]. We can remark that the definition of 7z is the analogue for negative times of the
definition of 7,. The only difference is that we switch the two first terms 5y and 5_;. The reason
of this choice relies on the application of the quantum uncertainty principle (see appendix A).
One can see that for fixed k and using rules of pseudodifferential calculus,

(14) | Py, (kn) - -+ Py (0) Pag ¥il|* — u(P3, 0 g™ x -+ P30 g" x P2 ) as h — 0.

This last quantity is the one used to compute hxs(p,g") (with the notable difference that the
P; are here smooth functions instead of characteristic functions). As in [17], we will study for
which range of times, the operator 7, is a pseudodifferential operator of symbol P,, o g x
-+ Py, 09" x Py, (see (14)). In [4] and [3], they only considered kn < |log fi|/Amax Where Apax 1=
limy 4o % log sup ,¢c g+ ur |d,g"|. This choice was not optimal and in the following, we try to define
sequences « for which we can say that 7, is a pseudodifferential operator.

3.1.3. Index family adapted to the variation of the unstable Riccati solution. Let o = (g, aq, -+ )
be a sequence (finite or infinite) of elements of {1,--- , K} whose length is larger than 1. We define
a natural shift on these sequences

0’—&-((0[0; Q- )) — (011, . )

For negative times and for 8 := (--- , 81, o), we define the backward shift
U—((' o 5/8—1760)) = ( o 75—1)'

In the following, we will mostly use the symbol z for infinite sequences and reserve o and 3 for
finite ones. Then, using notations of section 2.1, index families depending on the value of the
unstable Riccati solutions can be defined as follows:

k—2 k-1
(15) I"(h) == {(0407"' Lag) Zﬁr (oha) <Tg(h) < Zf+ (aia)},

k—2 k—1
(16) K"(h) := {(ﬁk, -+, Bo) : Zf, (6°.8) < Tr(h) < Zf, (aiﬁ)} :

We underline that fy,f_ > egn ensures that we consider finite sequences. These sets define
the maximal sequences for which we can expect rules from symbolic calculus to hold for the
corresponding 7,. The sums used to define these sets were already used in [17]. We can think of
the time |a|n as a stopping time for which 7, remains a nice pseudodifferential operator in a nice
class of symbols.

A good way of thinking of these families of words is by introducing the sets

Z_t,_ = {1’ 7K}N and ¥_ := {1; aK}iN'
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Once more, the sets I"(h) (resp. K"(h)) lead to natural partitions of ¥ (resp. ¥_). Families
of operators can be associated to these families of index: (7a)aern(n) and (73)gern(n). One can
show that these partitions form quantum partitions of identity (lemma 5.1 in [17]):

Z TaTa = Idg2(ar) and Z mhms = Id 2.
a€eln(h) BEKN(h)

3.2. Symbolic interpretation of semiclassical measures. Now that we have defined these
partitions of variable size, we want to show that they are adapted to compute the pressure of a
certain measure with respect to some reparametrized flow associated to the geodesic flow. To do
this, we proceed as in [17] and provide a symbolic interpretation of the quantum partitions. We

denote ¥ := {1,---, K}N. We also denote C; the subset of sequences (z,,)nen such that zy = i.
Define also:
(17) [ag, -+ yag] = Cop N+~ N FCy,,

where o is the shift o4 ((,)nen) = (Tnt1)nen (it fits the notations of the previous section). The
set X is then endowed with the probability measure (not necessarily o -invariant):

i (o, yaw]) = gt (Cag N+ N0 Cay) = || Pay (k) -+~ Pagtn*

Using the property of partition of identity, it is clear that this definition ensures the compatibility
conditions to define a probability measure [23]:

> >
St ([aos- -+ veg]) = iyt (o, ).
Q41

Then, we can define the suspension flow, in the sense of Abramov, associated to this probability
measure. To do this, the suspension set is defined as

(18) i_;,_ = {(x,s) € E+ X R+ :0 S s < f+ (fﬁ)}
Recall that the roof function f; is defined as f(z) := fo(xo,x1). We define a probability measure
ﬁ?’ on ¥ ,:
5 2t dt
(19) =t

Js, Frduy*

The suspension semi-flow associated to o is for time s:

n—2
(20) 71 (wt) = (ot @s 1= Y fa () )
=0

n—2

n—1
where n is the only integer such that Z I+ (O’il’) <s+t< Z I+ (aix).
§=0 §=0

Remark. We underline that we used the fact that f, > 0 to define the suspension flow. If we had
considered f, we would not have been able to construct the suspension flow as f could be equal
to 0.

Remark. It can be underlined that the same procedure holds for the partition (73). The only

differences are that we have to consider X_ := {1,--- , K} ™ 0_((2n)n<0) = (n—1)n<o and that
the corresponding measure is, for k > 1:
il Yo
Ky, ([ﬁ—k, vﬁo]) = Ky, (O’_kCLLkﬂ"'ngO)

||Pﬁ_k(—k77) T P[-}OPQ71 (—n)¢h||2~
For k = 0, one should take the only possibility to assure the compatibility condition:

K
i (5]) = D (181, Bol)
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The definition is quite different from the positive case but in the semiclassical limit, it will not
change anything as Pg, and Pz_1(—n) commute. Finally, the “past” suspension set can be defined
as

Yo i={(z,5) e Z_xRy:0<s< f_(x)}.

