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Many energetic models take the general form

E =
∫

(Bulk potential favoring one or more states)

+∫
(Elastic energy density penalizing deformations)

In a series of projects we have pursued the question:

What happens when certain types of deformations (e.g. stretching,
twisting, bending etc.) are penalized much more heavily than others?



Many energetic models take the general form

E =
∫

(Bulk potential favoring one or more states)

+∫
(Elastic energy density penalizing deformations)

In a series of projects we have pursued the question:

What happens when certain types of deformations (e.g. stretching,
twisting, bending etc.) are penalized much more heavily than others?



Motivation: nematic/isotropic phase transitions in liquid
crystals

A liquid crystal in a nematic state consists of thin molecules that can be
characterized by a director field n : Ω→ S2. Here n(x) represents local
orientation of nematic molecules near a point x in the material sample Ω.

When the liquid crystal is in a disorder state without local orientation we
say it is in an isotropic state.

An early model for elastic deformations in a purely nematic liquid crystal is
Oseen-Frank, 1958.
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Oseen-Frank Model elastic energy density

fOF (n,∇n) :=
K1

2
( divn)2 +

K2

2
( curln · n)2 + K3

2
| curln× n|2

+
K2 +K4
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(
tr (∇n)2 − ( divn)2

)

Splay

Twist

Bend

Saddle
Splay



Oseen-Frank with strong anchoring:

Minimize

FOF [n] :=
∫

Ω

{
K1

2
( divn)2 +

K2

2
( curln · n)2 + K3

2
| curln× n|2

}
in H1

(
Ω, S2

)
or H1

(
Ω, S1

)
subject to the appropriate Dirichlet boundary

data g . Invoking the identity:

(divn)2 + (curln)2 = |∇n|2 + null Lagrangian

and assuming that K2 = K3 we need only retain two of the elastic terms,
say

|∇n|2 and (divn)2.
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Relaxed model for thin film nematics

Relax the constraint n ∈ S1 by replacing n by u ∈ R2 with a penalty for
|u| deviating from 1. Take Ω ⊂ R2, so u : Ω→ R2.

Upon rescaling, we arrive at a functional that will be the focus of this talk:

Eε(u) =
1

2

∫
Ω

1

ε
(|u|2 − 1)2 + ε |∇u|2 + L(divu)2 dx .

Here L > 0 is independent of ε > 0, whereas ε� 1, so splay is penalized
much more heavily than bending.
Admissible competitors u must lie in H1(Ω; R2) and satisfy an S1-valued
Dirichlet condition

u = g on ∂Ω for some g ∈ H1/2(∂Ω; S1).

Notation: We’ll write u ∈ H1
g (Ω; R2) for such competitors.
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What are we looking for?

Eε(u) =
1

2

∫
Ω

1

ε
(|u|2 − 1)2 + ε |∇u|2 + L(divu)2 dx .

With this choice of potential favoring S1 there will not be isotropic
regions, hence no nematic/isotropic phase boundaries, but...

We are interested in identifying any other singular structures such as
vortices and domain walls (both smooth and non-smooth) that arise as
ε→ 0.

In particular, we wish to identify a limiting problem, the so-called
“Γ-limit of Eε.”
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Two asymptotic limits for the term L
∫
(div u)2 dx

• Note that if one takes L = 0 in Eε, then this is precisely the famous
Brezis-Bethuel-Helein [BBH] problem, multiplied by ε:

inf
u∈H1

g (Ω;R2)
EBBH

ε (u) :=
1

2

∫
Ω

1

ε
(|u|2 − 1)2 + ε |∇u|2 dx ,

whose minimizers are characterized by Ginzburg-Landau vortices.

• On the other hand, if we formally consider the limit L→ ∞ so that
competitors u are required to be divergence-free, then writing u = (∇v)⊥
for some scalar v : Ω→ R we find that Eε takes the form

EAG
ε (v) :=

1

2

∫
Ω

1

ε
(|∇v |2 − 1)2 + ε

∣∣D2v
∣∣2 dx ,

which is the well-known Aviles-Giga energy, whose minimizers in the limit
ε→ 0 are characterized by wall-type singularities.
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Singular structures in this model: a GL vortex

• Ginzburg-Landau type vortex uε = ρε(r)(cos θ, sin θ)–expensive!

