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Introduction

Work in collaboration with Bernard Helffer, motivated by two
papers,

N. Kuznetsov. On delusive nodal sets of free oscillations.
Newsletter of the European Mathematical Society 96 (2015),
34–40.
V. Arnold. Topological properties of eigenoscillations in
mathematical physics. Proc. Steklov Inst. Math. 273 (2011),
25–34. (Paper submitted by Arnold in December 2009, six months
before his death on June 6, 2010).

The first two sections of Arnold’s paper are entitled:
1. Correct and Incorrect Theorems of Courant
2. Courant–Gelfand Theorem
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Theorem (Courant, 1923)
Consider the eigenvalue problem,{

−∆u = µ u in Ω ⊂ R2

u|∂Ω = 0

with eigenvalues and eigenfunctions,{
µ1 < µ2 ≤ µ3 ≤ · · · ↗ ∞

φ1, φ2, φ3, . . .

Then,
∀φ ∈ E(µ), β0(φ) ≤ κ(µ) ,

where
E(µ) := eigenspace associated with µ.
β0(φ) := #{nodal domains of φ}.
κ(µ) := min{k | µk = µ}.
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Motivated by Hilbert’s 16th problem, Arnold was interested in the
following

Statement (“Courant’s generalized theorem”, in Arnold’s words)
Any linear combination of the first n eigenfunctions divides the
domain, by means of its nodes, into no more than n subdomains.

This statement appears in Courant-Hilbert, Methods of
mathematical physics, Volume I, footnote page 454 (1953 English
translation), with a cross-reference to the Göttingen dissertation of
H. Herrmann, Beiträge zur Theorie der Eigenwerte und
Eigenfunktionen (1932).

It turns out that neither Herrmann’s thesis, nor his published
papers contain this statement, let alone its proof.
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According to Arnold, “Courant’s generalized theorem” is
true for RP2, the real projective space in dimension 2, and
false for RP3.

The proof in dimension 2 (folklore ?, J. Leydold, 1996), and the
construction of counterexamples in dimension 3 (O. Viro, 1979),
rely on real algebraic geometry.

 It turns out that there are counterexamples to “Courant’s
generalized theorem” for domains in Rn, n ≥ 2 (including convex
domains), with the Dirichlet or Neumann boundary conditions
(B. & Helffer, 2018).
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Arnold and Gelfand (imaginary dialog)

(Gelfand) I thought that, except for me, nobody paid attention to
Courant’s remarkable assertion. But I was so surprised that I
delved into it and found a proof.
[Arnold is quite surprised, but does not have time to mention Viro’s
counterexamples before Gelfand continues.]

However, I could prove this theorem of Courant only for
oscillations of one-dimensional media.

(Arnold) Where could I read it?

(Gelfand) I never write proofs. I just discover new interesting
things. Finding proofs (and writing articles) is up to my students.
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Arnold sketches Gelfand’s ideas to prove “Courant’s generalized
theorem”, in dimension 1, and refers to the result as the
“Courant-Gelfand theorem”.

Theorem (Courant-Gelfand)
The zeros of a linear combination of the n first eigenfunctions of
the Sturm-Liouville problem

(1)
{
− y ′′(x) + q(x) y(x) = λ y(x) in ]0, 1[ ,
y(0) = y(1) = 0 ,

divide the interval into at most n sub-intervals.
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Quotations from Arnold’s Section 2

• Unfortunately, [Gelfand’s hints] do not yet provide a proof of
[Courant’s] generalized theorem: many facts are still to be proved.

• Gelfand did not publish anything concerning this: he only told
me that he hoped his students would correct this drawback of his
theory.

• Viktor Borisovich Lidskii told me that “he knows how to prove all
this”. . . . Although [Lidskii’s] arguments look convincing, the lack
of a published formal text with a proof of the Courant-Gelfand
theorem is still distressing.
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According to Kuznetsov, Gelfand’s approach appealed so much to
Arnold that he included this theorem, together with Gelfand’s hint
of proof, in the third Russian edition of his book “Ordinary
Differential Equations” (English translation, Springer 1992,
Problem 9 in the section “Supplementary problems”).