Consider the partition C := ([a])aep,(h) of ¥y. A partition é;f of ¥4 can be defined starting

from the partition C and [0, f+(a)[. An atom of this suspension partition is an element of the form
—+

C, = la] x [0, fr(a)[. For ¥ (the suspension set corresponding to X_), we define an analogous

partition C;, = ([B] x [0, f—(B)[) gern(n)-

In the case of the Anosov geodesic flows [17], we used these partitions and show that they could
be used to interpret some quantum entropy as the entropy of a refined partition of s Then,
we used an entropic uncertainty principle taken from [4] to derive a lower bound on the quantum
entropy. We will do the same thing here but we will have to be more careful and we will apply the
entropic uncertainty principle for quantum pressures as in [4] (see section A for a brief reminder).
We introduce the weights:

k—1 k—1
1 ; _ 1 ;
W= exp 3 E flo%a) | and Wy = exp 3 E f(eB)
j=1 j=1

We underline that the weights depends on f and not fy or f_. It came from the fact that f is
the function that appears in theorem 4.1. We introduce the associated quantum pressure’:

(21) D (ﬁ?*,é:{) =H (ﬁ?*,é;) -2 Z ﬁg* (é;r) log W
acln(h

and o

(22) 4 (ﬁ?fi) =H (ﬁgﬂég) -2 Z Eg’ (@;) log W .
BEK™M(h)

Thanks to proposition 5.1, we know that
(23) p (ﬁ?*,@) +p (ﬂ?’,é;) > —logC — (1+€ +4e)np(h),
where C' is a constant that does not depend on #.

Remark. This last inequality is a crucial step to prove theorem 1.1. We will recall how one can
get such a lower bound in section 5. This inequality corresponds to proposition 5.3 in [17]. The
strategy of the proof is exactly the same except that we have to deal with quantum pressures and
not quantum entropies (see section 5). However, we can follow the same lines as in section 5.3.2
in [17] and obtain a lower bound that depends on the bound from theorem 4.1. At this point,
there is a difference because theorem 4.1 was proved in [4] for Anosov flows. In section 4, we will
show that the proof of this result from [4] can be adapted in the setting of nonpositively curved
surfaces.

The partitions @;{ and C, are not exactly refined partitions of the suspension flow (as in
definition (41) for instance). However, as in the Anosov setting, one can prove that they are
refinements of “true refined partitions” of the suspension flow. A notable difference is that we will
not consider time 1 of the suspension flow. Instead of it, we fix a large integer Ny (such that®
€ < 1/Ny < €p) and consider time 1/Ny of the flow and its iterates. Precisely, as in [17], one can
prove the following lemma:

Lemma 3.1. Let Ny be a positive integer defined as previously. There exists an explicit partition

@;0 of ¥, independent of h such that v?féﬁ)No_IE;TD5+ is a refinement of the partition @;—.

5We refer the reader to appendix B for the definition of H.
6To summarize the relations between the different parameters, we have i < < N%) < €9. Moreover 1 depends

on € and ¢g and tends to 0 when e tends to 0 and €q is fixed.
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Moreover, let n be a fized positive integer. Then, an atom of the refined partition V-, 0+ 6+
is of the form [a] x B(a), where a = (ap,- - , ) is a k + 1-uple such that (ap,- - , ) verifies

n(1—e¢) Zf+ (UJra) < Nio(l + €) and B(«) is a subinterval of [0, f1 ().

Remark. This lemma is the exact analogue of lemma 4.1 in [17] and its proof is the same: the
only difference is that we consider times 1/Ny instead of time 1. In particular, in the proof, the

partition fj\r,o is constructed from? I"(1/Ny) and not from I"(1). We also underline that we have
only stated the result in the case of 0. The same results holds for o_: there exists an adapted

partition Cy, with the same properties.

As in the Anosov case, we would like to use this lemma to rewrite the quantum pressure in
terms of the pressure of a refined partition. To do this, we use basic properties of the classical
entropy (see appendix B) to find that

S, St S, w5 At
(24) H (M?Jrach) < HNgnE(h) <M§+a0—1+vo 7CN0> ;

where H,(.) is defined by (41). Consider now an atom A of the partition \/nE(h)NO 1* g CNO

There exists an unique family (Yo, , Y (nyNo—1) i 17(1/No)Nore () correspondmg to thls atom
and we define the associated weight as

N()nE(h)fl

Wi = H W;:

From lemma 3.1, we know that for every such A, there exists « in I"(h) such that A is a subset
of [a] x [0, f+(a)[. From the proof of this lemma (see section 5.2.3 in [17]), we know that « is of
the form (Yo, , ¥, (s No—1) Where every 7; is given by ~; where we have erased at most the last
bo/€o + 1 letters. In particular, this implies that

b
Wi <exp <2N0nE(h) (6‘; + 1) bon) Wi
Recall that we have taken (i’—g + 1) bon < €/2. One can then write the following inequality

2 Y ()

acln(h)
(25) < -2 3 Tt (A)log Wi + 2eNonp(h).
Aev)opr® i Mg,

We introduce the refined pressure at times n:
Sy — _ +
(:uﬁ,*—ao—ij aCN> = Hp (,Lth+70'-1|-voaCNg>

)
-2 Z iyt (A)log Wi
Aev;;[}ﬁfNJTEEO
Finally, combining inequalities (24) and (25) with (23), we derive that
—logC — (14 € +4(1 + No)e)ng(h)

ST e 3 _Ny A
(26) S an(h)Ng </’Lﬁ+70—ﬁo 7CN[)> +an(h)N0 (/’l’ﬁ 70—17\[0 7CN[)) .

