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Sect. 1. Weyl quantization.

For each operator A from S(IRn) to S ′(IRn) , the Weyl
symbol σweyl(A) is the element of S ′(IR2n) related to the
distribution kernel KA by:

KA(x , y) = (2π)−n
∫
IRn

e i(x−y)·ξσweyl(A)

(
x + y

2
, ξ

)
dξ

σweyl(A)(x , ξ) =

∫
IRn

e−it·ξKA(x + (t/2), x − (t/2))dt

Given F in S ′(IR2n), let Opweyl(F ) the operator from S(IRn)
to S ′(IRn) whose Weyl symbol is F .
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Sect. 1. Class Sm(H2,Q) of pseudodiff. symbols.

Let H be a Hilbert space.

Let Q be a positive quadratic form on H2.
Let Sm(H2,Q) (m ∈ N

⋃
∞) the space of F ∈ Cm(H2) s.t,

for some Cm(f ) ≥ 0:

|(dkF )(X )(U1, . . . ,Uk)| ≤ Cm(f )Q(U1)1/2 . . .Q(Uk)1/2

for all k ≤ m, for X ,U1, ...Uk in H2.
The best Cm(f ) is denoted by ‖F‖m,Q or ‖F‖∞,Q .

It is well known (Calderón Vaillancourt) that, if F is in
S4n(IR2n,Q), then Opweyl(F ) is bounded in L2(IRn).
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Sect. 1. Notations for the norm estimate.

The quadratic form Q defining the class is:

Q(X ) = QA(X ) =< AX ,X > X ∈ IR2n

Set F(x , ξ) = (−ξ, x).

The product FA is called ”fundamental matrix”.

Let |FA|A the absolute value of FA (for the scalar product of
Q).

(FA)? adjoint of FA for the scalar product of Q. We have
(FA)? = −FA
|FA|A is the positive self-adjoint operator (for the scalar
product of Q), whose square is (FA)?FA.
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Sect. 1. Our norm estimate.

Theorem

If F ∈ S4n(IR2n,Q), one has:

‖Opweyl(F )‖ ≤ ‖F‖4n,QA

[
det
(
I + 81πK |FA|A

)]1/2

where
K = max(1, ‖FA‖QA

)

and ‖FA‖QA
is the norm of FA for the norm Q

1/2
A .
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Sect. 1. The usual hypothesis of L. Hörmander.

The dual form of QA w.r.t. the symplectic form σ is:

Qσ
A(X ) = sup

Y

|σ(X ,Y )|2

QA(Y )
= (A−1FX ) · (FX ),

The usual hypothesis QA ≤ Qσ
A reads as ‖FA‖QA

≤ 1.

With this hypothesis, we have K = max(1, ‖FA‖QA
) = 1.

L. Hörmander, The analysis of linear partial differential
operators, Volume III, Springer, 1985.
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Sect. 1. Toward infinite dimension (1).

We are given a Hilbert space H and:

A function F ∈ C∞(H2).

A positive quadratic form Q on H2.

For each finite dim. subspace E ⊂ H, let FE be the restriction
of F to E 2.

We define an op. Opweyl(FE ), bounded in L2(E ).

Question When is the norm of Opweyl(FE ) bounded independently
of E?
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Sect. 1. Toward infinite dimension(2)

It suffices that:

We have F ∈ S∞(H2,Q). Hence F is analytic.

We have Q(X ) =< AX ,X >, with A trace class. Because:

det
(
I + 81πKh|FA|A

)
≤ e81πKhTr(|FA|A) ≤ e81πKhTr(A)
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Sect. 1. Base of the proof: result with L. Jager.

Let H = IRn. Let (x , ξ) the variable of H2.

Theorem

Let F : H2 → C s. t.

|∂αx ∂
β
ξ F (x , ξ)| ≤ M

∏
j≥1

ε
αj+βj
j

for each (α, β) s.t. 0 ≤ αj ≤ 2 and 0 ≤ βj ≤ 2 for all j .
Then:

‖Opweyl(F )‖ ≤ M
∏
j≥1

(1 + 81πSε2
j )

where S = supjmax(1, ε2
j ).
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Sect. 1. Proof of the result with L. Jager.