Arnold, Ordinary differential equations (Springer, 1992)
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It turns out that Arnold’s “Courant-Gelfand
theorem” is actually a weak form of a theorem
which goes back to Charles François Sturm
(1833).

The purpose of this talk is to explain a
complete proof, à la Gelfand, of Sturm’s
theorem.

P. B. & B. Helffer. Sturm’s theorem on the zeros of sums of eigenfunctions:
Gelfand’s strategy implemented. arXiv:1807.03990. To appear in Moscow
Math. Journal.
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Theorem (Sturm, 1833)
For n ≥ 1, let φ =

∑n
j=1 ajhj be a nontrivial linear combination of

the n first eigenfunctions, h1, . . . , hn, of the Sturm-Liouville
problem

(1)
{
− y ′′(x) + q(x) y(x) = λ y(x) dans ]0, 1[ ,
y(0) = y(1) = 0 ,

1 The function φ has at most (n − 1) distinct zeros, counted
with multiplicities, in the open interval ]0, 1[.

2 If a1 = · · · = ak = 0, the function φ changes sign at least k
times in the interval ]0, 1[.

Remark. The second assertion is frequently referred to as the “Sturm-Hurwitz
theorem”.



12/50

Proof of Sturm’s theorem, following Gelfand’s idea
Let q be a real function, C∞ in a neighbourhood of I :=]0, 1[.
Consider the 1-particle operator

h(1) := − d2

dx2 + q(x) ,

and more precisely its Dirichlet realization in I, i.e., the Dirichlet
eigenvalue problem  −

d2y
dx2 + q y = λ y ,

y(0) = y(1) = 0 .

Let {(λj , hj), j ≥ 1} be the eigenpairs of h(1), with

λ1 < λ2 < λ3 < · · · ,

and {hj , j ≥ 1} an orthonormal basis of associated eigenfunctions.
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Following Gelfand’s idea, consider the Dirichlet realization h(n) of
the n-particle operator in In,

h(n) :=
n∑

j=1

(
− ∂2

∂x2
j

+ q(xj)
)

= −∆ + Q ,

where Q(x1, . . . , xn) = q(x1) + · · ·+ q(xn).

Let ~k = (k1, · · · , kn) denote a vector with integer components, and
~x = (x1, · · · , xn) a vector in In. A complete set of eigenpairs of
h(n) is given by the (Λ~k ,H~k), with{

Λ~k = λk1 + · · ·+ λkn , and
H~k(~x) = hk1(x1) · · · hkn (xn) .
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The symmetric group sn acts on In by σ(~x) = (xσ(1), · · · , xσ(n)), if
~x = (x1, · · · , xn). It also acts on L2(In), and on the functions H~k .
A fundamental domain of the action of sn on In is the n-simplex

ΩI
n := {0 < x1 < x2 < · · · < xn < 1} .

Following Gelfand, we restrict the operator to functions which are
anti-symmetric under the action of sn (Fermions), and consider in
particular, the Slater determinant Sn, defined by,

Sn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣
h1(x1) h1(x2) . . . h1(xn)
h2(x1) h2(x2) . . . h2(xn)

...
...

...
hn(x1) hn(x2) . . . hn(xn)

∣∣∣∣∣∣∣∣∣∣
.
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Let ~h[n](x) denote the vector

~h[n](x) = T(h1(x), . . . , hn(x)) .

With this notation, we write the Slater determinant as the
determinant of its column vectors,

Sn(x1, . . . , xn) =
∣∣∣~h[n](x1) . . .~h[n](xn)

∣∣∣ .
A linear combination of the n first eigenfunctions can be written as

〈~b[n],~h[n]〉 = b1h1 + · · ·+ bnhn .
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Lemma
For all n ≥ 1,

1 Sn 6≡ 0 on In.
2 Sn is the first Dirichlet eigenfunction of h(n) in ΩI

n. In
particular, for all 0 < x1 < · · · < xn < 1, one has
Sn(x1, . . . , xn) 6= 0.

3 For all 0 < x1 < · · · < xn < 1, the n vectors ~h[n](xi ), 1 ≤ i ≤ n
are linearly independent in Rn.

Remark. The second assertion is Gelfand’s Observation A in Arnold’s paper.
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Proof of the lemma

The first assertion is proved by induction, and follows from the
linear independence of the eigenfunctions hj , and from the fact
that h1 does not vanish in ]0, 1[.