7Wedeﬁnef”(t):{a:(a0,-~-,ak):Zf:_ff+(o+ ) <t< Sl f (oha )}
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This estimate is crucial in our proof as we have derived from a quantum relation a lower bound
on the classical pressure of a dynamical system associated to the geodesic flow.

3.3. Subadditivity of the quantum pressure. As in [17], we would like to let % tends to 0
in inequality (26). The main difficulty to do this is that everything depends on 4. In order to
overcome this problem, we have to prove a subadditivity property for the quantum pressure:

Theorem 3.2. Let 6;0 be the partition of lemma 3.1. There exists a function R(ng, k) on Nx (0, 1]
and R(Ny) independent of ng such that

Vng € N, limsup|R(ng, )| = R(No).
h—0

Moreover, for any h € (0,1] and any ng,m € N such that ng + m < Nong(h), one has
S, L oot S, L oot
pn0+m (,LL)‘]+7O'NO aCN(J) S pno (uﬁ,+a0N0 aCNO)
ST
+Dm (M§+70N0 7CN0) + R(TL()’ h)

Proof. To prove this subadditivity property, we will prove subadditivity of the quantum entropy
and subadditivity of the pressure term. As in section 6 from [17], we write for the entropy part
that

_Y, L 5t
Hn0+m (/’Lth’ g Mo 7CN0)
Sy Ny - At Ty L 5+
< Hp, (u?* 07, "0, 5% 7CN0> + Hp, (,u?ﬂoNo vCNo) .
As in [17], we have to show that the measure of the atoms of the partition are almost invariant
1

under EF for the range of times we have considered (proposition 6.1 in [17]). Consider now the
pressure term in the quantum pressure. Using the multiplicative structure of the WX, one has

54 +
E a,(A)log Wy
R
AeviofmTiE T Noel

- 3 It (A)log Wi + > ot (E LYo A) log W
—J -7
Aevils Mok, Aeviorts Moek,

So, once more, the additivity property of the pressure term derives from the almost invariance of
the measure for the range of times we consider®. Precisely, according to the last two inequalities,
we only need to verify that proposition 6.1 in [17] remains true for the partition @;0 in the setting
of surfaces of nonpositive curvature. We will not reproduce the proof here which is similar except
that we consider time 1/Ny instead of 1 and that we look at surfaces of nonpositive curvature.
The first difference is not a problem and the proof from [17] can be adapted straightforward. The
main difference with [17] comes from the fact that the geometric situation is slightly different. We
will briefly explain here which points need to be modified in this new setting.

We recall that proposition 6.1 in [17] relied on a theorem for products of pseudodifferential
operators (theorem 7.1 in [17]) and we need to verify that the proof we gave still works in the case of
surfaces of nonpositive curvature. The key point of the proof of this theorem is that in the allowed
range of times ||d,g*| is bounded by some Z™" (with v < 1/2) (see section 7.2 in [17]). Precisely,
following sections 6 and 7 in [17], we need to verify that this bound on the growth of ||d,g"|| holds for
pin T*Qq,N-- - g*=1T7*Q,  NEY (where a satisfies Z;:é f+(oia) < @) and for 0 <t < kn.
In fact, if we take Op;(x) to be a “good” truncation operator in a neighborhood of S*M, it allows
to verify that P,, _,((k—1)n)--- Py, Opy(x) satisfies the usual rules of pseudodifferential calculus

(see theorem 7.1 in [17]) and then to derive the property of almost invariance of the measure ﬁ?*
(proposition 6.1 in [17]).

8We underline that R(No) will be equal to Sup , g+ log WX which only depends on Np.
No
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From paragraph 2.1.3 and if we take §' = €ge, we find that ||d,g""|| is bounded by Cefneocels” Uy (s)ds
(with C' uniform in p). For the allowed words, e*"<¢ is of order A= (as kneg < 1/2ng(h)). To
conclude, we can estimate:

n k-1 L[ eG4
/ Uy (s)ds — Zf(aja) < Z / Uy (s)ds — flo?a)].
0 = j=0 1731

To bound this sum, we can use the continuity of U" (see inequality (6)) to show that this quantity is
bounded by €| log /i|. By definition of the allowed words «, we know that Z?;é f(oia) < 1/2ng(h).
This allows to conclude that |d,g'| is bounded by some Ch™" (with C independent of p and
v<1/2).0

Remark. We underline that here we need to use the specific properties of surfaces of nonpositive
curvature to prove this theorem. It is not really surprising that theorem 7.1 from [17] can be
extended in our setting as the situation can only be less “chaotic”. We also mention that we have
to use the continuity of U“(p) which is for instance false for surfaces without conjugate points [5].