0 1
r

0

1

L
∫

Ω
(div u)2 dx ∼ L| ln ε| so Eε(uε)→ ∞.



Singular structures in this model: a zero divergence vortex

• A divergence-free vortex uε = ρε(r)(− sin θ, cos θ)–cheap!

0 1
r

0

1

div uε ≡ 0 so Eε(uε) ∼ ε
∫

Ω
|∇u|2 ∼ ε| ln ε| → 0



Singular structures: a domain wall

Figure: u and |u|.

Note: Continuity of normal component across the (vertical) jump.



The right space of competitors for a limiting problem

Given that energy-bounded sequences Eε(wε) < C satisfy the bounds

||divwε||L2(Ω) < C and
∫

Ω
(|wε|2 − 1)2 dx < C ε2,

it makes sense to seek a limiting problem defined for

u ∈ Hdiv(Ω; S1) := {u ∈ L2(Ω; S1) : divu ∈ L2(Ω)}.

Key point: Functions u ∈ Hdiv(Ω;S1) are allowed to have jump
discontinuities across a curve provided u · n is continuous.
(In particular, the normal trace is well-defined.)
Since |u| = 1 on either side of the jump, this means across the “jump set”
Ju the tangential component simply switches signs:

u+ · τ = −u− · τ,

where u± denote the traces on either side of the jump set.
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Towards a Γ-Convergence result: Compactness

With only a minor modification of the compactness proof of DeSimone,
Kohn, Müller, Otto (2001) for the Aviles-Giga functional, one has:

Theorem

Assume {vε} ⊂ H1(Ω) satisfies the uniform energy bound

sup
ε>0

E (vε) = sup
ε>0

1

2

∫
Ω

1

ε
(|vε|2 − 1)2 + ε |∇vε|2 + L(div vε)

2 dx < ∞.

Then there exists a subsequence (still denoted by vε) and a function

v ∈ Hdiv(Ω;S1) such that vε
∧
⇀ v defined as

div vε ⇀ div v weakly in L2

vε → v in L2(Ω; R2) [DKMO].

Note: Under this convergence, if vε = g on ∂Ω then v · n = g · n.



Asymptotic cost of a horizontal domain wall along y = 0
To smoothly approximate, say, a horizontal wall across which u jumps
from

(
−
√

1− a2, a
)

to
(√

1− a2, a
)

for some a ∈ [0, 1) in an
energetically efficient way, a natural ansatz is:

uε(x , y) =
(
ζ(

y

ε
), a
)

with ζ(±∞) = ±
√

1− a2

where a = normal (here 2nd) component of u(x , 0).
The optimal such profile ζ(y) is given by the heteroclinic connection
(hyperbolic tangent profile) minimizing

F (ζ) :=
∫ ∞

−∞
(ζy )

2 + (1− a2 − ζ2)2 dy , ζ(x ,±∞)→ ±
√

1− a2.

A direct calculation yields that in a neighborhood of this construction:

Eε(uε)→
1

6

∫
Ju

∣∣u+ − u−
∣∣3 dH1

where Ju denotes the jump set of u; in this example Ju = (0, 1)× {0}.
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These types of wall constructions are well-known from earlier studies in
many different contexts:

smectic-A liquid crystals, thin film blistering, micromagnetics,...

Within the math community, there are many contributors including:

Ambrosio/DeLellis/Mantegazza, Aviles/Giga, Jin/Kohn,
Conti/DeLellis, Ignat, James, Poliakovsky, Alouges/Riviere/Serfaty,
and many others...



The Γ-limit:

What a uniform energy bound does not yield is that the limit lies in BV
(cf. example by Ambrosio/De Lellis/Montegazza for Aviles-Giga)

However, we make this assumption and propose a candidate for the Γ-limit:
For u ∈ Hdiv(Ω; S1) ∩ BV (Ω;S1) with u · n = g · n on ∂Ω, let E0(u) be
given by

E0(u) :=
1

6

∫
Ju∩Ω

∣∣u+ − u−
∣∣3 dH1 +

1

6

∫
Ju∩∂Ω

∣∣u|∂Ω
− g

∣∣3 dH1

+
L

2

∫
Ω

(
divu

)2
dx ,

where u+ and u− denote the traces of u on Ju ∩Ω, and u|∂Ω
denotes the

trace of u along ∂Ω.