The second assertion follows from the relation

h(n)Sn := (−∆ + Q)Sn = (λ1 + · · ·+ λn)Sn ,

from the fact that the least eigenvalue of the operator h(n) acting
on Fermions is precisely Λn := λ1 + · · ·+ λn, and from the
standard argument to prove that an eigenfunction associated with
the least eigenvalue does not change sign.

The third assertion is an immediate consequence of the second.
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Proposition (Zeros without multiplicities)
Let n ≥ 1 and let φ = 〈~b[n],~h[n]〉 be a nontrivial linear combination
of the eigenfunctions h1, . . . , hn.

1 The function φ has at most (n − 1) distinct zeros in ]0, 1[.
2 If the function φ has exactly (n − 1) distinct zeros

c1 < · · · < cn−1 in ]0, 1[ then, there exists a nonzero constant
C such that

φ(x) = C Sn(c1, . . . , cn−1, x), ∀x ∈]0, 1[ .

Remarks. The first assertion is precisely the Courant-Gelfand theorem. The
second assertion is an amended version of Gelfand’s Observation B in Arnold’s
paper.
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Proof of the proposition (zeros without multiplicities)

• Assume that φ has at least n distinct zeros, c1 < · · · < cn. One
then has the linear system,

b1h1(c1) + · · · bnhn(c1) = 0
. . .
b1h1(cn) + · · · bnhn(cn) = 0

whose determinant is Sn(c1, . . . , cn) 6= 0, and hence the linear
combination is trivial.

• The coefficient of hn(x) in the linear combination
Sn(c1, . . . , cn−1, x) is precisely Sn−1(c1, . . . , cn−1) 6= 0. It is
nontrivial, and of the form 〈~s[n],~h[n]〉.
From the assumptions, the two vectors ~b[n] and ~s[n] are orthogonal
to the (n − 1) vectors ~h[n](c1), . . . , ~h[n](cn−1) which are linear
independent because Sn−1(c1, . . . , cn−1) 6= 0.
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Proposition (Zeros without multiplicities)
Let n ≥ 1 and let φ = 〈~b[n],~h[n]〉 be a nontrivial linear combination
of the eigenfunctions h1, . . . , hn.

1 The function φ has at most (n − 1) distinct zeros in ]0, 1[.
2 If the function φ has exactly (n − 1) distinct zeros

c1 < · · · < cn−1 in ]0, 1[ then, there exists a nonzero constant
C such that

φ(x) = C Sn(c1, . . . , cn−1, x), ∀x ∈]0, 1[ .

Victor Kleptsyn recently sent us an unpublished draft, dated June
27 2011, with a proof of this proposition, along Gelfand’s ideas.

However, the proposition is not satisfactory in view of Sturm’s
theorem. Indeed, we would like to take the multiplicities of zeros
into account.
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Notation

Let n, p ≥ 1 with n ≥ p.

Let 0 < c̄1 < · · · < c̄p < 1 be distinct points, with multiplicities,
mult(c̄j) = kj ≥ 1, such that k1 + · · ·+ kp = n.

Denote by S∗n(c̄1, k1; . . . ; c̄p, kp) the Generalized Slater
determinant∣∣∣~h[n](c̄1) . . .~h(k1−1)

[n] (c̄1) . . . ~h[n](c̄p) . . .~h(kp−1)
[n] (c̄p)

∣∣∣ ,
whose column vectors are the ~h[n] and their successive derivatives,
at the points c̄j , with the multiplicities kj .
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Proposition (Zeros with multiplicities)
Let n ≥ 1 and let φ = 〈~b[n],~h[n]〉 be a nontrivial linear combination
of the eigenfunctions h1, . . . , hn.

1 The function φ has at most (n − 1) zeros, counted with
multiplicities, in ]0, 1[.

2 If the function φ has exactly p distinct zeros
0 < c̄1 < · · · < c̄p < 1, with multiplicities mult(c̄j) = kj ≥ 1,
such that k1 + · · ·+ kp = n − 1 then, there exists a nonzero
constant C such that

φ(x) = C S∗n(c̄1, k1; . . . ; c̄p, kp; x) ∀x ∈]0, 1[ .