3.4. The conclusion.

3.4.1. The semiclassical parameter tends to 0. Thanks to the subadditivity property of the quan-
tum pressure, we can proceed as in [17] and write, for a fixed ng, the euclidean division Nong(h) =
qno + r. We find, after applying the subadditivity property and letting & tends to 0O,

R(Ny) 1

—_—— - —1 "4+4(1+ N,
" No( + € +4(1+ No)e)

1 ¥ 7i —+ ¥ 7L o
S ni() (pno <M2+70107CN0) +pno (ME_7UN()’CNO>) .

As in [2, 4, 17], we can replace the smooth partitions by true partitions of the manifold in the
previous inequality. We would like now to transform the previous inequality on the metric pressure
into an inequality on the Kolmogorov-Sinai entropy. To do this, we write the multiplicative

property of W, and we use the fact that @;0 is a partition of X, . It allows us to derive that

> (A log Wi =ng Y 7+ (A)log Wi
Aev;ggla_’\’iwﬁxo A€CY,

The same property holds for the backward side. After letting ng tends to infinity, we find that

1 — —
— Al N9 +2| D B (Alog Wi+ Y BT (A)logWy

Aecy, AeCy,
1 s, s _
. (o ) s )
0

3.4.2. Lower bound on ) , cot ﬁ§+ (A)log W . Before applying Abramov theorem in inequal-
No

ity (27), we would like to give a lower bound on the pressure term in this inequality. Precisely, we
know that, by construction of @;0 and by invariance of the measure p>+, one has

S AW = ———— S fo(ne® () log W

s
Aech, f2+ Jodn ~€IM(1/No)

To obtain a lower bound on this quantity, we use the notations of section 2.1 and introduce, for
p € S*M, the application

Folp)i= Y. fo(MlogWi1o, (p)--10, ©g""(p).
~€IM(1/No)
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This allows us to rewrite

> hP(bog Wy = [ Fa(o)du(o).

“/Gf"(l/No) St
Define also

1
Xén) = {p €S*M:V0<t< ——+10,U"g'p) > 260} .
N()GO

We can verify that

(28) Falo) 2 53 3 g o, (10, 04"

for all p in £%. In order to prove this property, we can restrict ourselves to the case: p € X(g")

(otherwise the inequality is trivial). In this case, Fy(p) = f1(7)log W:/", where v is the unique
element in I"(1/Np) such that p belongs to O,,N---g~*70., . As~ belongs to I"(1/Ny), it satisfies

k—2 k-1
fr(@7) € = <D fr(o?y)
=1 o =1

As f > nep, one has (k—2)n < 1/(Noeg). Using the fact that p belongs to Xé")ﬂO%ﬂ- gm0,
and using the relation of continuity (4), we find that for every 1 < j < k — 1, fi(077) = f(o77).
In particular, one has

k—1
1 . 1
IOgW,j_ = 5 E f+(0']’}/) > m
=1

Then, we can derive

Z“mm fo(v)n (Xén) N0y N g_"O%)
2Ny f2+ frdp>+ '

> AT (A)logWH >
Aecy,

We underline that the same lower bound holds for > Acty, == (A)log W .

3.4.3. Applying Abramov theorem. We use this last property in inequality (27) and combine it
with the Abramov theorem [1] (see relation (44)). We find that the Kolmogorov Sinai entropy
nhis(u,g) is bounded from below by

> o) (F(e, ¢, No)u™([]) + (Xé") N0y N 9”70w1)) :
v=(v0,71)
where
, 1 €
(e, €', Np) := 3 + ~5 = 2(14 No)e | .
3.4.4. The different small parameters tend to 0. We have obtained a lower bound on the Kolmogorov-
Sinai entropy of the measure u. This lower bound depends on several small parameters that are
linked to each other in the following way:

1
<4 <« — .
€ e<<NO<<60

Moreover the small parameter 1 depends on € and €y. For a fixed ¢, it tends to 0 when € tends to
0. We have now to be careful to transform our lower bound on the entropy of p into the expected
lower bound. First, we let the diameter of the partition tends to 0 (and then 6 to 0) and we divide
by 1. This gives us

[ D No) + 10 ()T (o) < s
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Finally, we let € and €’ tend to 0 (in this order). We obtain the following bound on the entropy of

18
1

5 [ GO+ [ U0 ()dn(o) < s

We let now Ny tend to infinity and then € tend to 0 (in this order). We find the expected lower

bound, i.e.

1

3 /S*MU“(p)du(p) < his(p, g).0

4. PROOF OF THE MAIN ESTIMATE FROM [4]

In the previous section, we have been able to apply the method we used for Anosov surfaces in
order to prove theorem 1.1. Asin [17], the strategy relied on a careful adaptation of an uncertainty
principle. In particular, to derive inequality (23) (section 5), we have to use the following equivalent
of theorem 3.1 from [3]:

Theorem 4.1. Let M be a surface of nonpositive sectional curvature and €, ey and 1 be small
positive parameters as in section 2.2. For every K > 0 (KK < Cs, ), there ezists hx and Cx(e, 1, €o)
such that uniformly for all h < hic, for all k < K|loghl, for all o = (avg, -+ , o),

1Pa UM Pay_y -+ U™ Py Ops (X ") 22y

k—1

, 1 :
(29) < Cx(em e)h™ =0 exp | =237 foha) | .
=0

where ¢ depends only on the riemannian manifold M .

Remark. We underline two facts about this theorem. The first one is that Op,(x*)) is a cutoff
operator that was already defined in [17] (paragraph 5.3) and in the appendix of [4] (we describe
briefly its construction in paragraph 5.1). The second one is that it is function f and not fi that
appears in the upper bound.