Let F as above. For each subset I ⊂ {1, ..., n}, set:

FI =
∏
j∈I

(
I − e

1
4

∆j

)∏
k /∈I

e
1
4

∆k

By results in dimension 1, we have:

‖Opweylh (F )‖ ≤ M
∏
j∈I

(81πSε2
j )

We have:
F =

∑
I⊂{1,...n}

FI

The result follows.
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Sect. 1. Main Proof (1).

There exist a symplectic linear map χ such that:

(QA ◦ χ)(x , ξ) =
d∑

j=1

λj(x
2
j + ξ2

j )

where the λj are the eigenvalues of the operator |FA|A.
There is a metaplectic unitary transform Uχ satisfying:

U?
χOp

weyl(F )Uχ = Opweyl(F ◦ χ).

For any F ∈ S4n(H2,QA), one has:

‖Opweyl(F )‖ = ‖U?
χOp

weyl(F )Uχ‖ = ‖Opweyl(F ◦ χ)‖.

The symbol F ◦ χ belongs to S4n(H2,QA ◦ χ).



More on pseudodifferential calculus norms

Section 1. Main Proof (2).

Therefore we have, if |α + β| ≤ 4d :

|∂αx ∂
β
ξ (F ◦ χ)(x , ξ)| ≤ ‖F‖4n,QA

∏
j

λ
(1/2)(αj+βj )
j ,

In particular true if αj ≤ 2 and βj ≤ 2 for all j .
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Sect. 1. Main Proof (3).

By the thm with L. Jager, with εj =
√
λj , one has

‖Opweyl(F ◦ χ)‖ ≤ ‖F‖4n,QA

n∏
j=1

(1 + 81πSλj),

with
S = sup

j
max(1, λj) = max(1, ‖FA‖H2,qA) = K

Therefore:

‖Opweyl(F )‖ ≤ ‖F‖4n,QA

d∏
j=1

(1 + 81πSλj).

=
n∏

j=1

(1 + 81πSλj) = det(I + 81πK |FA|A)1/2

(each λj) is double).
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Sect. 2. References for Section 2.

[4] L. Amour, J. Nourrigat, Integral formulas for the Weyl and
anti-Wick symbols, To be published in: Journal de Math.
pures et Appl.
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Sect. 2. Weyl symbol and coherent states.

Coherent states.

Ψx ,ξ(u) = π−n/4e−
1
2
|u−x |2+iu·ξ− i

2
x ·ξ

Main property. For f in S(IRn):

f = (2π)−n
∫
IR2n

< f ,ΨX > ΨXdX

We want a formula for the Weyl symbol of A using the
< AΨX ,ΨY > (see Unterberger characterization).

A. Unterberger, Les opérateurs métadifférentiels, in Lecture
Notes in Physics 126 (1980) 205-241.
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Sect. 2. Formula for the Weyl symbol.

Theorem

Let A be a bounded operator in L2(IRn). Assume that:

sup
X∈IR2n

∫
IR2n

∣∣∣∣< AΨX+Z ,ΨX−Z >

< ΨX+Z ,ΨX−Z >

∣∣∣∣ e−|Z |2dZπn
<∞

Then the Weyl symbol F of A is continuous and:

F (X ) =

∫
IR2n

< AΨX+Z ,ΨX−Z >

< ΨX+Z ,ΨX−Z >

e−|Z |
2
dZ

πn

Sjöstrand Wiener.
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Sect. 2. Weyl symbol formula: proof (1).

(Berezin, Folland) For each operator A bounded in L2(IRn), there
exists a function Φ holomorphic in C2n s.t, for each
X = (x , ξ) = x + iξ and Y = (y , η) = y + iη:

< AΨX ,ΨY >

< ΨX ,ΨY >
= Φ(x + iξ, y − iη)

The above hypothesis reads:

sup
X∈IR2n

π−n
∫
IR2n

∣∣Φ(X + Z ,X − Z )
∣∣ e−|Z |2dZ <∞

The Weyl symbol F must satisfy:

e
1
4

∆F (x , ξ) = Φ(x + iξ, x − iξ)
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Sect. 2. Weyl symbol formula: proof (2).

Let Φ, holomorphic in C2n, satisfying the above condition.
For λ > 0, set

Fλ(X ) =

∫
IR2n

Φ(X + Z ,X − Z )
e−

|Z |2
2λ dZ

(2πλ)n

Then:
e

λ
2

∆F (x , ξ) = Φ(x + iξ, x − iξ)

Thus, F1/2 is the Weyl symbol.
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Sect. 2. Weyl-Campbell-Hausdorff formula.