3 Furthermore, if b1 = · · · = bk = 0, the function φ changes
sign at least k times in ]0, 1[.
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Proof of the proposition (zeros with multiplicities)
Assume that the number of zeros of φ, counted with multiplicities,
is at least n. This means that there is a linear system of n
equations with n unknowns,

b1h1(c̄1) + · · ·+ bnhn(c̄1) = 0
. . .

b1h(k1−1)
1 (c̄1) + · · ·+ bnh(k1−1)

n (c̄1) = 0
. . .
b1h1(c̄p) + · · ·+ bnhn(c̄p) = 0
. . .

b1h(kp−1)
1 (c̄p) + · · ·+ bnh(kp−1)

n (c̄p) = 0

We need to study the determinant of this system: this is the
subject of the next lemma.

The third assertion is a consequence of the second one (Liouville’s
remark).
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Lemma (Zeros with multiplicities)
Let n ≥ 1 and n ≥ p ≥ 1. Let 0 < c̄1 < · · · < c̄p < 1 be distinct
points with multiplicities mult(c̄j) = kj ≥ 1, such that
k1 + · · ·+ kp = n.

1 Then, S∗n(c̄1, k1; . . . ; c̄p, kp) 6= 0.
2 In particular, the n vectors

~h[n](c̄1), . . . ,~h(k1−1)
[n] (c̄1), . . . , ~h[n](c̄p), . . . ,~h(kp−1)

[n] (c̄p)

are linearly independent in Rn.
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Proof of the lemma (zeros with multiplicities)

It suffices to consider the case p ≤ n − 1, in which at least one
multiplicity is bigger than or equal to 2.

Consider the point

~c[n] = (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p)

where, for 1 ≤ j ≤ p, c̄j , is repeated kj times.

The point ~c[n] belongs to the boundary of the simplex ΩI
n, and is a

zero of Sn.

Since
h(n) (Sn) = Λn Sn

in In, one can apply Bers’ theorem at ~c[n].
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Application of Bers’ theorem

Let ~x[n] = ~c[n] + ~ξ[n]. Then, there exists a harmonic homogeneous
polynomial P̂k , of degree k, in Rn such that

Sn(~c[n] + ~ξ[n]) = P̂k(~ξ[n]) + ωk+1(~ξ[n]) ,

where ωk+1(t~ξ[n]) = O(tk+1) when t tends to 0.

We do not a priori know the degree k.

It turns out, in the present situation, that one can determine P̂k up
to a multiplicative constant.
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Notation
We work in a neighbourhood of the point

~c[n] = (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p)

We group the components of the vectors ~x et ~ξ in p groups of
lengths k1, . . . , kp, and write these vectors as

~x =
(
x (1), . . . , x (p)

)
and ~ξ =

(
ξ(1), . . . , ξ(p)

)
.

For m ≥ 1, call Pm the Vandermonde polynomial defined by
P1(x1) = 1 and, for m ≥ 2,

Pm(x1, . . . , xm) = (x1 − x2) · · · (x1 − xm) . . . (xm−1 − xm) .

With these notation, we have the following lemma.
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Lemma (Local form of Sn)
The polynomial P̂k has the following properties.

1 For any permutation σ = (σ1, . . . , σp) ∈ sk1 × · · · × skp ⊂ sn,

P̂k(σ ·~ξ ) = ε(σ) P̂k(~ξ ) .

2 The set of real zeros of P̂k is characterized by

P̂k(~ξ ) = 0⇔
p∏

j=1
Pkj

(
ξ(j)) = 0 .

3 There exists a nonzero constant ρ(~c ) such that

P̂k(~ξ ) = ρ(~c)Pk1(ξ(1)) . . .Pkp (ξ(p)) .
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In particular, P̂k has degree k =
∑

j
kj (kj−1)

2 , and

Sn(~c + ~ξ ) = ρ(~c )Pk1(ξ(1)) . . .Pkp (ξ(p)) + ωk+1(~c, ~ξ ) .
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Examples in dimension 5, for the harmonic oscillator

One can in particular apply Bers’ theorem to the Vandermonde
polynomial which is harmonic and, up to multiplication by an
exponential, the Slater determinant of the harmonic oscillator.