This theorem is the analogue for surfaces of nonpositive curvature of a theorem from [4]. As the
geometric situation is slightly different from [4], we will recall the main lines of the proof where
the geometric properties appear and focus on the differences. We refer the reader to [4] for the
details. In [4], the proof of the analogue of theorem 4.1 (section 3 and more precisely corollary
3.5) relies on a study of the action of P, U"P,, ,---U"P,, on a particular family of Lagrangian
states. This reduction was possible because of the introduction of the cutoffs operators Oph(x(’“))
(see section 3 in [4] for the details).

4.1. Evolution of a WKB state. Consider up(0,z) = ax(0, x)e#5(%?) a Lagrangian state, where
an(0,e) and S(0,e) are smooth functions on a subset Q in M and az(0,8) ~ >, h*ay(0,e).

This represents a Lagrangian state which is supported on the Lagrangian manifold £(0) :=
{(z,d;S(0,z) : x € Q}. According to [4], if we are able to understand the action of P, , U"P,, , ---U"P,,
on Lagrangian states (with specific initial Lagrangian manifolds: see next paragraph), then we

can derive our main theorem. A strategy to estimate this action is to use a WKB Ansatz. Recall

that if we note @(t) := U'up(0), then, for any integer N, the state @(t) can be approximated to
order N by a Lagrangian state u(t) of the form

N-1
u(t, x) = eFSED) gy (t, ) = eFSH) Z W a(t, o).
K=0

As u is supposed to solve 1h5u = dyu (up to an error term of order N), we know that S(t, )
and the a(t, x) satisfy several partial differential equations. In particular, S(t, ) must solve the

Hamilton-Jacobi equation

oS
22 4 H(z,d,S) = 0.
o+ H(,ds8) =0
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Assume that, on a certain time interval (for instance s € [0, 7]), the above equations have a well
defined smooth solution S(s, z), meaning that the transported Lagrangian manifold £(s) = ¢°£(0)
is of the form {(x,d,S(s,x))}, where S(s) is a smooth function on the open set wL(s).

As in [4], we shall say that a Lagrangian manifold £ is “projectible” if the projection 7 : L — M
is a diffeomorphism onto its image. If the projection of £ to M is simply connected, this implies
L is the graph of dS for some function S: we say that £ is generated by S.

Suppose now that, for s € [0,7], the Lagrangian L(s) is “projectible”. Then, this family of
Lagrangian manifolds defines an induced flow on M, i.e.

gfg(s) cx € nL(s) — mg'(x,d.S(s,x)) € TL(s +1).

This flow satisfies a property of semi-group: gg(s-&-r) ) gg(s) = g?g) Using this flow, we define an
operator that sends functions on 7£(s) into functions on 7L(s + t):
1
_ _ 3
(30) T (@)(@) = a0 g5l () (Tl ()
where Jg,,(2) is the Jacobian of the map g, at point = (w.r.t. the riemannian volume). This
operator allows to give an explicit expression for all the a () [4], i.e.

i (281 4,

t
(31) ar(t) = Té(o)ao(O) and ay(t) := Té(o)ak(O) +/0 5(s) 5
Regarding the details of the proof in [4], we know that there are two main points where the

dynamical properties of the manifold are used:

e the evolution of the Lagrangian manifold under the action of the operator P, U"P,, _, ---U"P,,
(section 3.4.1 in [4]);
o the value of Jg, for large ¢ (section 3.4.2 in [4]).

We will discuss these two points in the two following paragraphs. We will recall what was proved
for these two questions in section 3.4 of [4] and see how it can be translated in the setting of
surfaces of nonpositive curvature.

4.2. Evolution of the Lagrangian manifolds. The first thing we need to understand is how the
Lagrangian manifolds evolve under the action of the operator P, U"P,, ,---U"P,,. According
to [4], we know that the introduction of the cutoff operator Opy(x) implies that we can restrict
ourselves to a particular family of Lagrangian states. Precisely, we fix some small parameter 7;
and we know that they must be localized on a piece of Lagrangian manifold £°(0) which is included
in the set Uj;<,g7S%, M (where S3 M :={(z,) : [€]|? = 1+ 2m}). If we follow the method
developed in [4], we are given a sequence of Lagrangian manifolds £7(0) as follows:

vt € [0,n], V4, L) := ¢"£°(0) and LI (t) := g (Ej_l(n) NT*Q, ) -

The manifold £7(0) is obtained after performing P, ,U"P,, _, ---U" Py, on the initial Lagrangian
state. To show that the procedure from [4] is consistent (i.e. performing several WKB Ansatz),
we need to verify that the Lagrangian manifold £7(¢) does not develop caustics and remains
“projectible”. The only geometric properties which were used to derive these two properties were:

e M has no conjugate points (to derive that S7 will not develop caustics);
e the injectivity radius is larger than 2 (to ensure the “projectible” property).