Γ-convergence

Theorem

Let u ∈ Hdiv (Ω;S1) ∩ BV (Ω; S1) with u∂Ω · n = g · n on ∂Ω

(i) If uε ∈ H1
g (Ω, R2) is a sequence of functions such that uε

∧
⇀ u, then

lim inf
ε→0

Eε(uε) > E0(u).

(ii) There exists wε ∈ H1
g (Ω; R2) with wε

∧
⇀ u satisfying

lim sup
ε→0

Eε(wε) = E0(u).

The proof uses the ideas from Jin/Kohn and Alouges/Riviere/Serfaty
(lower semicontinuity) and Conti/De Lellis (recovery sequence).



Criticality Conditions for E0

Theorem

Suppose that u ∈ BV (Ω, S1) ∩Hdiv(Ω, S1) such that u∂Ω · n = g · n on
∂Ω is a critical point of E0. Denote by Ju its jump set. Then

u⊥ · ∇divu = 0 holds weakly on Ω\Ju, where u⊥ = (−u2, u1) .

Furthermore, if the traces divu+ and divu− on Ju are sufficiently
smooth, then

L [divu] + 4
(
1− (u · νu)2

)1/2
(u · νu) = 0 on Ju ∩Ω,

where [a] = a+ − a− represents the jump of a across Ju and νu is the unit
normal to Ju pointing from the + side of Ju to the − side.

One can also derive criticality conditions associated with variations of the
jump set itself that involve curvature of Ju.
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A method of characteristics approach in the bulk

Corollary

Suppose u is smooth and critical for E0. Then writing u locally in terms of
a lifting as u(x , y) =

(
cos θ(x , y), sin θ(x , y)

)
and defining the scalar

v := divu one has that the criticality condition

u⊥ · ∇divu = 0 on Ω\Ju

is equivalent to the following system for the two scalars θ and v:{
− sin θ vx + cos θ vy = 0,

− sin θ θx + cos θ θy = v .



Integrating the characteristic system

xt = − sin θ, yt = cos θ, θt = v vt = 0

one finds:

Characteristics are circular arcs that carry constant values of divergence
and the curvature of each such circular arc is given by that constant
divergence.

In case the divergence is zero, the corresponding characteristic is a straight
line.



A basic example: Minimizing E0 in a periodic strip

We first consider a basic example of a rectangle with periodic boundary
conditions on the left and right sides:

Let Ω = [−T ,T ]× [−H,H ] and set{
g(−T , y) = g(T , y), y ∈ [−H,H ],
g(x ,±H) = (±1, 0), x ∈ [−T ,T ].

Goals:
• To understand how bulk divergence versus walls contribute to the total
energy E0

• To understand how strongly 1d configurations are favored.
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1D versions of Eε and E0

Let

A0 := {u = u(y) ∈ H1((−H,H); R2),u(±H) = (±1, 0)}.

and consider the variational problem infu∈A0 E 1D
ε (u), where

E 1D
ε (u) :=

1

2

∫ H

−H
ε|u′|2 + 1

ε
(|u|2 − 1)2 + L(u′2)

2 dy .

and one can prove that the Γ-limit restricted to 1D competitors is:

E 1D
0 (u) =:

L

2

∫ H

−H
(u′2)

2 dy +
1

6 ∑
yj∈Ju1

|[u1](yj )|3 .

In 1D the jump set only involves jumps in u1 since u2 ∈ H1 and
Ju1 consists of a set of points {yj}.



Minimizers of the 1D Γ-limit

Theorem

(i) If L/H < 2, the problem

inf
A0

E 1D
0 (u)

has a unique solution u∗ = (u∗1 , u∗2) where u∗1 has exactly one jump located
at y = 0 and u∗2 is continuous on [−H,H ] and linear on the subintervals

[−H, 0] and [0,H ]. The infimum of the energy is E 1D
0 (u∗) = L

H −
1
12

L3

H3 .

(ii) If L/H > 2 then the minimizer has the form

u∗(y) =

{
(−1, 0) for y ∈ (−H, y ∗],
(1, 0) for y ∈ (y ∗,H),

where y ∗ ∈ [−H,H ] is arbitrary and the infimum of the energy is
E 1D
0 (u∗) = 4/3.



Computations in a rectangle. Is the minimizer 1d?

L = 0.3, H = 0.5, T = 0.5, ε = 0.005

Figure: |u| and u.