Exemple 1.
Take ~c[5] = (c̄1, c̄1, c̄2, c̄2, c̄3), with c̄1 < c̄2 < c̄3. Then,

P̂k(~ξ ) = ρ2 (ξ1 − ξ2)(ξ3 − ξ4) = ρ2 P2(ξ1, ξ2)P2(ξ3, ξ4) .

Exemple 2.
Take ~c[5] = (c̄1, c̄1, c̄1, c̄2, c̄3), with c̄1 < c̄2 < c̄3. Then,

P̂k(~ξ ) = ρ3 (ξ1 − ξ2)(ξ1 − ξ3)(ξ2 − ξ3) = ρ3 P3(ξ1, ξ2, ξ3) .
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Let us come back to our lemma . . .

Lemma (Local form of Sn)
The polynomial P̂k has the following properties.

1 For any permutation σ = (σ1, . . . , σp) ∈ sk1 × · · · × skp ⊂ sn,

P̂k(σ ·~ξ ) = ε(σ) P̂k(~ξ ) .

2 The set of real zeros of P̂k is characterized by

P̂k(~ξ ) = 0⇔
p∏

j=1
Pkj

(
ξ(j)) = 0 .

3 There exists a nonzero constant ρ(~c ) such that

P̂k(~ξ ) = ρ(~c)Pk1(ξ(1)) . . .Pkp (ξ(p)) .
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Proof of the lemma (local form of Sn)

We have Sn(~c + ~ξ ) = P̂k(~ξ ) + ωk+1(~ξ ). Look at the action of
permutations, and use the fact that Sn is anti-symmetric.

• The first assertion in the lemma, and the (⇐) part of the second
assertion, follow from the local analysis.

• For the part (⇒), suppose that there exists ~η such that P̂(~η) = 0
and

∏p
j=1 Pkj

(
η(j)) 6= 0. Since P̂ is harmonic, there exist ~η± as

close to ~η as we want, such that P̂(~η+) P̂(~η−) < 0. Looking at
Sn(~c + t~η±), we arrive at a contradiction with the fact that Sn
does not change sign in the simplex ΩI

n.

We have proved that P̂k and the product of Vandermonde
polynomials, have the same set of real zeros.
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• The third assertion follows from a result on the divisibility of
harmonic real polynomials. The statement we need here goes back
to Brelot et Choquet (1954), see also Murdoch (1964) et
Logunov-Mallinikova (2015).

Theorem
Let P et Q be two real polynomials in n variables. Assume that P
is harmonic, and that the sets of real zeros of the polynomials P
and Q satisfy ZR(P) ⊂ ZR(Q). Then, there exists a real
polynomial R such that Q = P R.
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Proof of the lemma (zeros with multiplicities)

The formula

Sn(~c + ~ξ ) = ρ(~c )Pk1(ξ(1)) . . .Pkp (ξ(p)) + ωk+1(~c, ~ξ ) .

allows us to evaluate the successive derivatives of the function
Sn(x1, . . . , xn) at the point ~c.

Observe that

∂m−1
xm ∂m−2

xm−1 · · · ∂
2
x3 ∂x2 Pm = (−1)

m(m−1)
2 (m − 1)! (m − 2)! . . . 2! ,

and obtain
S∗n(c̄1, k1; . . . ; c̄p, kp) 6= 0

which is precisely what the lemma “zeros with multiplicities”
asserts.

The proof of the proposition follows easily.
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Topological classification of linear combinations of
eigenfunctions

Let L(n) be the vector space of linear combinations of the first n
eigenfunctions h1, . . . , hn. Let 0 6= φ ∈ L(n). Let

Z(φ) =
{
∅ if φ does not vanish in ]0, 1[ ,
{(c̄1, k1), . . . (c̄p, kp)} otherwise ,

be the zero set of φ, where 0 < c̄1 < · · · < c̄p < 1 are the distinct
zeros of φ, and where the positive integers kj are the corresponding
multiplicities.