In our setting, these two properties remain true (in particular, a surface of nonpositive curvature
has no conjugate points [11, 20]). Finally, we underline that, thanks to the construction of the
strong unstable foliation for surfaces of nonpositive curvature, any vector in S7, M becomes uni-
formly close to the unstable subspace under the action of d,g" (see lemma 2.1). As a consequence,
under the geodesic flow, a piece of sphere becomes uniformly close to the unstable foliation as j
tends to infinity. This point is the main difference with [4]. In fact, if we consider an Anosov
geodesic flow, we have the stronger property that a piece of sphere becomes exponentially close to
the unstable foliation, as j tends to infinity. However, we will check that this property is sufficient
for our needs.
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Remark. At this point of the proof, we can ask about an extension of these results to mani-
folds without conjugate points. According to [20], the “uniform divergence” property (given by
lemma 2.1) is true for surfaces without conjugate points and so a piece of sphere also becomes
uniformly close to the unstable foliation in this more general setting. So this crucial aspect of the
proof can be transposed in the setting of surfaces without conjugate points. In the next paragraph,
we will use an additional argument which is specific to surfaces of nonpositive curvature.

4.3. Estimates on the induced Jacobian. As was already mentioned, the Jacobian J§; of the
map gﬁ,j appears in the WKB expansion of a Lagrangian state evolved under the action of the
operator Po ,U"P,,_, ---U"P,,. Precisely, by iterating the WKB Ansatz, we have to estimate the
following quantity (see equation (3.22) in [4]):

1

(32) Je(a@) = (Tgl @)l (g5l @) -+ T (g @)

This Jacobian appears in each term of the WKB expansion of a Lagrangian state evolved under
the operator P,, U"P,, ,---U"P,, as every a, in the expansion is defined using the operator
Té(.) (see definitions (30) and (31)). It is necessary to provide a way to bound this quantity as
it will appear in the control of every derivatives of the WKB expansion. According to the proof
in [4], if we are able to bound uniformly this quantity, the bound we will obtain is the one that
will appear in theorem 4.1. This point of the proof is the main difference with the proof in the
Anosov case. Our goal in this paragraph is to provide an upper bound on (32). The quantity

Ji(x) can be rewritten as
1 _ _ _ _ _
exp (2 (10g JgiL (@) +10g T5 o (g5 (@) -+ + log J (ggk’““’"(x)))) :

As the Lagrangian £/ become uniformly close to the unstable foliation when j tends to infinity,
we know that, for every &' > 0, there exists some integer j(n,€’) such that

Vi > j(n,€), Vp = (z,€) € £1(0), |log Jg'(x) — log J_J'(p)(a?ﬂ <,

where S%(p) generates the local unstable manifold at point p (which is a Lagrangian submanifold).
Therefore, we find that there exists a constant C(e’,n) (depending only on ¢’ and 7) such that,
uniformly with respect to k and to p in £¥(0),

k—1
/ - —j+1 " (1—k
Ti(@) < CEm)e™ TTTol csinny (957 @) = O mer 150 )" (@),
§=0
In the following, we will take &’ = neeg. The Jacobian J S_u"(p) measures the contraction of g~ along
the unstable direction. From the construction of the unstable Riccati solution U}'(s), we know
that U} (s) also measures the contraction of g~" along E*(p). In fact, according to section 2.1,

one has
Hdpg‘_Ei'tu(p)H < me.ﬂ;t U;,L(S)ds'

As a consequence, there exists an uniform constant C' (depending only on the manifold) such that:
1—k A=k prucoyg
JEe) < ol

Using then relation (6) between the discrete Riccati solution f and the continuous one, we find
that there exists a constant C/(e, 7, €p) such that, uniformly in k,

k—1
1 .
sup Ji(2) < Cle;m,e)e™ ™ exp | =2 > fola)

zemLF(0) =0

Finally, this last inequality gives us a bound on the quantity (32). This estimate is not as sharp
as the one derived in [4] (equation 3.23 for instance) however it is sufficient as the correction term
is not too large: it is of order A™°.
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Remark. We underline that we used the continuity of U" to go from the continuous representation
of the upper bound of Ji to the one in terms of the discrete Riccati solution. This property fails
for surfaces without conjugate points [5].

5. APPLYING THE UNCERTAINTY PRINCIPLE FOR QUANTUM PRESSURES

In this section, we would like to prove inequality (23) which was a crucial step of our proof. To
do this, we follow the same lines as in [17] (section 5.3) and prove the following proposition:

Proposition 5.1. With the notations of section 8, one has:
(33) (G )+ (.8 ) 2 —logC = (1+ ¢ +demu(h),

where p is defined by (21) and where C' € R does not depend on h (but depends on the other
parameters (e, €y, n)).

To prove this result, we will proceed in three steps. First, we will introduce an energy cutoff in
order to get the sharpest bound as possible in our application of the uncertainty principle. Then,

we will apply the uncertainty principle and derive a lower bound on p (ﬁ?*,@;) +p (ﬁ?i ,@;).
Finally, we will use the estimate of theorem 4.1 to conclude.

5.1. Energy cutoff. Before applying the uncertainty principle, we proceed to sharp energy cutoffs
50 as to get precise lower bounds on the quantum pressure (as it was done in [2], [4] and [3]). These
cutoffs are made in our microlocal analysis in order to get as good exponential decrease as possible
of the norm of the refined quantum partition. This cutoff in energy is possible because even if the
distributions pj are defined on T* M, they concentrate on the energy layer S*M. The following
energy localization is made in a way to compactify the phase space and in order to preserve the
semiclassical measure.

