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Abstract. We study the asymptotic properties of eigenfunctions of the Laplacian in the case
of a compact Riemannian surface of nonpositive sectional curvature. To do this, we look at se-
quences of distributions associated to them and we study the entropic properties of their accumu-
lation points, the so-called semiclassical measures. Precisely, we show that the Kolmogorov-Sinai
entropy of a semiclassical measure µ for the geodesic �ow gt is bounded from below by half of
the Ruelle upper bound, i.e.

hKS(µ, g) ≥
1

2

∫
S∗M

χ+(ρ)dµ(ρ),

where χ+(ρ) is the upper Lyapunov exponent at point ρ. The main strategy is the same as
in [17] except that we have to deal with weakly chaotic behavior.

1. Introduction

Let M be a compact, connected, C∞ riemannian manifold. For all x ∈ M , T ∗xM is endowed
with a norm ‖.‖x given by the metric over M . The geodesic �ow gt over T ∗M is de�ned as the

Hamiltonian �ow corresponding to H(x, ξ) := ‖ξ‖2x
2 . This quantity corresponds to the classical

kinetic energy in the case of the absence of potential. As any observable, this quantity can be

quantized via pseudodi�erential calculus and the quantum operator corresponding to H is −~2∆
2

where ~ is proportional to the Planck constant and ∆ is the Laplace Beltrami operator acting on
L2(M). Our main concern in this article will be to study the asymptotic behavior, as ~ tends to
0, of the following sequence of distributions:

∀a ∈ C∞o (T ∗M), µ~(a) =
∫
T∗M

a(x, ξ)dµ~(x, ξ) := 〈ψ~,Op~(a)ψ~〉L2(M),

where Op~(a) is a ~-pseudodi�erential operator of symbol a [8] and ψ~ satis�es

−~2∆ψ~ = ψ~.

An accumulation point (as ~ → 0) of such a sequence of distribution µ~ is called a semiclas-
sical measure. Moreover, one knows that a semiclassical measure is a probability measure on
S∗M := {‖ξ‖2x = 1} which is invariant under the geodesic �ow gt on S∗M . For manifolds of
negative curvature, the geodesic �ow on S∗M satis�es strong chaotic properties (Anosov property,
ergodicity of the Liouville measure) and as a consequence, it can be shown that almost all the
sequences (µ~)~→0 converge to the Liouville measure on S∗M [21, 24, 7]. This phenomenon is
known as the quantum ergodicity property. A main challenge concerning this result would be
to answer the Quantum Unique Ergodicity Conjecture [18], i.e. determine whether the Liouville
measure is the only semiclassical measure or not (at least for manifolds of negative curvature).

In [2], Anantharaman used the Kolmogorov-Sinai entropy to derive properties of semiclassical
measures on manifolds of negative curvature1. In particular, she showed that the Kolmogorov-
Sinai entropy of any semiclassical measure is positive. This result implies that the support of a
semiclassical measure cannot be restricted to a closed geodesic, i.e. eigenfunctions of the Laplacian
cannot concentrate only on closed geodesics in the high energy limit. In subsequent works, with
Nonnenmacher and Koch, more quantitative lower bounds on the entropy of semiclassical measures
were given [4, 3].

1In fact, her result was about manifolds with Anosov geodesic �ow, for instance manifolds of negative curvature.
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1.1. Kolmogorov-Sinai entropy. Let us recall a few facts about the Kolmogorov-Sinai (also
called metric) entropy (see [23] or appendix B for more details and de�nitions). It is a nonnegative
number associated to a �ow (gt)t and to a (gt)t-invariant measure µ, that estimates the complexity
of µ with respect to this �ow. For example, a measure carried by a closed geodesic will have
entropy zero while the Liouville measure has large entropy. Recall also that a standard theorem of
dynamical systems due to Ruelle [19] asserts that, for any invariant measure µ under the geodesic
�ow:

(1) hKS(µ, g) ≤
∫
S∗M

∑
j

χ+
j (ρ)dµ(ρ)

with equality if and only if µ is the Liouville measure in the case of an Anosov �ow [15]. In the
previous inequality, the χ+

j denoted the positive Lyapunov exponents of (S∗M, gt, µ) [6].
Regarding these properties, the main result of Anantharaman, Koch and Nonnenmacher was to
show that, for a semiclassical measure µ on an Anosov manifold, one has

hKS(µ, g) ≥
∫
S∗M

d−1∑
j=1

χ+
j (ρ)dµ(ρ)− (d− 1)λmax

2
.

where λmax := limt→±∞
1
t log supρ∈S∗M |dρgt| is the maximal expansion rate of the geodesic �ow

and the χ+
j 's are the positive Lyapunov exponents [6]. Compared with the original result from [2],

this inequality gives an explicit lower bound on the entropy of a semiclassical measure. For
instance, for manifolds of constant negative curvature, this lower bound can be rewritten as d−1

2 .
However, it can turn out that λmax is a very large quantity and in this case, the previous lower
bound can be negative (which would imply that it is an empty result). Combining these two
observations [4], they were lead to formulate the conjecture that, for any semiclassical measure µ,
one has

hKS(µ, g) ≥ 1
2

∫
S∗M

d−1∑
j=1

χ+
j (ρ)dµ(ρ).

They also asked about the extension of this conjecture to manifolds without conjugate points [4].
In a recent work [17], we were able to prove that their conjecture holds for any surface with an
Anosov geodesic �ow (for instance surfaces of negative curvature). Regarding our proof and the
nice properties of surfaces of nonpositive curvature [20, 11], it became clear that our result can be
adapted in the following way:

Theorem 1.1. Let M be a compact, connected, C∞ riemannian surface of nonpositive sectional
curvature and let µ be a semiclassical measure. Then,

(2) hKS(µ, g) ≥ 1
2

∫
S∗M

χ+(ρ)dµ(ρ),

where hKS(µ, g) is the Kolmogorov-Sinai entropy and χ+(ρ) is the upper Lyapunov exponent at
point ρ.

In particular, this result shows that the support of any semiclassical measure cannot be reduced
to closed unstable geodesics. We underline that our inequality is also coherent with the quasimodes
constructed by Donnelly. In [9], he considered the question of Quantum Unique Ergodicity for
packets of eigenfunctions and he proved that for this generalized question, you can construct
exceptional sequences of quasimodes that concentrate on �at parts of the surface (even if the
Liouville measure is ergodic) and that have in particular zero entropy. Our theorem on the
entropy of semiclassical measures holds for sequences of eigenfunctions of the Laplacian. So the
two situations are slightly di�erent but our inequality on the entropy (if generalized to quasimodes)
would be consistent with Donnelly's construction.

We can make a last observation on the assumptions on the manifold: it is not known whether
the Liouville measure is ergodic or not for the geodesic �ow on a surface of nonpositive curvature.
In fact, if the genus of the surface is larger than 1, then the best known result in this direction
is that there exists an open and dense invariant subset U of positive Liouville measure such that
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the restriction L|U of the Liouville measure is ergodic with respect to g|U [6]. The extension of
this result on the entropy of semiclassical measures raises the question of knowing whether one
could obtain an analogue of this result for weakly chaotic systems. For instance, regarding the
construction from [14], it would be interesting to have a lower bound for ergodic billiards.

Our purpose in this article is to prove theorem 1.1. Our strategy will be the same as in [17]
(and also [4]) so it is probably better (and easier) for the reader to have a good understanding
of the methods from these two references where the geometric situation is �simpler�. We will
focus on the main di�erences and refer the reader to [17, 4] for the details of several lemmas. The
crucial observation is that as in the Anosov case, surfaces of nonpositive curvature have continuous
stable and unstable foliations and no conjugate points. These properties were at the heart of the
proofs in [4, 3, 17] and we will verify that even if the properties of these stable/unstable directions
are weaker for surfaces of nonpositive curvature, they are su�cient to answer the question of
Anantharaman-Nonnenmacher in this weakly chaotic setting. In [4, 3, 17], there was a dynamical
quantity which was crucially used: the unstable Jacobian of the geodesic �ow. In the case of
surfaces of nonpositive curvature, one can introduce an analogue of it. This quantity comes from
the study of Jacobi �elds and is called the unstable Riccati solution Uu(ρ) [20]. In the case of
surfaces without conjugate points, Freire and Mañé have shown that this quantity is related to
the upper Lyapunov exponent at point ρ [12]. In fact, for any (gt)t-invariant probability measure
on S∗M , one has

µ a.e., χ+(ρ) = lim
T→+∞

1
T

∫ T

0

Uu(gsρ)ds,

where χ+(ρ) is the upper Lyapunov exponent at point ρ. Thanks to the Birkho� ergodic theorem,
the Ruelle inequality can be then rewritten as follows:

hKS(µ, g) ≤
∫
S∗M

Uu(ρ)dµ(ρ).

And also, the lower bound of theorem 1.1 can be rewritten as

(3) hKS(µ, g) ≥ 1
2

∫
S∗M

Uu(ρ)dµ(ρ).

The main adavantage of this new formulation is that the function in the integral of the lower
bound is de�ned everywhere (and not almost everywhere).

Remark. One could also ask whether it would be possible to extend this result to surfaces without
conjugate points. In fact, these surfaces also have a stable and unstable foliations with nice
properties [20] (and of course no conjugate points). The main di�culty is that the continuity of
Uu(ρ) is not true anymore [5] and at this point, we do not see any way of escaping this di�culty.

1.2. Organization of the article. In section 2, we will give a precise survey2 on surfaces of
nonpositive curvature and highlight the properties we will need to make the proof works. As
rewriting all the details of the proofs from [17, 4] would be very long and very similar to what
was already done in these earlier works, we will refer the reader to them for the proofs of some
lemmas and we will explain precisely which points need to be modi�ed at the di�erent stages of
the argument. In section 3, we will draw a precise outline of the proof. Then, in section 4, we
will explain how the main result from [4] can be adapted in the setting of surfaces of nonpositive
curvature. In section 5, we follow the same strategy as in [17] to derive a crucial estimate on the
quantum pressures. Finally, in the appendix, we recall some results on quantum pressure from [4]
and some facts about the Kolmogorov Sinai entropy.

Acknowledgements. I would like to sincerely thank my advisor Nalini Anantharaman for intro-
ducing me to this question and for encouraging me to extend the result from [17] to nonpositively
curved surfaces. I also thank her for many helpful discussions about this subject.