The 1d minimizer seems to also be the 2d minimizer.



L = 0.5, H = 0.5, T = 0.3, ε = 0.005

Figure: u and |u|.



L = 0.5, H = 0.5, T = 0.3, ε = 0.005

Figure: Level curves for the divergence of u.



Theorem

Consider the minimization problem for E0 in the rectangle
Ω = (−T ,T )× (−H,H), subject to the boundary conditions
u(x ,±H) = (±1, 0). There exist constants L0 ≈ 1.27 and L1 ≈ 2.14 such
that whenever L/H ∈ (L0, L1) and T = HT̃ (L/H) where T̃ (L/H) solves
a certain algebraic equation, we have

inf E0(u)

2T
< inf
A0

E 1D
0 (u).

In a certain parameter regime, the “cross-tie” 2d solution is cheaper than
the 1d solution.



Characteristics solution construction

H

T

T x

y

I

II

III

Figure: Regions corresponding to different characteristics families. Typical
characteristics for each region are indicated by dashed lines.
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Figure: Energy per unit length.

For L/H between about 1.27 and 2.14 the minimizer is not 1D.



Upgrade to a model for nematic/isotropic transitions

Experimentally obtained phase boundaries:

Figure: Isotropic tactoids in a nematic phase. Courtesy of O. D. Lavrentovich



Modeling: Include an extra potential well at the origin

We replace the Ginzburg-Landau potential (1− |u|2)2 with

|u|2(1− |u|2)2

and consider the energies

Eε(u) :=
1

2

∫
Ω

1

ε
|u|2(1− |u|2)2 + ε |∇u|2 + L(div u)2 dx .

Correspondence:

u ≈ 0 ⇐⇒ isotropic state

|u| ≈ 1 ⇐⇒ nematic state



Singular Structures: Phase boundaries in addition to walls

In the ε→ 0 limit, in addition to wall singularities involving jumps between
two S1-valued states, now we also have:

Phase boundaries between S1 nematic and 0 isotropic phases:

When u jumps between S1-values and 0, continuity of u · ν means:

u · ν = 0 from the nematic (S1-valued) side, i.e.

Tangency to the phase boundary is required.

This turns out to be a mechanism for formation of phase boundary
singularities. In both our model and in experiments appearance (or
non-appearance) of phase boundary singularities related to degree of
boundary conditions/far field conditions.



A Conjecture for the Γ-limit

Recall:

Eε(u) :=
1

2

∫
Ω

1

ε
|u|2(|u|2 − 1)2 + ε |∇u|2 + L(divu)2 dx .

We have an upper bound construction yielding the energy

E0(u) =
L

2

∫
Ω
(div u)2 dx +

K (0)

2
PerΩ({|u| = 1}) +

∫
Ju∩{|u|=1}

K (u · ν) dH1,

for u ∈ (Hdiv ∩ BV )(Ω; S1 ∪ {0}), where Ju is the jump set, and

K (z) :=
∫ √1−z2
−
√
1−z2

√
z2 + y2

(
1− z2 − y2

)
dy

is the asymptotic cost of a 1d transition in the tangential component.
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for u ∈ (Hdiv ∩ BV )(Ω; S1 ∪ {0}), where Ju is the jump set, and

K (z) :=
∫ √1−z2
−
√
1−z2

√
z2 + y2

(
1− z2 − y2

)
dy

is the asymptotic cost of a 1d transition in the tangential component.



A lower bound on divergence–good degrees and bad
degrees

Theorem

Fix 0 < ρ < ρ′ 6 1, set A := {x ∈ R2 : ρ < |x | < ρ′} and let Ct be a
circle of radius t centered at the origin. Suppose that u ∈ C 1(A; R2) is
such that |u| > 1/2 on A and deg (u,Ct) = d 6= 0, 1 for any t ∈ [ρ, ρ′].
Then ∫

A
(div u)2 dx > |πd log(ρ′/ρ) + 4|, d < 0,∫

A
(div u)2 dx > |π(d − 1) log(ρ′/ρ)− 4|, d > 1.

• This says that vortices of degree other than 0 or 1 are certainly
expensive. Degree 1 vortices may or may not be expensive:
er is expensive, eθ is cheap.



Computations with boundary data of degree −2 and −3

Figure: Notice the walls branching off of the singularities on the phase boundary.