Let dp be a positive number less than 1 and xs,(¢) in C*(R, [0, 1]). Moreover, xs,(t) = 1 for
t| < e %/2 and ys,(t) = 0 for |t| > 1. As in [4], the sharp h-dependent cutoffs are then defined
in the following way:

Vhe (0,1), Yn €N, Yp e T*M, x™(p,h) == x5, (e "°h~ 1 (H(p) — 1/2)).

For n fixed, the cutoff (") is localized in an energy interval of size 2% k' ~% centered around the
energy layer £. In this paper, indices n will satisfy 2e™% k' ~% << 1. It implies that the widest
cutoff is supported in an energy interval of microscopic length and that n < Kg,|log |, where
Ks, < 5" Using then a non standard pseudodifferential calculus (see [4] for a brief reminder of
the procedure from [22]), one can quantize these cutoffs into pseudodifferential operators. We will
denote Op(x(™) the quantization of x(™. The main properties of this quantization are recalled in
the appendix of [17]. In particular, the quantization of these cutoffs preserves the eigenfunctions
of the Laplacian:

Proposition 5.2. [4] For any fized L > 0, there exists hy such that for any h < hr, any
n < Ks|logh| and any sequence 3 of length n, the Laplacian eigenstate verify

H(1 —Op (X("))) matn|| < B |¢all.

5.2. Applying theorem A.1. Let ||t = 1 be a fixed element of the sequence of eigenfunctions
of the Laplacian defined earlier, associated to the eigenvalue f%.

To get bound on the pressure of the suspension measure, the uncertainty principle should not be
applied to the eigenvectors 1y directly but it will be applied several times. Precisely, we will apply
it to each Pyvy, := P, Py (—n)ty where v = (v9,71) varies in {1,--- , K}?. In order to apply the
uncertainty principle to Py, we introduce new families of quantum partitions corresponding to
each 7.

Let v = (70,71) be an element of {1,---, K}2.
following families of indices:

We define v.a/ = (y9,71,¢’). Introduce the

={(a):v.a € I"(h)},
Kn(v) :=={(8) : 8’y € K"(h)}.
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We underline that each sequence « of I"(%) can be written under the form ~.o where o/ € Iy (7).
The same works for K" (h). Operators can be associated to these new families, for o’ € Iy(y) and
8" e Ki(v),
Tt = Paﬁl (nn)--- Pa'2 (2n),

Ty = P (—nn)--- Py (—21).
The families (7ar)arer,(y) and (7p)grer, () form quantum partitions of identity [17].
Given these new quantum partitions of identity, the uncertainty principle should be applied for
given initial conditions v = (7y0,7v1) at times 0 and 1. We underline that for o/ € I;(v) and
B e Kn(v):
(34) %Q/Uinp,y :’7',),,0/(]777 and 7~Tg/P.Y = TG,
where v.o/ € I"(h) and §'.y € K"(h) by definition. Equality (34) justifies that the definitions of
7 and 7 were slightly different (see (12) and (13)). It is due to the fact that we want to compose
7 and 7 with the same operator P,.
Suppose now that ||Py¢y| is not equal to 0. We apply the quantum uncertainty principle A.1
using that

(Ta')arers(v) and (7p)grek, () are partitions of identity;

e the cardinal of Ij,(y) and Kj(v) is bounded by N ~ h~%o where K is some fixed positive
number (depending on the cardinality of the partition K, on ag, on by and 7);

. Op(X(k/)) is a family of bounded operators Og (where k' is the length of §');

o the constants W.', and W _ are bounded by R

e the parameter ¢’ can be taken equal to ||Pyty|| 1AL where L is such that gl Ko <

e2knecop=1/2=cdo for every k < $|log h| (see proposition 5.2 and the upper bound in

theorem 4.1);

e U is an isometry;

° ¢h HP w 0 is a normalized vector.

Applying the uncertainty principle A.1 for quantum pressures, one gets:

Corollary 5.3. Suppose that || Py is not equal to 0. Then, one has
p#(U™"n) + px () > —2log (c}(U*") 4 L Ko=3 |\P7¢,-L||*1) ,

here ¢ (U™") — <W+ W R U35 Op(x*) )
where CX( ) a’elh($%¥€Kh(7) R B‘WHTQ i p(X )”

Under this form, the quantity ||P,yp||~! appears several times and we would like to get rid of
it. First, remark that the quantity ¢} (U~") can be bounded by

(35) ex(U") = max (W W 7o U 75,00 (M)

o
(%) -

where (x) means (y € {1,--- , K}? and o’ € I5(v), 3 € Kx(7)). This last quantity is independent
of . Then, one has the following lower bound:

—2log (C’Y(U My 4 pE o Ukl 1)
(36) > —21og (e (U7) + K0 ) + 2log || P, vnl 2.
as || Py¢n|l < 1. Now that we have given an alternative lower bound, we rewrite the entropy term
hz(U~ ”wh) of the quantum pressure pz (U~ "1/1h) as follows:
Re(U ™) == 3 [Farll~"nl? 0g s U~ Pyt
a’€Ir(y)

+ ) | FarU 1 og || Pyn 2.

o’ €Ir(7)
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Using the fact that vy is an eigenvector of U" and that (7o')arcr,(y) is @ partition of identity, one

has:
1

Pyl

The same holds for the entropy term hx (1&,&1) of the quantum pressure pﬁ(ﬁh) (using here equal-
ity (34)):

he(U™"y) = D rvartbnll® 1og |I7y.a0nl|* + log || Pysl|.

a’€ln(7)

~ 1

heln) = ~Tpros 30l nl o Il + log | Py
~W¥h

B E€EKR(7)

Combining these last two equalities with (36), we find that
— Y ratnlP gl ratnl? =2 Y rar il log W,

a’eln(y) a’€In(y)
= Y AmaatnlPloglmaAwnl® =2 D Imsawnl® log Wi,
BERn(7) B ERn()
b,
(37) > —2|| P,y log (CX(U—") T hL‘KO—£) .