2We refer the reader to [11, 20] for more details.
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2. Classical setting of the article

2.1. Background on surfaces of nonpositive curvature. In this �rst section, we recall some
facts about nonpositively curved manifolds [20] (chapter 3), [11]. From this point of the article,
we �x M to be a smooth, compact and connected riemannian surface of nonpositive sectional
curvature.

2.1.1. Stable and unstable Jacobi �elds. We de�ne π : S∗M → M the canonical projection
π(x, ξ) := x. The vertical subspace Vρ at ρ = (x, ξ) is the kernel of the application dρπ. We
underline that it is in fact the tangent space at ρ of the 1-dimensional submanifold S∗xM .

We can also de�ne the horizontal subspace at ρ. Precisely, for Z ∈ TρS
∗M , we consider a

smooth curve c(t) = (a(t), b(t)), t ∈ (−ε, ε), in S∗M such that c(0) = ρ and c′(0) = Z. Then, we
de�ne the horizontal space Hρ as the kernel of the application Kρ(Z) = ∇a′(0)b(0) = ∇dρπ(Z)b(0),
where ∇ is the Levi-Civita connection. This subspace contains XH(ρ) the vector �eld tangent to
the Hamiltonian �ow and it is of dimension 2.

We know that we can use these two subspaces to split the tangent space TρS
∗M = Hρ ⊕ Vρ.

This allows us to de�ne the Sasaki metric on S∗M [20] (p. 18) that splits these two subsaces into
orthogonal spaces, namely for every ρ = (x, ξ) ∈ S∗M and for every X,Y ∈ TρS∗M ,

〈X,Y 〉ρ := gx (dρπ(X), dρπ(Y )) + gx (Kρ(X),Kρ(Y )) ,

where gx is the metric at x on the riemannian manifold M . Using this decomposition, we would
like to recall an important link between the linearization of the geodesic �ow and the Jacobi �elds
on M . To do this, we underline that for each point ρ in S∗M , there exists a unique unit speed
geodesic γρ. Then we de�ne a Jacobi �eld in ρ (or along γρ) as a solution of the di�erential
equation:

J”(t) +R(γ′ρ(t), J(t))γ′ρ(t) = 0,
where R(X,Y )Z is the curvature tensor applied to the vector �elds X, Y and Z and J′(t) =
∇γ′ρ(t)J(t).

Recall that we can interpret Jacobi �elds as geodesic variation vector �elds [11]. Precisely,
consider a C∞ family of curves cs : [a, b]→M , s in (−ε, ε). We say that it is a smooth variation of
c = c0. It de�nes a corresponding variation vector �eld Y (t) = ∂

∂s (cs(t))|s=0 that gives the initial

velocity of s 7→ cs(t). If we suppose now that c is a geodesic of M , then a C2 vector �eld Y (t) on
c is a Jacobi vector �eld if and only if Y (t) is the variation vector �eld of a geodesic variation of
c (i.e. ∀s ∈ (−ε, ε), cs is a geodesic of M). For instance, γ′ρ(t) and tγ′ρ(t) are Jacobi vector �elds
along γρ.

Consider now a vector (V,W ) in TρS
∗M given in coordinates Hρ ⊕ Vρ. Using the canonical

identi�cation given by dρπ and Kρ, there exists a unique Jacobi �eld JV,W (t) in ρ whose initial
conditions are JV,W (0) = V and J′V,W (0) = W , such that

dρg
t(V,W ) = (JV,W (t), J′V,W (t))

in coordinatesHgtρ⊕Vgtρ [20] (lemma 1.4). De�neNρ the subspace of TρS∗M of vectors orthogonal
to XH(ρ) and Hρ the intersection of this subspace with Hρ. Using the previous property on Jacobi
�elds, we know that the subbundle N perpendicular to the Hamiltonian vector �eld is invariant
by gt and that we have the following splitting [20] (lemma 1.5):

TρS
∗M = RXH(ρ)⊕Hρ ⊕ Vρ.

These properties can be extended to any energy layer E(λ) := {‖ξ‖2x = λ} for any positive λ.
Following [20] (lemma 3.1), we can construct two particular Jacobi �elds along γρ. We denote
(γ′ρ(t), e(t)) an orthonormal basis de�ned along γρ(t). Given a positive T and because there are
no conjugate points on the surface M (Hadamard-Cartan theorem [11, 20]), there exists a unique
Jacobi �eld JT (t) such that JT (0) = e(0) and JT (T ) = 0. Moreover, JT (t) is perpendicular to γρ(t)
for all t in R [20] (p. 50). As a consequence, JT (t) can be identi�ed with its coordinate along e(t)
(as Tγρ(t)M is of dimension 2). A result due to Hopf (lemma 3.1 in [20]) tells us that the limits

lim
T→+∞

JT (t) and lim
T→−∞

JT (t)
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exist. They are denoted Jsρ(t) and Juρ(t) (respectively the stable and the unstable Jacobi �eld).
They satisfy the simpli�ed one dimensional Jacobi equation:

J”(t) +K(t)J(t) = 0,

where K(t) = K(γρ(t)) is the sectional curvature at γρ(t). They are never vanishing Jacobi
�elds with J∗ρ(0) = e(0) and for all t in R, they are perpendicular to γ′ρ(t). Moreover, we have

‖J∗′ρ (t)‖ ≤
√
K0‖J∗ρ(t)‖ for every t in R (where−K0 is some negative lower bound on the curvature).

Using the previous link between geodesic �ow and Jacobi �elds, we can lift these subspaces
to invariant subspaces Es(ρ) and Eu(ρ) called the Green stable and unstable subspaces. These
subspaces have dimension 1 (asM is a surface) and are included in Nρ. A basis of Es(gtρ) is given
by (Jsρ(t), Js

′

ρ (t)) in coordinates Hgtρ ⊕ Vgtρ. We can underline that both subspaces are uniformly
transverse to Vρ and that it can happen that they are equal to each other (which was not the case
in the Anosov setting). In the case of nonpositive curvature, these subspaces depend continuously
in ρ and are integrable as in the Anosov case [11].

Remark. We underline that we could develop the same construction for manifolds without con-
jugate points and the same properties would be true except the continuity of the stable/unstable
foliation [5].

In the case where the Green subspaces attached to ρ are linearly independent, a splitting of Nρ
is given by Eu(ρ)⊕Es(ρ) and the splitting holds for all the trajectory. For the opposite case, we
know that the Green subspaces attached to ρ (and hence to a geodesic γρ) are linearly dependent
if and only if the sectional curvature is vanishing at every point of the geodesic γρ [20]. As a
consequence, we cannot use the same kind of splitting. However, there exists a splitting of Nρ
that we can use in both cases, precisely Eu(ρ)⊕ Vρ.

2.1.2. Riccati equation. The one dimensional Jacobi equation de�ned earlier gives rise to the Ric-
cati equation:

U ′(t) + U2(t) +K(t) = 0,
where U(t) = J′(t)J(t)−1 for non vanishing J. Then, we de�ne the corresponding unstable Riccati

solution associated to the unstable Jacobi �eld as Uuρ (t) := Ju′ρ (t)(Juρ(t))−1. It is a nonnegative
quantity that controls the growth of the unstable Jacobi �eld (in dimension 2) as follows:

‖Juρ(t)‖ = ‖Juρ(0)‖e
∫ t
0 U

u
ρ (s)ds.

The same works for the stable Jacobi �eld. Both quantities are continuous3 with respect to
ρ. We underline that, we can use the previous results to obtain the bound ‖dρgt|Eu(ρ)‖ ≤√

1 +K0e
∫ t
0 U

u
ρ (s)ds [20] (p.53 − 54). So the unstable Riccati solution describe the in�nitesimal

growth of the geodesic �ow along the unstable direction. As for the unstable Jacobian, Freire
and Mañé showed that the unstable Riccati solutions are related to the Lyapunov exponents [12].
In fact, they proved that in the case of nonpositive curvature (and more generally for surfaces
without conjugate points), the upper Lyapunov exponent at point ρ of a (gt)t-invariant measure
µ is given by

µ a.e., χ+(ρ) = lim
T→+∞

1
T

∫ T

0

Uu(gsρ)ds.

2.1.3. Divergence of vanishing Jacobi �elds. A last point we would like to recall is a result due to
Green [13] and to Eberlein in the general case [10]. It asserts that for any positive c there exists a
positive T = T (c) such that for any ρ in S∗M and for any nontrivial Jacobi �eld J(t) along γρ such
that J(0) = 0 and ‖J′(0)‖ ≥ 1, for all t larger than T , we have ‖J(t)‖ ≥ c (proposition 3.1 [20]). In
the case of manifolds without conjugate points, this property of uniform divergence only holds in
dimension 2 and it will be crucially used in the following (for manifolds without conjugate points
of higher dimension, the same result holds but without any uniformity in ρ). Finally, all these
properties allow to prove the following lemma:

3The continuity in ρ is a crucial property that we will use in our proof. We underline that it is not true if we
only suppose the surface to be without conjugate points [5].
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Lemma 2.1. Let v = (0, V ) be a unit vertical vector at ρ. Then for any c > 0, there exists
T = T (c) > 0 (independent of ρ and of v) such that for any t ≥ T , ‖dρgtv‖ ≥ c.

As gt preserves the riemannian volume on S∗M (given by the Sasaki metric), we know that the
jacobian of dρg

t from Nρ = Eu(ρ)⊕Vρ to Ngtρ = Eu(gtρ)⊕Vgtρ is uniformly bounded. Combining
the fact ‖dρgtvu‖ is nondecreasing for every vu in Eu(ρ) (and every t ≥ 0) and lemma 2.1, we
�nd that, for κ > 0, there exists T = T (κ) such that the angle between Eu(gtρ) and Rdρgtv is
bounded by some κ for every t ≥ T , for every ρ in S∗M and for every unit vector v in Vρ.

As, it will be useful in the article, we would like to show that our discussion allows to have a
control of ‖dρgt‖ (for t ≥ 0) in terms of the unstable Riccati solution.