Define m (Z(φ)) := k1 + · · ·+ kp + 1. Then, according to Sturm’s
theorem, m(Z) ≤ n.
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Given a set Z0 as above, define the function

S∗(Z0;x):=ε(Z0)
∣∣∣~h[m](c̄1)...~h(k1−1)

[m] (c̄1) ...~h[m](c̄p)...~h(kp−1)
[m] (c̄p)~h[m](x)

∣∣∣ ,
where m = m(Z0), ~h[m](x) is the column vector
(h1(x), . . . , hm(x)), and ε(Z0) = ±1 is such that S∗(Z0; x) is
positive in ]0, c̄1[, with the convention that S∗(∅; x) = h1(x) > 0.

Define
L(n;Z0) := {0 6= φ ∈ L(n) | Z(φ) = Z0} .

Denote by L(n,Z0,+) the subset of φ’s in L(n;Z0) such that
φ|]0,c̄1[ > 0. If φ ∈ L(n,Z0), then φ or −φ is in L(n,Z0,+).
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Proposition
For any φ ∈ L(n,Z0,+), and any j ∈ {1, . . . , p}, sign

(
φ(kj )(c̄j)

)
= (−1)k1+···+kj ,

sign
(
φ|]c̄j ,c̄j+1[

)
= (−1)k1+···+kj ,

where c̄p+1 = 1.
In particular, the set L(n,Z0,+) retracts continuously to the
function S∗(Z0; ·). More precisely, for any φ ∈ L(n,Z0,+), the
map φt = (1− t)S∗(Z0; ·) + t φ, for t ∈ [0, 1], is a continuous
curve from φ0 = S∗(Z0; ·) to φ1 = φ, entirely contained in
L(n,Z0,+).
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Some historical remarks

Arnold’s “Courant-Gelfand theorem” is a weak form of a theorem
of Charles François Sturm. Sturm’s results were presented as a
Memoir to the Paris Academy of Sciences in September 1833, and
published in the first volume of Liouville’s journal in 1836 (two
papers, pp. 106–186 and pp. 373–444).

Sturm’s first proof of the above theorem (1833) used the heat
equation. In 1836, J. Liouville published a direct (ode) proof
replacing the heat flow by a discrete family of functions
{U`, ` ≥ 0}. In the second paper of 1836, Sturm gives two proofs,
one using the heat equation, the second being a direct (ode) proof,
different from Liouville’s proof. Where Liouville uses Rolle’s
theorem, Sturm studies sign variations. Liouville also remarks that
the second assertion in Sturm’s theorem, follows from the first one.

Go to the proof
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In his book “The theory of sound” (1877), Lord Rayleigh proves
Sturm’s “beautiful theorem”, following Liouville’s ideas and, on
this occasion, introduces a “Slater determinant”.

Sturm’s theorem (on zeros of sums of eigenfunctions) is explained
in F. Pockels (1891), and then seems to sink into oblivion.
M. Bôcher (“Leçons sur les méthodes de Sturm”, 1917) does not
mention it, neither do Courant-Hilbert, Arnold, Kuznetsov, etc. .

Go to Liouville’s proof

Heat equation approach, see: Galaktionov (2004) and
Galaktionov-Harwin (2005).

P. B. & B. Helffer. Sturm’s theorem on zeros of linear combinations of
eigenfunctions. Expositiones Math. 23 (2018), or arXiv:1706.08247.
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The non-vanishing of determinants such as Sn appear in a
1916-paper by O. Kellogg, who investigates when an orthonormal
family of continuous real functions is oscillatory. A. Haar (1917)
relates the non-vanishing property of the determinants to the
approximation of functions (Chebyshev systems).

Kellogg (1918) determines conditions on the kernel of an integral
operator under which the associated eigenfunctions form an
oscillatory family. This led to the theory of “oscillating matrices
and kernels” which was developed by the Russian school, see in
particular the book by F. Gantmacher and M. Krein (“Oscillatory
matrices and kernels”). In this book, Gantmacher and Krein prove
(a version of) Sturm’s theorem via the associated integral
equation.