This expression is very similar to the definition of the quantum pressure. We also underline that
this lower bound is trivial in the case where ||Py15]| is equal to 0. Using the following numbers:

F(v)
(38) C o = C Iy = C~r = s
e O etz FON [Py

one can derive, as in [17], the following property:

Corollary 5.4. One has:

— . e o b,
(39) p (ﬁ?ﬂc—;) +p (ﬁg’,ch) > —2log (cX(U_”) + hLin’*%) -C,
where C := log (max, c,) .

As expected, by a careful use of the entropic uncertainty principle, we have been able to obtain

> s
a lower bound on the pressures of the measures 7z, * and 7z, ~.

5.3. The conclusion. To conclude the proof of proposition 5.1, we use theorem 4.1 to give an

b
upper bound on ¢, (U~"). From our assumption on L, we know that REE0—S « e (U™). As
kn < ng(h)/eo, we also have that

ex (U™ < Cx(e,m, e9)h~ 7~ hoghenn(h),
For §g small enough, we find the expected property.[]
APPENDIX A. UNCERTAINTY PRINCIPLE FOR THE QUANTUM PRESSURE

In [4], generalizations of the entropic uncertainty principle were derived for quantum pressures.
We saw that the use of this thermodynamic formalism was crucial in our proof and we recall in
this section the main results from [4] (section 6) on quantum pressures. Consider two partitions
of identity ()2, and (7;)™, on L*(M), i.e.

j=1

N M

Zﬂzﬂk = Isz(M) and ZT;Tj = Isz(M).
k=1 j=1

We also introduce two families of positive numbers: (V},)Y_, and (W;)34,. We denote A :=
maxy, Vi, and B := max; W;. One can then introduce the quantum pressures associated to these

families, for a normalized vector ¢ in L?(M),

N N
Pr(®) == llmt 132 log I metbl 2 ary — 2 I1mktpll72ary log Vi
k=0 k=0



22 G. RIVIERE

and
M M
pr(¥) == =Y T 132 an log 75 132 (ary — 2D 7531172 ar log W
j=0 =0

The main result on these quantities that was derived in [4] was theorem 6.5:

Theorem A.1. Under the previous setting, suppose U is an isometry of L>(M) and suppose
(Ok) ", is a family of bounded operators. Let &' be a positive number and ¢ be a vector in H of
norm 1 such that

[(Id = Or)mipl| L2 ary < 0.
Then, one has
p-(UY) + pr(¥) > —2log (co(U) + max(N, M)ABJ'),
where co(U) := sup;  {Vi.W; || ;U Ok }-

APPENDIX B. KOLMOGOROV-SINAI ENTROPY

Let us recall a few facts about Kolmogorov-Sinai (or metric) entropy that can be found for
example in [23]. Let (X, B, 1) be a measurable probability space, I a finite set and P := (Py)aer
a finite measurable partition of X, i.e. a finite collection of measurable subsets that forms a
partition. Each P, is called an atom of the partition. Assuming 0log0 = 0, one defines the
entropy of the partition as:

(40) : Z w(Py)log u(Py) > 0.

acl

Given two measurable partitions P := (P,)acr and Q := (Q)sek, one says that P is a refinement
of @ if every element of () can be written as the union of elements of P and it can be shown that
H(p, Q) < H(u, P). Otherwise, one denotes PV Q := (P, N Qp)acr gek their join (which is still
a partition) and one has H(u, PV Q) < H(u, P) + H(u, Q) (subadditivity property). Let T be a
measure preserving transformation of X. The n-refined partition \/?Z_OIT_iP of P with respect to
T is then the partition made of the atoms (P,, N---NT~ ™" VP, ), cr». We define the entropy
with respect to this refined partition:

(41) Ho (. T,P):= Y s( nT-(-Np, 1)),

la|=n
where S(z) := —zlogz. Using the subadditivity property of entropy, we have for any integers n
and m:

(42) Hn+m(,LL,T, P) S H77«(1U’7T7 P) +Hm(,u‘OT7n’T7 P)

For the last equality, it is important to underline that we really use the T-invariance of the measure
1. A classical argument for subadditive sequences allows us to define the following quantity:

(43) hics(p, T, P) i= lim w
It is called the Kolmogorov Sinai entropy of (T, u) with respect to the partition P. The Kol-
mogorov Sinai entropy hxg(p, T') of (u, T) is then defined as the supremum of hxg(p, T, P) over
all partitions P of X.

A property of entropy we used in the paper is the so-called Abramov property [1]. Using the
notations of the article, one has

(44) hics (W™, 04) = < f+du2*> hics (7774 )
paES
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