In order to obtain this control, we use the splitting of TρS
∗M given by RXH(ρ) ⊕ Eu(ρ) ⊕

Vρ. These three subspaces are uniformly transverse so we only have to give an estimate of
‖dρgtE→T∗

gtρ
M‖ when E is one of them. In the case where E = RXH(ρ), it is bounded by 1

and in the case where E = Eu(ρ), it is bounded by
√

1 +K0e
∫ t
0 U

u
ρ (s)ds. In the last case, we �x a

small step of time η > 0. Then, we consider e0 a unit vector in Vρ and for 0 ≤ pη ≤ t, we de�ne

the epη as the unit vector
dρg

pηe0
‖dρgpηe0‖ . We can write, for k := [t/η],

‖dρgkηe0‖gkηρ = |〈dρgkηe0, ekη〉gkηρ|

= |〈dg(k−1)ηρg
ηe(k−1)η, ekη〉gkηρ · · · 〈dρgηe0, eη〉gηρ|.

We also de�ne the corresponding sequence eupη := dρg
pηeu0

‖dρgpηeu0 ‖
of unit unstable vectors, where eu0 :=

(Juρ (0),Ju
′

ρ (0))

‖(Juρ (0),Ju′ρ (0))‖ρ
. From lemma 2.1, we know that epη becomes uniformly close (in ρ) to eupη. So,

log |〈dg(p−1)ηρg
ηe(p−1)η, epη〉gpηρ| becomes uniformly close to log |〈dg(p−1)ηρg

ηeu(p−1)η, e
u
pη〉gpηρ|. In

particular, for every δ′ > 0, there exists a constant C > 0 such that

‖dρgkηe0‖gkηρ ≤ Cekηδ
′
|〈dg(k−1)ηρg

ηeu(k−1)η, e
u
kη〉gkηρ · · · 〈dρgηeu0 , euη〉gηρ|.

Again, this last quantity is equal to Cekηδ
′‖dρgkηeu0‖gkηρ. From the properties of the unstable

Riccati solution, this quantity is bounded by Cekηδ
′
e
∫ kη
0 Uuρ (s)ds (with C uniform in ρ). As the

subspaces RXH(ρ), Vρ and Eu(ρ) are uniformly transverse to each other, we �nally deduce that

for every δ′ > 0, there exists C > 0 such that for every ρ ∈ S∗M , ‖dρgt‖ ≤ Cetδ
′
e
∫ t
0 U

u
ρ (s)ds.

2.2. Discretization of the unstable Riccati solution. For θ small positive number (θ will be
�xed all along the paper), one de�nes

Eθ :=
{

(x, ξ) ∈ T ∗M : 1− 2θ ≤ ‖ξ‖2x ≤ 1 + 2θ
}
.

From previous section, we know that there exists a constant b0 such that

∀ρ ∈ Eθ, 0 ≤ Uu(ρ) ≤ b0.

This function will replace the logarithm of the unstable Jacobian log Ju in the proof from [17].
The situation is slightly di�erent from the case of an Anosov �ow as we do not have that Uu is
uniformly bounded from below by some positive constant, a property that was crucially to prove
theorem 1.2 in [17]. We solve this problem by introducing a small positive parameter ε0 and
de�ning an auxiliary function

Uu0 (ρ) := sup{Uu(ρ), ε0}.
We also �x ε and η two small positive constants lower than the injectivity radius of the manifold
(that we suppose to be larger than 2). We choose η small enough to have (2 + b0

ε0
)b0η ≤ ε

2 (as

in [17], this property is only used in the proof of lemma 3.1). We underline that there exists d0 > 0
such that if

(4) ∀ (ρ, ρ′) ∈ Eθ × Eθ, d(ρ, ρ′) ≤ d0 ⇒ |Uu(ρ)− Uu(ρ′)| ≤ ε0ε.

We also choose η small enough to have

∀ρ ∈ Eθ, ∀0 ≤ s ≤ η, |Uu(ρ)− Uu(gsρ)| ≤ εε0.
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We make the extra assumption that the small parameter ε used for the continuity is smaller than
ε0, i.e.

(5)

(
2 +

b0
ε0

)
b0η ≤

ε

2
� ε0.

In particular, d0 can (and will) be chosen independently of ε0 (by taking ε2/2 instead of εε0 in the
previous continuity relations).

Discretization of the manifold. As in the case of Anosov surfaces, our strategy to prove theorem 1.1
will be to introduce a discrete reparametrization of the geodesic �ow. Regarding this goal, we cut

the manifoldM and precisely, we consider a partitionM =
⊔K
i=1Oi of diameter smaller than some

positive δ. Let (Ωi)Ki=1 be a �nite open cover of M such that for all 1 ≤ i ≤ K, Oi b Ωi. For
γ ∈ {1, · · · ,K}2, de�ne the following open subset of T ∗M :

Vγ := (T ∗Ωγ0 ∩ g−ηT ∗Ωγ1) ∩ Eθ.

We choose the partition (Oi)Ki=1 and the open cover (Ωi)Ki=1 of M such that (Vγ)γ∈{1,··· ,K}2 is a

�nite open cover of diameter smaller4 than d0 of Eθ. For γ := (γ0, γ1), we de�ne f(γ) and f0(γ)
as in the case of an Anosov �ow i.e.

f0(γ) := η inf{Uu0 (ρ) : ρ ∈ Vγ} and f(γ) := η inf{Uu(ρ) : ρ ∈ Vγ},
if Vγ is nonempty, ηb0 otherwise. Compared with the Anosov case, we will have slightly di�erent
properties for the function f(γ), i.e.

(6) ∀ρ ∈ Vγ ,
∣∣∣∣∫ η

0

Uuρ (s)ds− f(γ)
∣∣∣∣ ≤ ηε0ε.

We also underline that the function f0 satis�es the following bounds, for γ ∈ {1, · · · ,K}2,
ε0η ≤ f0(γ) ≤ b0η.

Finally, let α = (α0, α1, · · · ) be a (�nite or in�nite) sequence of elements in {1, · · · ,K} whose
length is larger than 1 and de�ne:

(7) f+(α) := f0 (α0, α1) ≤ ε

2
and f(α) := f(α0, α1) ≤ ε

2
.

In the following, we will also have to consider negative times. To do this, we de�ne the analogous
functions, for β := (· · · , β−1, β0) of �nite (or in�nite) length,

f−(β) := f0(β−1, β0) and f(β) := f(β−1, β0).

Remark. We underline that the functions f+ and f− are de�ned from Uu0 while f is de�ned from
Uu. This distinction will be important in the following.

3. Proof of theorem 1.1

Let (ψ~k) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the
eigenvalues −~−2

k such that the corresponding sequence of distributions µk on T
∗M converges as k

tends to in�nity to the semiclassical measure µ. For simplicity of notations and to �t semiclassical
analysis notations, we will denote ~ tends to 0 the fact that k tends to in�nity and ψ~ and −~−2

the corresponding eigenvector and eigenvalue. To prove the inequality of theorem 1.1, we will give
a symbolic interpretation of a semiclassical measure and apply results on suspension �ows to this
measure [1].

Let ε′ > 4ε be a positive number, where ε was de�ned in section 2.2. As in the Anosov setting,
the link between the two quantities ε and ε′ is only used to obtain a theorem on product of
pseudodi�erential operators from sections 6 and 7 in [17] (here theorem 3.2). In the following of
the article, the Ehrenfest time nE(~) will be the quantity

(8) nE(~) := [(1− ε′)| log ~|].

4In particular, the diameter of the partition depends on θ and ε (but not on ε0).
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We underline that it is an integer time and that, compared with usual de�nitions of the Ehrenfest
time, there is no dependence on the Lyapunov exponent. We also consider a smaller non integer
time

(9) TE(~) := (1− ε)nE(~).

Before entering the details of the proof, we would like to say a few words about the Ehrenfest
time and about ideas that are behind our strategy from [17]. In order to prove theorem 1.1, we
need to have a precise understanding of the range of validity of the semiclassical approximation.
For instance, if one considers a smooth symbol a compactly supported in a small neighborhood of
S∗M , it can be shown [4] that

∀|t| ≤ TE(~)
λmax

,
∥∥∥e− ıt~∆

2 Op~(a)e
ıt~∆

2 −Op~(a ◦ gt)
∥∥∥
L2(M)→L2(M)

= oa(1),

where λmax := limt→±∞
1
t log supρ∈S∗M |dρgt| is the maximal expansion rate of the geodesic

�ow. This result tells us that the semiclassical approximation remains valid for times of order
TE(~)/λmax. This was the version of The Egorov theorem that was used by Anantharaman, Koch
and Nonnenmacher in [4, 3] and the λmax term in their lower bound came from this Egorov prop-
erty. In [17], we managed to overcome this problem by observing that the range of validity of
the semiclassical approximation depends also on the symbol you consider. In order to compute
entropy, the symbols we will be interested in will in fact be of the form Qα0 × · · ·Qαk ◦ gkη where
Qαj is compactly supported in T ∗Ωαj ∩ Eθ (see (41) for instance). An important aspect of the
proof is that this symbol remains in a nice class of symbols amenable to pseudodi�erential calculus
as long as

(10)

k−2∑
j=0

f0(αj , αj+1) ≤ TE(~)
2

.

An analoguous property was used in [17] (section 7) in order to prove a subadditivity property
(here theorem 3.2). This property means that there exists a local time for which the range of
validity of the semiclassical approximation is longer than the usual Ehrenfest time TE(~)/λmax.
Precisely, the largest integer k for which relation (10) is true will be the local Ehrenfest time for the
symbol Qα0 × · · ·Qαk ◦ gkη. In order to prove our main theorem, we will introduce a �suspension
of the quantum dynamics� for which the sum in (10) will appear naturally.

We draw now a precise outline of the proof of theorem 1.1 which is similar to the one we used in
the Anosov case [17]. We will refer the reader to this reference for the proof of several lemmas. The
main di�erences with the Anosov case is that we have to introduce a thermodynamical formalism
to treat the problem of �at parts of the surface.

3.1. Quantum partitions of identity. In order to �nd a lower bound on the metric entropy of
the semiclassical measure µ, we would like to apply the uncertainty principle for quantum pressure
(see appendix A) and see what informations it will give (when ~ tends to 0) on the metric entropy
of the semiclassical measure µ. To do this, we de�ne quantum partitions of identity corresponding
to a given partition of the manifold. We recall the notations from [17].

3.1.1. Partitions of identity. In paragraph 2.2, we considered a partition of small diameter (Oi)Ki=1

of M . We also de�ned (Ωi)Ki=1 a corresponding �nite open cover of small diameter of M . By
convolution of the characteristic functions 1Oi , we obtain P = (Pi)i=1,..K a smooth partition of
unity on M i.e. for all x ∈M :

K∑
i=1

P 2
i (x) = 1.