Note that anti-symmetric functions (Fermions) also appear in this
more general framework. Gelfand’s approach of Sturm’s theorem is
more direct, but the ideas are very similar.
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Level sets of the 70th Dirichlet eigenfunction of the birthday cake
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Level sets of the 70th Dirichlet eigenfunction of the birthday cake

Thank you for your attention
Thank you to the organizers for this nice celebration!
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Proof of Sturm’s theorem following Liouville and Rayleigh

Given any 1 ≤ m ≤ n, let U =
∑n

k=m ak hk be any nontrivial real
linear combination of eigenfunctions of (1).

(1)
{
− y ′′(x) + q(x) y(x) = λ y(x) dans ]0, 1[ ,
y(0) = y(1) = 0 ,
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Proof that U has at most (n − 1) zeros, counting
multiplicities (Liouville’s proof)

Write equation (1) for h1 and for hk , and get the relation(
h1 h′k − h′1 hk

)′ = (λ1 − λk) h1 hk .

Multiply by ak , and sum from k = m to k = n to obtain

(2)
(
h1 U ′ − h′1 U

)′ = h1 U1 ,

where U1 =
∑n

k=m(λ1 − λk) ak hk . Equivalently,

U1 = U ′′ + (λ1 − q)U .



46/50

More generally, (
h1 U ′` − h′1 U`

)′ = h1 U`+1 ,

where U` =
∑n

k=m(λ1 − λk)` ak hk . Equivalently,

U`+1 = U ′′` + (λ1 − q)U` .

Note that this implies that U cannot vanish at infinite order at a
point.
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Integrate the relation
(
h1 U ′ − h′1 U

)′ = h1 U1 from 0 to x , use the
Dirichlet boundary condition, and obtain

h1(x)U ′(x)− h′1(x)U(x) =
∫ x

0
h1(t)U1(t) dt .

or
h2

1(x) d
dx

U
h1

(x) =
∫ x

0
h1(t)U1(t) dt .

Count zeros with multiplicities. Assume that U has N zeros in
]0, 1[. Then so does U

h1
.

By Rolle’s theorem, d
dx

U
h1

has at least (N − 1) zeros in ]0, 1[, and
so does the function x 7→

∫ x
0 h1(t)U1(t) dt.
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The function x 7→
∫ x

0 h1(t)U1(t) dt has at least (N − 1) zeros in
]0, 1[. It vanishes at both 0 and 1 because the hj form an
orthonormal family.

By Rolle’s theorem, its derivative, h1 U1, has at least N zeros in
]0, 1[.

Repeat the argument (Sturm’s idea): for any ` ≥ 1,
U` =

∑n
k=m(λ1 − λk)` ak hk has at least N zeros in ]0, 1[.

Let ` tend to infinity, use the fact that the eigenvalues λk are
simple, and the fact that hn has (n − 1) zeros in ]0, 1[, to conclude
that N ≤ (n − 1).
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Proof that U changes sign at least (m − 1) times, if
a1 = · · · = am−1 = 0 (Liouville’s proof revisited by
Rayleigh)

It is easy to prove that the following two assertions are equivalent:
(i) For any n ≥ 1, any nontrivial real linear combination∑n

j=1 cjhj has at most (n − 1) distinct zeros in ]0, 1[.
(ii) For any n ≥ 1, and any x1 < · · · < xn in ]0, 1[,

det (hi (xj))1≤i ,j≤n 6= 0.
Assume that U changes sign exactly p times at the points
z1 < · · · < zp in the interval ]0, 1[, and that p < (m − 1), i.e.,
p + 1 ≤ m − 1. Consider the function,

V (x) :=

∣∣∣∣∣∣∣
h1(z1) . . . h1(zp) h1(x)

...
...

...
hp+1(z1) . . . hp+1(zp) hp+1(x)

∣∣∣∣∣∣∣ .
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From the above assertions, the function V is not identically zero.
It vanishes at the points zj , 1 ≤ j ≤ p, and it is a linear
combination of the eigenfunctions h1, . . . , hp+1.

The first assertion in Sturm’s theorem tells us that V does not
have any other zero, and that each zj has order 1, so that V
changes sign precisely at the points zj .

Since p + 1 ≤ m − 1, the functions U and V are orthogonal, and
since they vanish and change sign at the same points, their
product U V does not change sign in ]0, 1[. It follows that U V
vanishes identically, a contradiction.

Back to Historical remarks
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