Theorem

The Weyl symbol satisfies:

F (X ) = π−n
∫
IR2n

〈
e−ΦS (Z)AeΦS (Z)ΨX ,ΨX

〉
e−|Z |

2
dZ

where

ΦS(Z ) =
n∑

j=1

(
zjuj + ζj

1

i

∂

∂uj

)
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Sect. 2. Weyl-Campbell-Hausdorff. Proof.

First, we prove that:

eΦS (Z)ΨX = e
1
2
|Z |2+Z ·X− i

2
σ(Z ,X )ΨX+Z

Hence:

< AΨX+Z ,ΨX−Z >

< ΨX+Z ,ΨX−Z >
=
〈
e−ΦS (Z)AeΦS (Z)ΨX ,ΨX

〉
The theorem follows.
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Sect. 2. Wick and anti-Wick symbols.

Wick symbol of an operator A.

σWick(A)(X ) =< AΨX ,ΨX > X = (x , ξ)

Anti-Wick operator OpAW (F ) associated with F .

< OpAW (F )f , g >= (2π)−n
∫
IR2n

F (Z ) < f ,ΨZ >< ΨZ , g > dZ
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Sect. 2. The anti-Wick symbol always makes sense.

Without any hypothesis, the Weyl symbol of A : S(IRn)→ S ′(IRn)
is well-defined as a distribution.
The anti-Wick symbol exists, no more as a distribution, but as a
”generalized function” of Gelfand Shilov.
Discussions with L. Amour and N. Lerner.
More precisely, if λ > 0 and 0 < µ < 1/2, the AW symbol is a
continuous linear form on the space:

S(λ, µ) =
{
ϕ ∈ C∞(IR2n), ∃A > 0, |xα∂βϕ(x)| ≤

... ≤ A|α|+|β|(α!)λ(β!)µ
}
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Sect. 2. Formula for the anti-Wick symbol.

Theorem

Let A be a bounded operator in L2(IRn) s.t.

sup
X∈IR2n

∫
IR2n

∣∣∣∣< AΨX+Z ,ΨX−Z >

< ΨX+Z ,ΨX−Z >

∣∣∣∣ e− |Z |2
2 dZ

(2π)n
<∞

Then, there exists a continuous bounded function G in IR2n, s.t.
A = OpAW (G ) and:

G (X ) =

∫
IR2n

< AΨX+Z ,ΨX−Z >

< ΨX+Z ,ΨX−Z >

e−
1
2
|Z |2dZ

(2π)n
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Sect. 3. Modelization of Nuclear Magnetic Resonance.

Classical model: Spin S(t) = vector in IR3 satisfying

S ′(t) = B ∧ S(t)

F. Bloch, Nuclear Induction, Physical Review 70 460-473,
(1946).

Almog, Grebenkov, Helffer: fluid with density of spin.

QED model: Spin S(t) = 3 operators in a Hilbert space H.
Evolution given by a Hamiltonian H(h) in H.

F. A. Reuse, Electrodynamique et Optique Quantiques,
Presses Polytechniques et Universitaires Romandes,
Lausanne, 2007.
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References for Section 3.
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Sect. 3. The symbol class S∞(H2,Q) and NMR.

Theorem

The Reuse Hamiltonian H(h) satisfies:

e−itH(h) = Uh(t)OpAWh (Ft))

where

Uh(t) is a metaplectic (or Bogoliubov) operator.

Ft is a fonction in S∞(H2,Qt) , where H2 is the phase space.

The quadratic form Qt has the following form:

Qt(X ) =
m∑
j=1

∫ t

0
< Bj(s),X >2 ds
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Sect. 3. The symbol class S∞(H2,Q) and NMR.

Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The evolving components of the spin operator

Sj(t) = e itH(h)(I ⊗ σj)e−itH(h)

can be written
Sj(t) = OpAWh (Fj(t))

where Fj(t) ∈ S∞(H2,Qt).

The Wick symbol has an asyptotic expansion when h→ 0.
The first term follows Bloch Equations.

We have also an asympt. exp. for the number of photons
emitted at time t.
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Sect. 3. Open problems: Large time behaviour (here
ibuprophen).
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Sect. 3. Spin relaxation: references.
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