We assume that for all 1 ≤ i ≤ K, Pi is an element of C∞c (Ωi). To this classical partition
corresponds a quantum partition of identity of L2(M). In fact, if Pi denotes the multiplication
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operator by Pi(x) on L2(M), then one has:

(11)

K∑
i=1

P ∗i Pi = IdL2(M).

3.1.2. Re�nement of the quantum partition under the Schrödinger �ow. Like in the classical setting
of entropy, we would like to make a re�nement of the quantum partition. To do this re�nement,

we use the Schrödinger propagation operator U t = e
ıt~∆

2 . We de�ne A(t) := U−tAU t, where A is
an operator on L2(M). To �t as much as possible with the metric entropy, we de�ne the following
operators:

(12) τα = Pαk(kη) · · ·Pα1(η)Pα0

and

(13) πβ = Pβ−k(−kη) · · ·Pβ−2(−2η)Pβ0Pβ−1(−η),

where α = (α0, · · · , αk) and β = (β−k, · · · , β0) are �nite sequences of symbols such that αj ∈ [1,K]
and β−j ∈ [1,K]. We can remark that the de�nition of πβ is the analogue for negative times of the
de�nition of τα. The only di�erence is that we switch the two �rst terms β0 and β−1. The reason
of this choice relies on the application of the quantum uncertainty principle (see appendix A).
One can see that for �xed k and using rules of pseudodi�erential calculus,

(14) ‖Pαk(kη) · · ·Pα1(η)Pα0ψ~‖2 → µ(P 2
αk
◦ gkη × · · ·P 2

α1
◦ gη × P 2

α0
) as ~→ 0.

This last quantity is the one used to compute hKS(µ, gη) (with the notable di�erence that the
Pj are here smooth functions instead of characteristic functions). As in [17], we will study for
which range of times, the operator τα is a pseudodi�erential operator of symbol Pαk ◦ gkη ×
· · ·Pα1 ◦ gη ×Pα0 (see (14)). In [4] and [3], they only considered kη ≤ | log ~|/λmax where λmax :=
limt→±∞

1
t log supρ∈S∗M |dρgt|. This choice was not optimal and in the following, we try to de�ne

sequences α for which we can say that τα is a pseudodi�erential operator.

3.1.3. Index family adapted to the variation of the unstable Riccati solution. Let α = (α0, α1, · · · )
be a sequence (�nite or in�nite) of elements of {1, · · · ,K} whose length is larger than 1. We de�ne
a natural shift on these sequences

σ+((α0, α1, · · · )) := (α1, · · · ).

For negative times and for β := (· · · , β−1, β0), we de�ne the backward shift

σ−((· · · , β−1, β0)) := (· · · , β−1).

In the following, we will mostly use the symbol x for in�nite sequences and reserve α and β for
�nite ones. Then, using notations of section 2.1, index families depending on the value of the
unstable Riccati solutions can be de�ned as follows:

(15) Iη(~) :=

{
(α0, · · · , αk) :

k−2∑
i=1

f+

(
σi+α

)
≤ TE(~) <

k−1∑
i=1

f+

(
σi+α

)}
,

(16) Kη(~) :=

{
(β−k, · · · , β0) :

k−2∑
i=1

f−
(
σi−β

)
≤ TE(~) <

k−1∑
i=1

f−
(
σi−β

)}
.

We underline that f+, f− ≥ ε0η ensures that we consider �nite sequences. These sets de�ne
the maximal sequences for which we can expect rules from symbolic calculus to hold for the
corresponding τα. The sums used to de�ne these sets were already used in [17]. We can think of
the time |α|η as a stopping time for which τα remains a nice pseudodi�erential operator in a nice
class of symbols.

A good way of thinking of these families of words is by introducing the sets

Σ+ := {1, · · · ,K}N and Σ− := {1, · · · ,K}−N.
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Once more, the sets Iη(~) (resp. Kη(~)) lead to natural partitions of Σ+ (resp. Σ−). Families
of operators can be associated to these families of index: (τα)α∈Iη(~) and (πβ)β∈Kη(~). One can
show that these partitions form quantum partitions of identity (lemma 5.1 in [17]):∑

α∈Iη(~)

τ∗ατα = IdL2(M) and
∑

β∈Kη(~)

π∗βπβ = IdL2(M).

3.2. Symbolic interpretation of semiclassical measures. Now that we have de�ned these
partitions of variable size, we want to show that they are adapted to compute the pressure of a
certain measure with respect to some reparametrized �ow associated to the geodesic �ow. To do
this, we proceed as in [17] and provide a symbolic interpretation of the quantum partitions. We
denote Σ+ := {1, · · · ,K}N. We also denote Ci the subset of sequences (xn)n∈N such that x0 = i.
De�ne also:

(17) [α0, · · · , αk] := Cα0 ∩ · · · ∩ σ−k+ Cαk ,
where σ+ is the shift σ+((xn)n∈N) = (xn+1)n∈N (it �ts the notations of the previous section). The
set Σ+ is then endowed with the probability measure (not necessarily σ+-invariant):

µ
Σ+
~ ([α0, · · · , αk]) = µ

Σ+
~
(
Cα0 ∩ · · · ∩ σ−k+ Cαk

)
= ‖Pαk(kη) · · ·Pα0ψ~‖2.

Using the property of partition of identity, it is clear that this de�nition ensures the compatibility
conditions to de�ne a probability measure [23]:∑

αk+1

µ
Σ+
~ ([α0, · · · , αk+1]) = µ

Σ+
~ ([α0, · · · , αk]) .

Then, we can de�ne the suspension �ow, in the sense of Abramov, associated to this probability
measure. To do this, the suspension set is de�ned as

(18) Σ+ := {(x, s) ∈ Σ+ × R+ : 0 ≤ s < f+ (x)}.
Recall that the roof function f+ is de�ned as f+(x) := f0(x0, x1).We de�ne a probability measure

µ
Σ+
~ on Σ+:

(19) µ
Σ+
~ =

µ
Σ+
~ × dt∫

Σ+
f+dµ

Σ+
~

.

The suspension semi-�ow associated to σ+ is for time s:

(20) σs+ (x, t) :=

σn−1
+ (x), s+ t−

n−2∑
j=0

f+

(
σj+x

) ,

where n is the only integer such that

n−2∑
j=0

f+

(
σj+x

)
≤ s+ t <

n−1∑
j=0

f+

(
σj+x

)
.

Remark. We underline that we used the fact that f+ > 0 to de�ne the suspension �ow. If we had
considered f , we would not have been able to construct the suspension �ow as f could be equal
to 0.

Remark. It can be underlined that the same procedure holds for the partition (πβ). The only
di�erences are that we have to consider Σ− := {1, · · · ,K}−N, σ−((xn)n≤0) = (xn−1)n≤0 and that
the corresponding measure is, for k ≥ 1:

µ
Σ−
~ ([β−k, · · · , β0]) = µ

Σ−
~
(
σ−k− Cβ−k ∩ · · · ∩ Cβ0

)
= ‖Pβ−k(−kη) · · ·Pβ0Pβ−1(−η)ψ~‖2.

For k = 0, one should take the only possibility to assure the compatibility condition:

µ
Σ−
~ ([β0]) =

K∑
j=1

µ
Σ−
~ ([β−1, β0]) .
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The de�nition is quite di�erent from the positive case but in the semiclassical limit, it will not
change anything as Pβ0 and Pβ−1(−η) commute. Finally, the �past� suspension set can be de�ned
as

Σ− := {(x, s) ∈ Σ− × R+ : 0 ≤ s < f−(x)}.

Consider the partition C̃ := ([α])α∈Iη(~) of Σ+. A partition C+

~ of Σ+ can be de�ned starting

from the partition C̃ and [0, f+(α)[. An atom of this suspension partition is an element of the form

C+

α = [α] × [0, f+(α)[. For Σ
−
(the suspension set corresponding to Σ−), we de�ne an analogous

partition C−~ = ([β]× [0, f−(β)[)β∈Kη(~).
In the case of the Anosov geodesic �ows [17], we used these partitions and show that they could

be used to interpret some quantum entropy as the entropy of a re�ned partition of Σ
+
. Then,

we used an entropic uncertainty principle taken from [4] to derive a lower bound on the quantum
entropy. We will do the same thing here but we will have to be more careful and we will apply the
entropic uncertainty principle for quantum pressures as in [4] (see section A for a brief reminder).
We introduce the weights:

W+
α := exp

1
2

k−1∑
j=1

f(σj+α)

 and W−β := exp

1
2

k−1∑
j=1

f(σj−β)

 .

We underline that the weights depends on f and not f+ or f−. It came from the fact that f is
the function that appears in theorem 4.1. We introduce the associated quantum pressure5:

(21) p
(
µ

Σ+
~ , C+

~

)
:= H

(
µ

Σ+
~ , C+

~

)
− 2

∑
α∈Iη(~)

µ
Σ+
~

(
C+

α

)
logW+

α

and

(22) p
(
µ

Σ−
~ , C−~

)
:= H

(
µ

Σ−
~ , C−~

)
− 2

∑
β∈Kη(~)

µ
Σ−
~

(
C−β
)

logW−β .

Thanks to proposition 5.1, we know that

(23) p
(
µ

Σ+
~ , C+

~

)
+ p

(
µ

Σ−
~ , C−~

)
≥ − logC − (1 + ε′ + 4ε)nE(~),

where C is a constant that does not depend on ~.

Remark. This last inequality is a crucial step to prove theorem 1.1. We will recall how one can
get such a lower bound in section 5. This inequality corresponds to proposition 5.3 in [17]. The
strategy of the proof is exactly the same except that we have to deal with quantum pressures and
not quantum entropies (see section 5). However, we can follow the same lines as in section 5.3.2
in [17] and obtain a lower bound that depends on the bound from theorem 4.1. At this point,
there is a di�erence because theorem 4.1 was proved in [4] for Anosov �ows. In section 4, we will
show that the proof of this result from [4] can be adapted in the setting of nonpositively curved
surfaces.

The partitions C+

~ and C−~ are not exactly re�ned partitions of the suspension �ow (as in
de�nition (41) for instance). However, as in the Anosov setting, one can prove that they are
re�nements of �true re�ned partitions� of the suspension �ow. A notable di�erence is that we will
not consider time 1 of the suspension �ow. Instead of it, we �x a large integer N0 (such that6

ε′ � 1/N0 � ε0) and consider time 1/N0 of the �ow and its iterates. Precisely, as in [17], one can
prove the following lemma:

Lemma 3.1. Let N0 be a positive integer de�ned as previously. There exists an explicit partition

C+

N0
of Σ+, independent of ~ such that ∨nE(~)N0−1

i=0 σ
− i
N0

+ C+ is a re�nement of the partition C+

~ .

5We refer the reader to appendix B for the de�nition of H.
6To summarize the relations between the di�erent parameters, we have ε

4
< ε′ � 1

N0
� ε0. Moreover η depends

on ε and ε0 and tends to 0 when ε tends to 0 and ε0 is �xed.
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Moreover, let n be a �xed positive integer. Then, an atom of the re�ned partition ∨n−1
i=0 σ

− i
N0

+ C+

is of the form [α] × B(α), where α = (α0, · · · , αk) is a k + 1-uple such that (α0, · · · , αk) veri�es

n
N0

(1− ε) ≤
k−1∑
j=0

f+

(
σj+α

)
≤ n

N0
(1 + ε) and B(α) is a subinterval of [0, f+(α)[.

Remark. This lemma is the exact analogue of lemma 4.1 in [17] and its proof is the same: the
only di�erence is that we consider times 1/N0 instead of time 1. In particular, in the proof, the

partition C+

N0
is constructed from7 Ĩη(1/N0) and not from Ĩη(1). We also underline that we have

only stated the result in the case of σ+. The same results holds for σ−: there exists an adapted

partition C−N0
with the same properties.

As in the Anosov case, we would like to use this lemma to rewrite the quantum pressure in
terms of the pressure of a re�ned partition. To do this, we use basic properties of the classical
entropy (see appendix B) to �nd that

(24) H
(
µ

Σ+
~ , C+

~

)
≤ HN0nE(~)

(
µ

Σ+
~ , σ

1
N0
+ , C+

N0

)
,

where Hn(.) is de�ned by (41). Consider now an atom A of the partition ∨nE(~)N0−1
j=0 σ

− j
N0

+ C+

N0
.

There exists an unique family (γ0, · · · , γnE(~)N0−1) in Ĩη(1/N0)N0nE(~) corresponding to this atom
and we de�ne the associated weight as

W+
A :=

N0nE(~)−1∏
j=0

W+
γj .

From lemma 3.1, we know that for every such A, there exists α in Iη(~) such that A is a subset
of [α]× [0, f+(α)[. From the proof of this lemma (see section 5.2.3 in [17]), we know that α is of
the form (γ̃0, · · · , γ̃nE(~)N0−1) where every γ̃j is given by γj where we have erased at most the last
b0/ε0 + 1 letters. In particular, this implies that

W+
A ≤ exp

(
2N0nE(~)

(
b0
ε0

+ 1
)
b0η

)
W+
α .

Recall that we have taken
(
b0
ε0

+ 1
)
b0η ≤ ε/2. One can then write the following inequality

−2
∑

α∈Iη(~)

µ
Σ+
~

(
C+

α

)
logW+

α

(25) ≤ −2
∑

A∈∨N0nE(~)−1
j=0 σ

− j
N0 C+

N0

µ
Σ+
~ (A) logW+

A + 2εN0nE(~).

We introduce the re�ned pressure at times n:

pn

(
µ

Σ+
~ , σ

1
N0
+ , C+

N0

)
:= Hn

(
µ

Σ+
~ , σ

1
N0
+ , C+

N0

)
−2

∑
A∈∨n−1

j=0 σ
− j
N0 C+

N0

µ
Σ+
~ (A) logW+

A .

Finally, combining inequalities (24) and (25) with (23), we derive that

− logC − (1 + ε′ + 4(1 +N0)ε)nE(~)

(26) ≤ pnE(~)N0

(
µ

Σ+
~ , σ

1
N0
+ , C+

N0

)
+ pnE(~)N0

(
µ

Σ−
~ , σ

1
N0
− , C−N0

)
.

7We de�ne Ĩη(t) =
{
α = (α0, · · · , αk) :

∑k−2
i=1 f+

(
σi+α

)
≤ t <

∑k−1
i=1 f+

(
σi+α

)}
.
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This estimate is crucial in our proof as we have derived from a quantum relation a lower bound
on the classical pressure of a dynamical system associated to the geodesic �ow.

3.3. Subadditivity of the quantum pressure. As in [17], we would like to let ~ tends to 0
in inequality (26). The main di�culty to do this is that everything depends on ~. In order to
overcome this problem, we have to prove a subadditivity property for the quantum pressure:

Theorem 3.2. Let C+

N0
be the partition of lemma 3.1. There exists a function R(n0, ~) on N×(0, 1]

and R(N0) independent of n0 such that

∀n0 ∈ N, lim sup
~→0

|R(n0, ~)| = R(N0).

Moreover, for any ~ ∈ (0, 1] and any n0,m ∈ N such that n0 +m ≤ N0nE(~), one has

pn0+m

(
µ

Σ+
~ , σ

1
N0 , C+

N0

)
≤ pn0

(
µ

Σ+
~ , σ

1
N0 , C+

N0

)
+pm

(
µ

Σ+
~ , σ

1
N0 , C+

N0

)
+R(n0, ~).

Proof. To prove this subadditivity property, we will prove subadditivity of the quantum entropy
and subadditivity of the pressure term. As in section 6 from [17], we write for the entropy part
that

Hn0+m

(
µ

Σ+
~ , σ

1
N0 , C+

N0

)
≤ Hn0

(
µ

Σ+
~ ◦ σ

− m
N0

+ , σ
1
N0 , C+

N0

)
+Hm

(
µ

Σ+
~ , σ

1
N0 , C+

N0

)
.

As in [17], we have to show that the measure of the atoms of the partition are almost invariant

under σ
1
N0
+ for the range of times we have considered (proposition 6.1 in [17]). Consider now the

pressure term in the quantum pressure. Using the multiplicative structure of the W+
A , one has∑

A∈∨n0+m−1
j=0 σ

− j
N0 C+

N0

µ
Σ+
~ (A) logW+

A

=
∑

A∈∨m−1
j=0 σ

− j
N0 C+

N0

µ
Σ+
~ (A) logW+

A +
∑

A∈∨n0−1
j=0 σ

− j
N0 C+

N0

µ
Σ+
~

(
σ
− m
N0

+ A
)

logW+
A .

So, once more, the additivity property of the pressure term derives from the almost invariance of
the measure for the range of times we consider8. Precisely, according to the last two inequalities,

we only need to verify that proposition 6.1 in [17] remains true for the partition C+

N0
in the setting

of surfaces of nonpositive curvature. We will not reproduce the proof here which is similar except
that we consider time 1/N0 instead of 1 and that we look at surfaces of nonpositive curvature.
The �rst di�erence is not a problem and the proof from [17] can be adapted straightforward. The
main di�erence with [17] comes from the fact that the geometric situation is slightly di�erent. We
will brie�y explain here which points need to be modi�ed in this new setting.

We recall that proposition 6.1 in [17] relied on a theorem for products of pseudodi�erential
operators (theorem 7.1 in [17]) and we need to verify that the proof we gave still works in the case of
surfaces of nonpositive curvature. The key point of the proof of this theorem is that in the allowed
range of times ‖dρgt‖ is bounded by some ~−ν (with ν < 1/2) (see section 7.2 in [17]). Precisely,
following sections 6 and 7 in [17], we need to verify that this bound on the growth of ‖dρgt‖ holds for
ρ in T ∗Ωα0∩· · · g(k−1)ηT ∗Ωαk−1∩Eθ (where α satis�es

∑k−1
j=0 f+(σj+α) ≤ nE(~)

2 ) and for 0 ≤ t ≤ kη.
In fact, if we take Op~(χ) to be a �good� truncation operator in a neighborhood of S∗M , it allows
to verify that Pαk−1((k− 1)η) · · ·Pα0Op~(χ) satis�es the usual rules of pseudodi�erential calculus

(see theorem 7.1 in [17]) and then to derive the property of almost invariance of the measure µ
Σ+
~

(proposition 6.1 in [17]).

8We underline that R(N0) will be equal to sup
A∈C+N0

logW+
A which only depends on N0.
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From paragraph 2.1.3 and if we take δ′ = ε0ε, we �nd that ‖dρgkη‖ is bounded by Cekηε0εe
∫ kη
0 Uuρ (s)ds

(with C uniform in ρ). For the allowed words, ekηε0ε is of order ~−ε (as kηε0 ≤ 1/2nE(~)). To
conclude, we can estimate:∣∣∣∣∣∣

∫ kη

0

Uuρ (s)ds−
k−1∑
j=0

f(σjα)

∣∣∣∣∣∣ ≤
k−1∑
j=0

∣∣∣∣∣
∫ (j+1)η

jη

Uuρ (s)ds− f(σjα)

∣∣∣∣∣ .
To bound this sum, we can use the continuity of Uu (see inequality (6)) to show that this quantity is

bounded by ε| log ~|. By de�nition of the allowed words α, we know that
∑k−1
j=0 f(σjα) ≤ 1/2nE(~).

This allows to conclude that |dρgt| is bounded by some C~−ν (with C independent of ρ and
ν < 1/2).�

Remark. We underline that here we need to use the speci�c properties of surfaces of nonpositive
curvature to prove this theorem. It is not really surprising that theorem 7.1 from [17] can be
extended in our setting as the situation can only be less �chaotic�. We also mention that we have
to use the continuity of Uu(ρ) which is for instance false for surfaces without conjugate points [5].

3.4. The conclusion.

3.4.1. The semiclassical parameter tends to 0. Thanks to the subadditivity property of the quan-
tum pressure, we can proceed as in [17] and write, for a �xed n0, the euclidean division N0nE(~) =
qn0 + r. We �nd, after applying the subadditivity property and letting ~ tends to 0,

−R(N0)
n0

− 1
N0

(1 + ε′ + 4(1 +N0)ε)

≤ 1
n0

(
pn0

(
µΣ+ , σ

1
N0
+ , C+

N0

)
+ pn0

(
µΣ− , σ

1
N0
− , C−N0

))
.

As in [2, 4, 17], we can replace the smooth partitions by true partitions of the manifold in the
previous inequality. We would like now to transform the previous inequality on the metric pressure
into an inequality on the Kolmogorov-Sinai entropy. To do this, we write the multiplicative

property of WA and we use the fact that C+

N0
is a partition of Σ+. It allows us to derive that∑

A∈∨n0−1
j=0 σ

− j
N0 +C+

N0

µΣ+(A) logW+
A = n0

∑
A∈C+

N0

µΣ+(A) logW+
A

The same property holds for the backward side. After letting n0 tends to in�nity, we �nd that

− 1
N0

(1 + ε′ + 4(1 +N0)ε) + 2

 ∑
A∈C+

N0

µΣ+(A) logW+
A +

∑
A∈C−N0

µΣ−(A) logW−A


(27) ≤ 1

N0

(
hKS

(
µΣ+ , σ+

)
+ hKS

(
µΣ− , σ−

))
.

3.4.2. Lower bound on
∑
A∈C+

N0
µΣ

+

(A) logW+
A . Before applying Abramov theorem in inequal-

ity (27), we would like to give a lower bound on the pressure term in this inequality. Precisely, we

know that, by construction of C+

N0
and by invariance of the measure µΣ+ , one has∑

A∈C+
N0

µΣ+(A) logW+
A =

1∫
Σ+

f0dµΣ+

∑
γ∈Ĩη(1/N0)

f0(γ)µΣ+([γ]) logW+
γ .

To obtain a lower bound on this quantity, we use the notations of section 2.1 and introduce, for
ρ ∈ S∗M , the application

F0(ρ) :=
∑

γ∈Ĩη(1/N0)

f0(γ) logW+
γ 1Oγ0

(ρ) · · ·1Oγk ◦ g
kη(ρ).
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This allows us to rewrite ∑
γ∈Ĩη(1/N0)

f0(γ)µΣ([γ]) logW+
γ =

∫
S∗M

F0(ρ)dµ(ρ).

De�ne also

X
(η)
0 :=

{
ρ ∈ S∗M : ∀0 ≤ t ≤ 1

N0ε0
+ η, Uu(gtρ) > 2ε0

}
.

We can verify that

(28) F0(ρ) ≥ 1
2N0

∑
γ0,γ1

f0(γ)1
X

(η)
0

(ρ)1Oγ0
(ρ)1Oγ1

◦ gη(ρ),

for all ρ in Eθ. In order to prove this property, we can restrict ourselves to the case: ρ ∈ X(η)
0

(otherwise the inequality is trivial). In this case, F0(ρ) = f+(γ) logW+
γ , where γ is the unique

element in Ĩη(1/N0) such that ρ belongs to Oγ0∩· · · g−kηOγk . As γ belongs to Ĩη(1/N0), it satis�es

k−2∑
j=1

f+(σjγ) ≤ 1
N0

<

k−1∑
j=1

f+(σjγ).

As f+ ≥ ηε0, one has (k−2)η ≤ 1/(N0ε0). Using the fact that ρ belongs to X(η)
0 ∩Oγ0∩· · · g−kηOγk

and using the relation of continuity (4), we �nd that for every 1 ≤ j ≤ k − 1, f+(σjγ) = f(σjγ).
In particular, one has

logW+
γ =

1
2

k−1∑
j=1

f+(σjγ) ≥ 1
2N0

.

Then, we can derive

∑
A∈C+

N0

µΣ+(A) logW+
A ≥

∑
γ0,γ1

f0(γ)µ
(
X

(η)
0 ∩Oγ0 ∩ g−ηOγ1

)
2N0

∫
Σ+

f+dµΣ+
.

We underline that the same lower bound holds for
∑
A∈C−N0

µΣ−(A) logW−A .

3.4.3. Applying Abramov theorem. We use this last property in inequality (27) and combine it
with the Abramov theorem [1] (see relation (44)). We �nd that the Kolmogorov Sinai entropy
ηhKS(µ, g) is bounded from below by∑

γ=(γ0,γ1)

f0(γ)
(

Γ(ε, ε′, N0)µΣ([γ]) + µ
(
X

(η)
0 ∩Oγ0 ∩ g−ηOγ1

))
,

where

Γ(ε, ε′, N0) := −1
2

+
(
−ε
′

2
− 2(1 +N0)ε

)
.

3.4.4. The di�erent small parameters tend to 0. We have obtained a lower bound on the Kolmogorov-
Sinai entropy of the measure µ. This lower bound depends on several small parameters that are
linked to each other in the following way:

ε < 4ε′ � 1
N0
� ε0.

Moreover the small parameter η depends on ε and ε0. For a �xed ε0, it tends to 0 when ε tends to
0. We have now to be careful to transform our lower bound on the entropy of µ into the expected
lower bound. First, we let the diameter of the partition tends to 0 (and then θ to 0) and we divide
by η. This gives us ∫

S∗M

(Γ(ε, ε′, N0) + 1
X

(η)
0

(ρ))Uu0 (ρ)dµ(ρ) ≤ hKS(µ, g).
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Finally, we let ε and ε′ tend to 0 (in this order). We obtain the following bound on the entropy of
µ:

−1
2

∫
S∗M

Uu0 (ρ)dµ(ρ) +
∫
S∗M

Uu0 (ρ)1
X

(0)
0

(ρ)dµ(ρ) ≤ hKS(µ, g).

We let now N0 tend to in�nity and then ε0 tend to 0 (in this order). We �nd the expected lower
bound, i.e.

1
2

∫
S∗M

Uu(ρ)dµ(ρ) ≤ hKS(µ, g).�

4. Proof of the main estimate from [4]

In the previous section, we have been able to apply the method we used for Anosov surfaces in
order to prove theorem 1.1. As in [17], the strategy relied on a careful adaptation of an uncertainty
principle. In particular, to derive inequality (23) (section 5), we have to use the following equivalent
of theorem 3.1 from [3]:

Theorem 4.1. Let M be a surface of nonpositive sectional curvature and ε, ε0 and η be small
positive parameters as in section 2.2. For every K > 0 (K ≤ Cδ0), there exists ~K and CK(ε, η, ε0)
such that uniformly for all ~ ≤ ~K, for all k ≤ K| log ~|, for all α = (α0, · · · , αk),

‖PαkUηPαk−1 · · ·UηPα0Op~(χ(k))‖L2(M)

(29) ≤ CK(ε, η, ε0)~−
1
2−cδ0e2kηε0ε exp

−1
2

k−1∑
j=0

f(σj+α)

 ,

where c depends only on the riemannian manifold M .

Remark. We underline two facts about this theorem. The �rst one is that Op~(χ(k)) is a cuto�
operator that was already de�ned in [17] (paragraph 5.3) and in the appendix of [4] (we describe
brie�y its construction in paragraph 5.1). The second one is that it is function f and not f+ that
appears in the upper bound.

This theorem is the analogue for surfaces of nonpositive curvature of a theorem from [4]. As the
geometric situation is slightly di�erent from [4], we will recall the main lines of the proof where
the geometric properties appear and focus on the di�erences. We refer the reader to [4] for the
details. In [4], the proof of the analogue of theorem 4.1 (section 3 and more precisely corollary
3.5) relies on a study of the action of PαkU

ηPαk−1 · · ·UηPα0 on a particular family of Lagrangian

states. This reduction was possible because of the introduction of the cuto�s operators Op~(χ(k))
(see section 3 in [4] for the details).

4.1. Evolution of a WKB state. Consider u~(0, x) = a~(0, x)e
ı
~S(0,x) a Lagrangian state, where

a~(0, •) and S(0, •) are smooth functions on a subset Ω in M and a~(0, •) ∼
∑
k ~kak(0, •).

This represents a Lagrangian state which is supported on the Lagrangian manifold L(0) :=
{(x, dxS(0, x) : x ∈ Ω}. According to [4], if we are able to understand the action of PαkUηPαk−1 · · ·UηPα0

on Lagrangian states (with speci�c initial Lagrangian manifolds: see next paragraph), then we
can derive our main theorem. A strategy to estimate this action is to use a WKB Ansatz. Recall
that if we note ũ(t) := U tu~(0), then, for any integer N , the state ũ(t) can be approximated to
order N by a Lagrangian state u(t) of the form

u(t, x) := e
ı
~S(t,x)a~(t, x) = e

ı
~S(t,x)

N−1∑
K=0

~kak(t, x).

As u is supposed to solve ı~∆
2 u = ∂tu (up to an error term of order N), we know that S(t, x)

and the ak(t, x) satisfy several partial di�erential equations. In particular, S(t, x) must solve the
Hamilton-Jacobi equation

∂S

∂t
+H(x, dxS) = 0.
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Assume that, on a certain time interval (for instance s ∈ [0, η]), the above equations have a well
de�ned smooth solution S(s, x), meaning that the transported Lagrangian manifold L(s) = gsL(0)
is of the form {(x, dxS(s, x))}, where S(s) is a smooth function on the open set πL(s).
As in [4], we shall say that a Lagrangian manifold L is �projectible� if the projection π : L → M
is a di�eomorphism onto its image. If the projection of L to M is simply connected, this implies
L is the graph of dS for some function S: we say that L is generated by S.
Suppose now that, for s ∈ [0, η], the Lagrangian L(s) is �projectible�. Then, this family of
Lagrangian manifolds de�nes an induced �ow on M , i.e.

gtS(s) : x ∈ πL(s) 7→ πgt(x, dxS(s, x)) ∈ πL(s+ t).

This �ow satis�es a property of semi-group: gtS(s+τ) ◦ g
τ
S(s) = gt+τS(s). Using this �ow, we de�ne an

operator that sends functions on πL(s) into functions on πL(s+ t):

(30) T tS(s)(a)(x) := a ◦ g−tS(s+t)(x)
(
J−tS(s+t)(x)

) 1
2
,

where J tS(s)(x) is the Jacobian of the map gtS(s) at point x (w.r.t. the riemannian volume). This

operator allows to give an explicit expression for all the ak(t) [4], i.e.

(31) ak(t) := T tS(0)a0(0) and ak(t) := T tS(0)ak(0) +
∫ t

0

T t−sS(s)

(
ı∆ak−1(s)

2

)
ds.

Regarding the details of the proof in [4], we know that there are two main points where the
dynamical properties of the manifold are used:

• the evolution of the Lagrangian manifold under the action of the operator PαkU
ηPαk−1 · · ·UηPα0

(section 3.4.1 in [4]);
• the value of J tS(0) for large t (section 3.4.2 in [4]).

We will discuss these two points in the two following paragraphs. We will recall what was proved
for these two questions in section 3.4 of [4] and see how it can be translated in the setting of
surfaces of nonpositive curvature.

4.2. Evolution of the Lagrangian manifolds. The �rst thing we need to understand is how the
Lagrangian manifolds evolve under the action of the operator PαkU

ηPαk−1 · · ·UηPα0 . According
to [4], we know that the introduction of the cuto� operator Op~(χ) implies that we can restrict
ourselves to a particular family of Lagrangian states. Precisely, we �x some small parameter η1

and we know that they must be localized on a piece of Lagrangian manifold L0(0) which is included
in the set ∪|τ |≤ηgτS∗z,η1

M (where S∗z,η1
M := {(z, ξ) : ‖ξ‖2z = 1 + 2η1}). If we follow the method

developed in [4], we are given a sequence of Lagrangian manifolds Lj(0) as follows:

∀t ∈ [0, η], ∀j, L0(t) := gtL0(0) and Lj(t) := gt
(
Lj−1(η) ∩ T ∗Ωαj

)
.

The manifold Lj(0) is obtained after performing PαjU
ηPαk−1 · · ·UηPα0 on the initial Lagrangian

state. To show that the procedure from [4] is consistent (i.e. performing several WKB Ansatz),
we need to verify that the Lagrangian manifold Lj(t) does not develop caustics and remains
�projectible�. The only geometric properties which were used to derive these two properties were:

• M has no conjugate points (to derive that Sj will not develop caustics);
• the injectivity radius is larger than 2 (to ensure the �projectible� property).

In our setting, these two properties remain true (in particular, a surface of nonpositive curvature
has no conjugate points [11, 20]). Finally, we underline that, thanks to the construction of the
strong unstable foliation for surfaces of nonpositive curvature, any vector in S∗z,η1

M becomes uni-

formly close to the unstable subspace under the action of dρg
t (see lemma 2.1). As a consequence,

under the geodesic �ow, a piece of sphere becomes uniformly close to the unstable foliation as j
tends to in�nity. This point is the main di�erence with [4]. In fact, if we consider an Anosov
geodesic �ow, we have the stronger property that a piece of sphere becomes exponentially close to
the unstable foliation, as j tends to in�nity. However, we will check that this property is su�cient
for our needs.
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Remark. At this point of the proof, we can ask about an extension of these results to mani-
folds without conjugate points. According to [20], the �uniform divergence� property (given by
lemma 2.1) is true for surfaces without conjugate points and so a piece of sphere also becomes
uniformly close to the unstable foliation in this more general setting. So this crucial aspect of the
proof can be transposed in the setting of surfaces without conjugate points. In the next paragraph,
we will use an additional argument which is speci�c to surfaces of nonpositive curvature.

4.3. Estimates on the induced Jacobian. As was already mentioned, the Jacobian J tSj of the
map gtsj appears in the WKB expansion of a Lagrangian state evolved under the action of the
operator PαjU

ηPαj−1 · · ·UηPα0 . Precisely, by iterating the WKB Ansatz, we have to estimate the
following quantity (see equation (3.22) in [4]):

(32) Jk(x) :=
(
J−η
Sk−1(x)J−η

Sk−2(g−η
Sk

(x)) · · · J−ηS1 (g(−k+2)η

Sk
(x))

) 1
2
.

This Jacobian appears in each term of the WKB expansion of a Lagrangian state evolved under
the operator PαkU

ηPαk−1 · · ·UηPα0 as every ap in the expansion is de�ned using the operator
T tS(.) (see de�nitions (30) and (31)). It is necessary to provide a way to bound this quantity as

it will appear in the control of every derivatives of the WKB expansion. According to the proof
in [4], if we are able to bound uniformly this quantity, the bound we will obtain is the one that
will appear in theorem 4.1. This point of the proof is the main di�erence with the proof in the
Anosov case. Our goal in this paragraph is to provide an upper bound on (32). The quantity
Jk(x) can be rewritten as

exp
(

1
2

(
log J−η

Sk−1(x) + log J−η
Sk−2(g−η

Sk
(x)) · · ·+ log J−ηS1 (g(−k+2)η

Sk
(x))

))
.

As the Lagrangian Lj become uniformly close to the unstable foliation when j tends to in�nity,
we know that, for every ε′ > 0, there exists some integer j(η, ε′) such that

∀j ≥ j(η, ε′), ∀ρ = (x, ξ) ∈ Lj(0), | log J−ηSj (x)− log J−ηSu(ρ)(x)| ≤ ε′,

where Su(ρ) generates the local unstable manifold at point ρ (which is a Lagrangian submanifold).
Therefore, we �nd that there exists a constant C(ε′, η) (depending only on ε′ and η) such that,
uniformly with respect to k and to ρ in Lk(0),

Jk(x) ≤ C(ε′, η)ekε
′
k−1∏
j=0

J−η
Su(g(−j+1)ηρ)

(g(−j+1)η

Sk
(x)) = C(ε′, η)ekε

′
J

(1−k)η
Su(ρ) (x).

In the following, we will take ε′ = ηεε0. The Jacobian J
−η
Su(ρ) measures the contraction of g−η along

the unstable direction. From the construction of the unstable Riccati solution Uuρ (s), we know

that Uuρ (s) also measures the contraction of g−η along Eu(ρ). In fact, according to section 2.1,
one has

‖dρg−t|Eu(ρ)‖ ≤
√

1 +K0e
∫−t
0 Uuρ (s)ds.

As a consequence, there exists an uniform constant C (depending only on the manifold) such that:

J
(1−k)η
Su(ρ) (x) ≤ Ce

∫ (1−k)η
0 Uuρ (s)ds.

Using then relation (6) between the discrete Riccati solution f and the continuous one, we �nd
that there exists a constant C(ε, η, ε0) such that, uniformly in k,

sup
x∈πLk(0)

Jk(x) ≤ C(ε, η, ε0)e2kηεε0 exp

−1
2

k−1∑
j=0

f(σjα)

 .

Finally, this last inequality gives us a bound on the quantity (32). This estimate is not as sharp
as the one derived in [4] (equation 3.23 for instance) however it is su�cient as the correction term
is not too large: it is of order ~−ε.
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Remark. We underline that we used the continuity of Uu to go from the continuous representation
of the upper bound of Jk to the one in terms of the discrete Riccati solution. This property fails
for surfaces without conjugate points [5].

5. Applying the uncertainty principle for quantum pressures

In this section, we would like to prove inequality (23) which was a crucial step of our proof. To
do this, we follow the same lines as in [17] (section 5.3) and prove the following proposition:

Proposition 5.1. With the notations of section 3, one has:

(33) p
(
µ

Σ+
~ , C+

~

)
+ p

(
µ

Σ−
~ , C−~

)
≥ − logC − (1 + ε′ + 4ε)nE(~),

where p is de�ned by (21) and where C ∈ R∗+ does not depend on ~ (but depends on the other
parameters (ε, ε0, η)).

To prove this result, we will proceed in three steps. First, we will introduce an energy cuto� in
order to get the sharpest bound as possible in our application of the uncertainty principle. Then,

we will apply the uncertainty principle and derive a lower bound on p
(
µ

Σ+
~ , C+

~

)
+ p

(
µ

Σ−
~ , C−~

)
.

Finally, we will use the estimate of theorem 4.1 to conclude.

5.1. Energy cuto�. Before applying the uncertainty principle, we proceed to sharp energy cuto�s
so as to get precise lower bounds on the quantum pressure (as it was done in [2], [4] and [3]). These
cuto�s are made in our microlocal analysis in order to get as good exponential decrease as possible
of the norm of the re�ned quantum partition. This cuto� in energy is possible because even if the
distributions µ~ are de�ned on T ∗M , they concentrate on the energy layer S∗M . The following
energy localization is made in a way to compactify the phase space and in order to preserve the
semiclassical measure.
Let δ0 be a positive number less than 1 and χδ0(t) in C∞(R, [0, 1]). Moreover, χδ0(t) = 1 for
|t| ≤ e−δ0/2 and χδ0(t) = 0 for |t| ≥ 1. As in [4], the sharp ~-dependent cuto�s are then de�ned
in the following way:

∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ, ~) := χδ0(e−nδ0~−1+δ0(H(ρ)− 1/2)).

For n �xed, the cuto� χ(n) is localized in an energy interval of size 2enδ0~1−δ0 centered around the
energy layer E . In this paper, indices n will satisfy 2enδ0~1−δ0 << 1. It implies that the widest
cuto� is supported in an energy interval of microscopic length and that n ≤ Kδ0 | log ~|, where
Kδ0 ≤ δ−1

0 . Using then a non standard pseudodi�erential calculus (see [4] for a brief reminder of
the procedure from [22]), one can quantize these cuto�s into pseudodi�erential operators. We will
denote Op(χ(n)) the quantization of χ(n). The main properties of this quantization are recalled in
the appendix of [17]. In particular, the quantization of these cuto�s preserves the eigenfunctions
of the Laplacian:

Proposition 5.2. [4] For any �xed L > 0, there exists ~L such that for any ~ ≤ ~L, any
n ≤ Kδ| log ~| and any sequence β of length n, the Laplacian eigenstate verify∥∥∥(1−Op

(
χ(n)

))
πβψ~

∥∥∥ ≤ ~L‖ψ~‖.

5.2. Applying theorem A.1. Let ‖ψ~‖ = 1 be a �xed element of the sequence of eigenfunctions
of the Laplacian de�ned earlier, associated to the eigenvalue − 1

~2 .
To get bound on the pressure of the suspension measure, the uncertainty principle should not be
applied to the eigenvectors ψ~ directly but it will be applied several times. Precisely, we will apply
it to each Pγψ~ := Pγ1Pγ0(−η)ψ~ where γ = (γ0, γ1) varies in {1, · · · ,K}2. In order to apply the
uncertainty principle to Pγψ~, we introduce new families of quantum partitions corresponding to
each γ.
Let γ = (γ0, γ1) be an element of {1, · · · ,K}2. We de�ne γ.α′ = (γ0, γ1, α

′). Introduce the
following families of indices:

I~(γ) := {(α′) : γ.α′ ∈ Iη(~)} ,
K~(γ) := {(β′) : β′.γ ∈ Kη(~)} .
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We underline that each sequence α of Iη(~) can be written under the form γ.α′ where α′ ∈ I~(γ).
The same works for Kη(~). Operators can be associated to these new families, for α′ ∈ I~(γ) and
β′ ∈ K~(γ),

τ̃α′ = Pα′n(nη) · · ·Pα′2(2η),

π̃β′ = Pβ′−n(−nη) · · ·Pβ′−2
(−2η).

The families (τ̃α′)α′∈I~(γ) and (π̃β′)β′∈I~(γ) form quantum partitions of identity [17].
Given these new quantum partitions of identity, the uncertainty principle should be applied for
given initial conditions γ = (γ0, γ1) at times 0 and 1. We underline that for α′ ∈ I~(γ) and
β′ ∈ K~(γ):

(34) τ̃α′U
−ηPγ = τγ.α′U

−η and π̃β′Pγ = πβ′.γ ,

where γ.α′ ∈ Iη(~) and β′.γ ∈ Kη(~) by de�nition. Equality (34) justi�es that the de�nitions of
τ and π were slightly di�erent (see (12) and (13)). It is due to the fact that we want to compose
τ̃ and π̃ with the same operator Pγ .
Suppose now that ‖Pγψ~‖ is not equal to 0. We apply the quantum uncertainty principle A.1
using that

• (τ̃α′)α′∈I~(γ) and (π̃β′)β′∈K~(γ) are partitions of identity;

• the cardinal of I~(γ) and K~(γ) is bounded by N ' ~−K0 where K0 is some �xed positive
number (depending on the cardinality of the partition K, on a0, on b0 and η);

• Op(χ(k′)) is a family of bounded operators Oβ′ (where k
′ is the length of β′);

• the constants W+
γ.α′ and W

−
β.γ are bounded by ~−

b0
2ε0 ;

• the parameter δ′ can be taken equal to ‖Pγψ~‖−1~L where L is such that ~L−K0− b0ε0 �
e2kηεε0~−1/2−cδ0 for every k � 1

εη | log ~| (see proposition 5.2 and the upper bound in

theorem 4.1);
• U−η is an isometry;

• ψ̃~ := Pγψ~
‖Pγψ~‖ is a normalized vector.

Applying the uncertainty principle A.1 for quantum pressures, one gets:

Corollary 5.3. Suppose that ‖Pγψ~‖ is not equal to 0. Then, one has

pτ̃ (U−ηψ̃~) + pπ̃(ψ̃~) ≥ −2 log
(
cγχ(U−η) + ~L−K0− b0ε0 ‖Pγψ~‖−1

)
,

where cγχ(U−η) = max
α′∈I~(γ),β′∈K~(γ)

(
W+
γ.α′W

−
β′.γ‖τ̃α′U

−ηπ̃∗β′Op(χ(k′))‖
)
.

Under this form, the quantity ‖Pγψ~‖−1 appears several times and we would like to get rid of
it. First, remark that the quantity cγχ(U−η) can be bounded by

(35) cχ(U−η) := max
(∗)

(
W+
γ.α′W

−
β′.γ‖τ̃α′U

−ηπ̃∗β′Op(χ(k′))‖
)
,

where (∗) means (γ ∈ {1, · · · ,K}2 and α′ ∈ I~(γ), β′ ∈ K~(γ)). This last quantity is independent
of γ. Then, one has the following lower bound:

−2 log
(
cγχ(U−η) + ~L−K0− b0ε0 ‖Pγψ~‖−1

)
(36) ≥ −2 log

(
cχ(U−η) + ~L−K0− b0ε0

)
+ 2 log ‖Pγψ~‖2.

as ‖Pγψ~‖ ≤ 1. Now that we have given an alternative lower bound, we rewrite the entropy term

hτ̃ (U−ηψ̃~) of the quantum pressure pτ̃ (U−ηψ̃~) as follows:

hτ̃ (U−ηψ̃~) = −
∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖τ̃α′U−ηPγψ~‖2

+
∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖Pγψ~‖2.
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Using the fact that ψ~ is an eigenvector of Uη and that (τ̃α′)α′∈I~(γ) is a partition of identity, one
has:

hτ̃ (U−ηψ̃~) = − 1
‖Pγψ~‖2

∑
α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 + log ‖Pγψ~‖2.

The same holds for the entropy term hπ̃(ψ̃~) of the quantum pressure pπ̃(ψ̃~) (using here equal-
ity (34)):

hπ̃(ψ̃~) = − 1
‖Pγψ~‖2

∑
β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2 + log ‖Pγψ~‖2.

Combining these last two equalities with (36), we �nd that

−
∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 − 2
∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 logW+
γ.α′

−
∑

β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2 − 2
∑

β′∈K~(γ)

‖πβ′.γψ~‖2 logW−β′.γ

(37) ≥ −2‖Pγψ~‖2 log
(
cχ(U−η) + ~L−K0− b0ε0

)
.

This expression is very similar to the de�nition of the quantum pressure. We also underline that
this lower bound is trivial in the case where ‖Pγψ~‖ is equal to 0. Using the following numbers:

(38) cγ.α′ = cβ′.γ = cγ =
f(γ)∑

γ′∈{1,··· ,K}2 f(γ′)‖Pγ′ψ~‖2
,

one can derive, as in [17], the following property:

Corollary 5.4. One has:

(39) p
(
µ

Σ+
~ , C+

~

)
+ p

(
µ

Σ−
~ , C−~

)
≥ −2 log

(
cχ(U−η) + ~L−K0− b0ε0

)
− C,

where C := log (maxγ cγ) .

As expected, by a careful use of the entropic uncertainty principle, we have been able to obtain

a lower bound on the pressures of the measures µ
Σ+
~ and µ

Σ−
~ .

5.3. The conclusion. To conclude the proof of proposition 5.1, we use theorem 4.1 to give an

upper bound on cχ(U−η). From our assumption on L, we know that ~L−K0− b0ε0 � cχ(U−η). As
kη ≤ nE(~)/ε0, we also have that

cχ(U−η) ≤ CK(ε, η, ε0)~−
1
2−cδ0e4εnE(~).

For δ0 small enough, we �nd the expected property.�

Appendix A. Uncertainty principle for the quantum pressure

In [4], generalizations of the entropic uncertainty principle were derived for quantum pressures.
We saw that the use of this thermodynamic formalism was crucial in our proof and we recall in
this section the main results from [4] (section 6) on quantum pressures. Consider two partitions
of identity (πk)Nk=1 and (τj)Mj=1 on L2(M), i.e.

N∑
k=1

π∗kπk = IdL2(M) and

M∑
j=1

τ∗j τj = IdL2(M).

We also introduce two families of positive numbers: (Vk)Nk=1 and (Wj)Mj=1. We denote A :=
maxk Vk and B := maxjWj . One can then introduce the quantum pressures associated to these
families, for a normalized vector ψ in L2(M),

pπ(ψ) := −
N∑
k=0

‖πkψ‖2L2(M) log ‖πkψ‖2L2(M) − 2
N∑
k=0

‖πkψ‖2L2(M) log Vk
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and

pτ (ψ) := −
M∑
j=0

‖τjψ‖2L2(M) log ‖τjψ‖2L2(M) − 2
M∑
j=0

‖τjψ‖2L2(M) logWj .

The main result on these quantities that was derived in [4] was theorem 6.5:

Theorem A.1. Under the previous setting, suppose U is an isometry of L2(M) and suppose
(Ok)Nk=1 is a family of bounded operators. Let δ′ be a positive number and ψ be a vector in H of
norm 1 such that

‖(Id−Ok)πkψ‖L2(M) ≤ δ′.
Then, one has

pτ (Uψ) + pπ(ψ) ≥ −2 log (cO(U) + max(N ,M)ABδ′) ,

where cO(U) := supj,k{VkWj‖τjUπ∗kOk‖}.

Appendix B. Kolmogorov-Sinai entropy

Let us recall a few facts about Kolmogorov-Sinai (or metric) entropy that can be found for
example in [23]. Let (X,B, µ) be a measurable probability space, I a �nite set and P := (Pα)α∈I
a �nite measurable partition of X, i.e. a �nite collection of measurable subsets that forms a
partition. Each Pα is called an atom of the partition. Assuming 0 log 0 = 0, one de�nes the
entropy of the partition as:

(40) H(µ, P ) := −
∑
α∈I

µ(Pα) logµ(Pα) ≥ 0.

Given two measurable partitions P := (Pα)α∈I and Q := (Qβ)β∈K , one says that P is a re�nement
of Q if every element of Q can be written as the union of elements of P and it can be shown that
H(µ,Q) ≤ H(µ, P ). Otherwise, one denotes P ∨Q := (Pα ∩Qβ)α∈I,β∈K their join (which is still
a partition) and one has H(µ, P ∨Q) ≤ H(µ, P ) +H(µ,Q) (subadditivity property). Let T be a
measure preserving transformation of X. The n-re�ned partition ∨n−1

i=0 T
−iP of P with respect to

T is then the partition made of the atoms (Pα0 ∩ · · · ∩T−(n−1)Pαn−1)α∈In . We de�ne the entropy
with respect to this re�ned partition:

(41) Hn(µ, T, P ) :=
∑
|α|=n

S
(
µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1)

)
,

where S(x) := −x log x. Using the subadditivity property of entropy, we have for any integers n
and m:

(42) Hn+m(µ, T, P ) ≤ Hn(µ, T, P ) +Hm(µ ◦ T−n, T, P )

= Hn(µ, T, P ) +Hm(µ, T, P ).

For the last equality, it is important to underline that we really use the T -invariance of the measure
µ. A classical argument for subadditive sequences allows us to de�ne the following quantity:

(43) hKS(µ, T, P ) := lim
n→∞

Hn (µ, T, P )
n

.

It is called the Kolmogorov Sinai entropy of (T, µ) with respect to the partition P . The Kol-
mogorov Sinai entropy hKS(µ, T ) of (µ, T ) is then de�ned as the supremum of hKS(µ, T, P ) over
all partitions P of X.

A property of entropy we used in the paper is the so-called Abramov property [1]. Using the
notations of the article, one has

(44) hKS
(
µΣ+ , σ+

)
=

(∫
Σ+

f+dµ
Σ+

)
hKS

(
µΣ+ , σ+

)
.
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